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Abstract

A new method is proposed to extract the axes of tubular vortices in complex
fluid flows. Loci of sectional local minimum of the pressure associated with
the advection acceleration are traced numerically. It is applied to a homoge-
neous isotropic turbulence to demonstrate that swirling motions actually exist
around these axes. The present method is shown to be superior to several

typical ones commonly used in identifying tubular vortices.
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L. INTRODUCTION

Characterization and extraction of coherent structures, such as vortex tubes and layers,
are prerequisite for the study of turbulence dynamics. In a homogeneous shear turbulence,
for example, several typical complex interactions are observed between vortex tubes and lay-
ers.! It is not easy, however, to identify tubular vortices accompanied with swirling motions
around them because vorticity does not necessarily bring about a swirling motion. Many
identification methods have been proposed so far in terms of regions of high vorticity, high
strain, low pressure, topological structures of streamlines and streaklines, sectional concave
regions of pressure, and so on (see Ref. 2 for a review). Unfortunately, however, we must
admit that none of them can capture swirling motions in turbulence objectively and satis-
factorily. Some methods have artificial adjustable parameters and others mispredict swirling

motions.



In this paper, we propose a new method to extract the axes of tubular vortices in complex
flows. In § 2, we characterize a tubular vortex in terms of the pressure associated with
the advection acceleration and explain how to trace their axes. In § 3, we show that our
method is superior to others in identification of the axes of tubular vortices in homogeneous

turbulence. Section 4 is devoted to further discussions.

II. SECTIONALLY MINIMAL PRESSURE METHOD

We consider here how to extract tubular vortices, or swirling slender regions, in complex
flows. For characterization of a tubular vortex, it may be useful to recall the fact that
the pressure is generally lower inside a vortex than the surroundings to counter-balance
the centrifugal force due to swirling motions around it. More precisely, the pressure takes
a minimum value around the central axis in a cross-section of a vortex.? We may call it
the sectionally local minimum of the pressure. In a given velocity field u(z) each fluid
element feels advective acceleration {u - V)u.? A force field associated with this advection
acceleration, which maintains the velocity field stationarily, is generally expressed as the

sum of a potential force and a torque as
(w-Viu=-VP+V xQ. (1)

Here, P and @ are completely determined within constants by an instantaneous velocity
field u(z) under an appropriate boundary condition. Scalar potential P obeys the Poisson

equation

62
V2P = — (uzu) 2
Or;0c; / (2)

for an incompressible flow, which follows from eq.(1) by taking a divergence of it. Equation
(2) is identical to the equation of the pressure for an incompressible Newtonian fluid flow
without any external torques, in which P coincides with the true pressure. Scalar potential
P introduced in eq.(1) may be called the pressure associated with the advection acceleration.
Based on the above observation of the low pressure in a tubular vortex, we define here the
axis of a vortex as a locus of sectionally local minimum of the pressure associated with the

advection acceleration.



The loci of sectionally local minimum of the pressure is traced numerically as follows.

First, we expand the pressure around each grid point { X, X3. X3) up to the second order as

P(zy,29,23) = PO + Pz, — X,) + 1 PP (2, — X )(z, — X)), (3)

where PO = P(X;, X,,X;), P = (8/6X,)P(X1, X2, Xs) and P = (8°/8X,0X,)

P(Xy, X», X3). Next, this quadratic form is transformed into a normal form
: 2
P = Pmm+ ‘%)\()(I: _Ci) (4)

by a rotation around the origin of the coordinate system from (z;,xs,z3) to (2, x5, z5).
Here, A®) (¢ = 1,2, 3) are the eigenvalues of pressure hessian {Pl(f)}. The z!-axis is parallel
to the eigenvector associated with M. Since {P,(f)} is a symmetric tensor, A¢) are real. We
assume, without loss of generality, that A(0) > X2 > X3} The condition of a tubular vortex
is then given by A®® > 0. The vortex is thought to be parallel to the z}-axis if A® < 0.
Then, a foot point, C'(c],ch, c}) say. of a normal line from the grid point X to a straight
line parallel to the z}-axis passing through point C(cy, 2, ¢3) is regarded as lying on the axis
of a tubular vortex (see Fig. 1).

It should be noticed that the above quadratic approximation of the pressure may be
valid only if the distance between the axial point C' and the grid point X is sufficiently
small. The critical length may be different depending upon the velocity field. For example,
this approximation may be poor where two vortices are close each other. Except for such
rather rare regions, we assume that it may be permissible if | X — C/| is less than of order
of mesh-size § (a minimum length available in a numerical data) in a regular grid system
which we analyze in the following. It should also be noticed that plural neighboring grid
points may predict same loci of local minimum of pressure with small difference, which may
lead to redundant predictions. To avoid such redundancy, we discard all the points other
than that predicted from a grid point nearest to the locus. Practically, we take only such
points that satisfy the condition that A® > 0 and |X, —¢{| < 6 (i = 1,2, 3). Each point is
then connected with its nearest-neighbor within two mesh-sizes in each coordinate axis to
construct the axial lines of tubular vortices.

The vortex-axis-tracing method described above is applied to a homogeneous isotropic

turbulence of micro-scale Reynolds number 27 which was simulated in a periodic cube with
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643 grid points. The axes of tubular vortices thus obtained are depicted by strings of tubular
pieces in Fig. 2. Colors of the tubes represent the sum of two positive eigenvalues, A; + Az
which measure the depth of potential wells and also the strength of vortices. Blue is stronger
and yellow is weaker. Typical streamlines which are viewed in frames moving® relative to the
nearest part of the axes of vortices are drawn with red. It is seen that they coil up around
the vortex axes irrespective of strength, implying that there are indeed swirling motions

around them.

IT. COMPARISON WITH OTHER METHODS

We now compare our new method with some typical identification methods which have
been proposed so far, such as the representations with isosurfaces of high enstrophy density
%]w|2, low pressure p, high Laplacian of pressure V?p and the Xy-definition.?

Visuahzation of vortex structures by enstrophy density %]w]2 has been frequently used
in the numerical study of complex flows. In Fig. 3{(a), we show the isosurfaces of enstrophy
density at the level a half of the standard deviation above the mean value. This level
was selected carefully for a better representation. At lower levels more vortices can be
included in isosurfaces, but the covered volume is inevitably too large to distinguish the
individnal vortices. At higher levels, on the other hand, some vortices can be identified
more sharply but more vortices are left outside of isosurfaces. In spite of such a deliberate
adjustment, some of vortices still remain outside of the isosurfaces in Fig. 3(a). There is
an intrinsic difficulty in the representation in terms of isosurfaces of enstrophy density that
swirling and shearing motions cannot be distinguished solely by vorticity (see Ref. 4). As
is well known, swirling motions are not always realized where intensity of vorticity is high
if shearing motions are strong. It should be emphasized that swirling motions exist either
inside or outside of isosurfaces of enstrophy density and that our method can capture them
even where vorticity is weak.

In Fig. 3(b) drawn are isosurfaces of the pressure, which is expected to be lower at
tubular vortices than the surroundings, at the level of a standard deviation below the mean
value. This level was again selected deliberately for a better representation. Nevertheless it

does not seem to capture the tubular vortices well. Many vortices are indeed enclosed by
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isosurfaces of the pressure at this level, but it is not so sharp. Moreover, some axial lines
are outside of the isosurfaces. The pressure is not by nature a good indicator of tubular
vortices. Indeed it is lower at vortices than the surroundings, but the absolute value depends
on the surrounding pressure. The amount of depression of pressure varies depending upon
the strength of vortices. Thus it is not surprising that the isosurfaces of pressure may not
describe well swirling motions of various strength simultareously.

Isosurfaces of V2p, threshold of which is given by a standard deviation above the mean
value, are drawn in Fig. 3(c) (see Ref. 4). These isosurfaces capture tubular vortices relatively
well in the sense that most of the vortices are covered rather sharply. Although some vortices
are still outside of the isosurfaces, the vortex identification by V?p seems to be better than
previous two in capturing swirling motions. Isosurfaces at the zero levels, which are called
the Q-definition,? cover too wide regions of the flow field to identify the individual vortices
(figures are omitted). We conclude therefore that the Laplacian of pressure may be able to
represent the tubular vortices well if the threshold is set appropriately.

Recently, Jeong and Hussain®? introduced the second eigenvalue X, of symmetric tensor
SikSk; + Qupl,, where S,; and {);; are respectively the symmetric and anti-symmetric parts
of velocity gradient tensor Vu, and defined vortex cores by the regions of Ay < 0. This
Ao-definition was successfully applied to several kinds of flows with clear vortical structures.
In Fig. 3(d), we show isosurfaces of null-d;, which include all of the tubular vortices but
cover too much volume to distinguish each. Therefore, this definition may not be suitable
to represent tubular vortices in turbulent flows. It should be mentioned, however, that

isosurfaces of As at a lower level give a better representation comparable with isosurfaces of

V?p in Fig. 3(c).

IV. CONCLUDING REMARKS

The sectionally minimal pressure method to visualize the axes of tubular vortices was
proposed and applied successfully to homogeneous turbulence. It was shown that tubular
vortices can be captured irrespective of strength. This new method is superior in identi-
fication of the axes of tubular vortices to several typical ones proposed bhefore such as the

representations by isosurfaces of high enstrophy density, low pressure, high Laplacian of
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pressure and the A,-definition. In course of this comparison, we found that the Laplacian of
the pressure may represent tubular vortices better than others though it has a subjective ar-
tifact of an appropriate choice of the threshold level. The A;-definition and A-definition®¢,
which are free from defining threshold of isosurfaces, were also checked not to represent
tubular vortices in a homogeneous turbulence well.

Our method also works well for homogeneous shear turbulence of an incompressible
fluid'#* as well as for an isotropic compressible turbulence with shock waves. These results
will be reported in a separate paper.
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FIGURES

FIG. 1. Search for a locus of sectionally local minimum of pressure.

FIG. 2. Axes of tubular vortices (blue-yellow) and streamlines (red). Colors of the vortex axes
represent the sum of two positive eigenvalues A; + Ag, where blue denotes larger values and yellow
smaller. The streamlines are drawn in moving frames relative to the nearest part of the vortex

axes.

FIG. 3. (a) Isosurfaces of the enstrophy density at the level of a half of standard deviation
above the mean. (b) Isosurfaces of the pressure at the level of a standard deviation below the
mean. {c) Isosurfaces of V?p at the level of a standard deviation above the mean. (d) Isosurfaces

of Ao-definition. Tubular pieces are same as those in Fig. 2.
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