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ABSTRACT

In this report we develop the theory for the wave excitation, propagation and
absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron
frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently
needed for the ICRF heating scenarios development for the constructed LHD [1] and
projected W7-X [2] stellarators and for the stellarators being at operation (like CHS, W7-
AS, etc.). The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell
boundary value problem in the non - orthogonal flux coordinates ( y,0,9 ), ¥ being
magnetic flux function, 8 and @ being the poloidal and toroidal angles, respectively. All
basic physics, like wave refraction, reflection and diffraction are firstly self consistently
included, along with the fundamental ion and ion minority cyclotron resonances, two ion
hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance
and loading resistance are also calculated and urgently needed for an antenna -generator
matching. This is accomplished in a real confining magnetic field being varying in a plasma
major radius direction, in toroidal and poloidal directions, through making use of the hot
dense plasma dielectric kinetic tensor.

We expand the solution in Fourier series over toroidal ( ¢ ) and poloidal ( 8 ) angles and
solve resulting ordinary differential equations in a radial like ¥ - coordinate by finite
difference method. The constructed discretization scheme is divergent - free one, thus
retaining the basic properties of original equations. The Fourier expansion over angle
coordinates has given to us the possibility to correctly construct the “parallel” wave
number k;; and thereby to correctly describe the ICRF waves absorption by a plasma.
The toroidal harmonics are tightly coupled with each other due to magnetic field
inhomogenity of stellarators in toroidal direction. This is drastically different from axial
symmetric plasma of the tokamaks. The inclusion in the problem major radius variation of
magnetic field can strongly modify earlier results obtained for the straight helical,
especially for high beta plasma, due to modification of locations of the two ion hybrid
resonance layers. For W7-X like magnetic field topology the inclusion in our theory of a
major radius inhomogenity of the magnetic field is a key element for correct description of
RF power deposition profiles at all.

The theory is developed in a manner that includes tokamaks and magnetic mirrors as the
particular cases through general metric tensor (provided by an equilibrium solver)
treatment of the wave equations.

We describe the structure of newly developed stellarator ICRF 3D full wave code
STELION, based on theory described in this report.

Key Words: Helical Device, stellarator, ICRF heating, metric tensor, Jacobian,
equilibrium, antenna, Maxwell-Vlasov, tensor, toroidal coupling
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INTRODUCTION

The ion cyclotron resonance heating (ICRH) methods have proved to be useful for the
bulk plasma heating and plasma production in small and middle size stellarators Recently
good results for the ion and electron heating have been obtained on CHS [12] and W7-AS
[13]. The ICRH methods are prepared for the newly constructed large helical LHD
stellarator [ 1] and are planned for the projected W7-X advanced system stellarator [2]
It is well known that ICRF methods have achieved impressive results in large tokamaks
like JET, TFTR, JT60-U, etc. The ICRH physics is well understood and there are several
2D full toroidal wave codes, describing major of RF phenomena in a tokamak plasma. In
the stellarator plasma the confining magnetic field B have a more complicated structure,
mainly due to toroidal variation of By (at least in classical machines). And tokamak-like
2D full wave toroidal codes are not applicable in the stellarators due to strong coupling of
the toroidal harmonics. Such a coupling is absent in straight heliotrons and very useful
results have been derived with the 2D codes making use the helical symmetry of a
straight stellarator { 3 . But additional major radius variation of By in helical devices can
be very important, especially in high beta plasma with the outside displaced magnetic
surfaces, when the structure of the two ion hybrid resonance may be greatly modified
{12].

In another class of advanced stellarators as W7-AS and W7-X the magnetic field
topology is more closer to the tokamak B, topology, but again with the important feature
of a space varying magnetic field strength in a toroidal direction, thus permitting the use
also of specific non tokamak ICRF heating scenarios, like “magnetic beach” scenarios | 4
] In this last case the 2D full wave code [ 4 ], exploiting the toroidal inhomogenity of By,
being useful in uderstanding of the “beach” scenarios in Advanced Systems, nevertheless
suffers due to non inclusion of major radius variation of By

Thus for correct development of the ICRF heating scenarios in these new (and old)
machines urgently needed is the development of three-dimensional (3D) ICRF code to
provide the correct RF power deposition profiles to the electrons and ions, to rightly
choose the position of ICRF antenna 1) high By field side/low field side, 2) at what
toroidal location an antenna must be placed; at w < o or at w>w, etc. Of course such a

code must be equipped by an appropriate kinetic plasma description (through the
Vlasov-Landau kinetic equation) to include correctly the absorption and mode conversion
mechanisms The 3D code will also provide the correct values of an antenna impedance ,
needed for an antenna type choice (low impedance or classic multi loop high impedance
antenna) and its matching with a the RF generator.

In this report we developing the theory of a solution for the Maxwell-Viasov boundary
value problem in the ICRF range in a stellarator geometry. This theory must provide an
algorithm for the creation of 3D code.

Tn section I we formulate the original ICRF full wave equations with the reduced order
hot dielectric tensor. The section Il is devoted to the stellarator equilibrium quantities like
choice of the magnetic flux coordinates, evaluation of the metric tensor and By The
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method for the wave boundary value problem solution is developed in section HI, where
we derive the wave equations in non orthogonal flux coordinates system and solve them
by Fourier expansion over the poloidal and toroidal angles and by finite differencing over
a minor radius coordinate y.The advantage of the flux coordinates is that the wave
equations contain only the first derivatives over the “radial” coordinate, thereby greatly
stmplifying the overall problem. The spatial differencing over the ¢ coordinate we
accomplish on the “semi-integer” mesh to provide the divergent-free discretization
scheme, important to the ROTOR operators involved in a problem.

In section 4 we formulate the RF induced plasma currents in the orthogonal local

coordinate system to use the simplest form of the dielectric tensor. Then we develop a
procedure to formulate the currents in a chosen non orthogonal basic system. The
boundary conditions for the electrical fields are established in sec.5, while appropriate
form for the k; wave number , needed for the anti hermittian parts of tensor elements
calculations (e.g., for absorption) is derived in section 6.
The loop antenna Fourier expanded RE excitation currents are given in sec.7, and local
absorbed RY power expressions are formulated in sec 8. Structure of newly developed
STELION code 1s described in sec.9. In the Appendix we derive the rotation matrix
needed for transfer from the local orthogonal coordinate system to the basic non-
orthogonal system.

1. FULL WAVE EQUATION

This report develops a 3D full wave calculation, which uses poloidal and toroidal
harmonic expansions to solve the wave equation ( ky= w/c, ¢ - speed of light):

~ 4k,
rotrotE = ———(] +j )+kE (1.1)

in flux coordinates with appropriate boundary conditions, in 3D stellarator geometry. In
eq.(1.1) ™ is an Imposed antenna current den51ty and j, is the plasma current determined
by the relation j = SF. In a strict description, o represents the non local conductivity
tensor [ 5 ] and eq.(l.1) takes the form of an integral equation. In this stage of
investigation we assume, however, the local description in which induced plasma current
in a chosen space point 1s determined by RF electrical field in the same space point.

We rewright the eq.(1.1) more compactly through the plasma dielectric tensor{ 10 ], £
as

Ak

c

rotrotE = k2 ¢E + 0 (L)



The presented theory includes a full (non - perturbative) solution for longttudional
electric field E and uses the reduced order form of the plasma dielectric tensor, to
eliminate numerical problems with the resolution of very short wavelengths ion Bernstein
waves at high phase velocities of the Fast Magnetosonic Waves (FW) w/k > v, . It

means that we simply install in finite ion Larmor radius expansion terms, proportional to
the (k,p,)*, the Alfvenian perpendicular wave number. That procedure rightly describes
the absorbed REF power coming to the Bernstein waves [ 9 ]. At low phase velocities
w/k, <vy, the finite Larmor radius corrections are insignificant ones and Fast Waves are

converted to the kinetic Alfven waves (KAW) at w < w, and this will be correctly
described by our hot kinetic tensor description.

By solving the wave equation with appropriate boundary conditions in three
dimensions ( s, 8, ¢ ), we will calculate the wave electric field E, the absorbed RF power
profiles and driven in a plasma RF current if an antenna would be properly phased The
poloidal and toroidal harmonic expansions allow variations in k. to be included correctly,
while the minor radius, s, is treated by finite differencies Vanations in the toroidal
direction ¢ now can not be treated independently, as it does in tokamaks, but instead, in
considered stellarator plasma case the toroidal and poloidal harmonics are tightly coupled
by toroidal variation of confining magnetic field By, as well as by its major radius variation
and by the non-circularity of the magnetic flux surfaces, and must be therefore be
calculated simultaneously.

2. EQUILIBRIUM AND FLUX COORDINATES

One of most convenient methods applied to the theory of an equilibrium and plasma
stability is the method of inverse mapping [ 6 ]. Making use of the flux coordinates
significantly simplifies analytical calculations (due toB - Vs=0.J - Vs =0).and in
simulations easily provides the needed precision of an established form and the relative
positions of the magnetic surfaces. When developing the theory of solution of the
Maxwell-Vlasov boundary value problem in Ion Cyclotron Frequency Range (ICRF) in a
complicated 3-dimensional (3D) steltarator plasma we will use the flux coordinate system.
Some complexity of making use such coordinates is related to the fact that these are not
orthogonal But finally we will see that the results can be casted in compact and elegant
form.

The magnetic field vector B in the plasma is written in a Clebsh represantation [ 8 ]

B=VsxVy, en



where s €(0,1) is a radial flux variable (usually equal to the scaled toroidal flux ¥(s)/y (1)

in VMEC equilibrium code [7}) and v =y x8 - x x @+ A, where @ is the poloidal angle, ¢
is the toroidal angle, A(s, 8,¢) is a periodic stream function, and prime denotes d / ds . Here
2mx(s) is the poloidal magnetic flux. The contravariant components of B are then

B-Vs=0,

VO =B’ =(x-2,)J, 2.2)

ool

BV =B =(p+a,)iJ,

where J = (Vs- V&xV(p)_l is the Jacobian of the transtormation between real space and
flux coordinates ¥ = X(s,8,¢). Thus, elementary volume dV =|Jldsd0dp and plasma
pressure p = p(s), where s = const is a radial coordinate labeling a magnetic flux surface.
For nested toroidal surfaces, J never vanishes. In the case A = 0, the magnetic field lines
are straight in 8 - @ coordinates, since B°/ B® = y'/ ' = u(s), where ¢ is the rotational
transform giving the mean pitch of the magnetic field Iines

We need, for our goal, the contravariant basis vectors é* = Vx', where X =(s,6,¢) , and the
covariant basis vectors & = &/ dx' = Jé’ x &, where (i, j,k) forms a positive triplet.

The all properties of internal geometry of the xJ, X2, x3 coordinate system are defined
by an expression for the squared element length:

z H 7
di* =g dx dx
The coeflicients g; create the fundamental metric tensor and its elements are g, =ee, .

For the toroidal configuration under consideration, a cylindrical orthogonal system r =
(R,®,Z) is appropriate, where R is the major radius, ¢ is toroidal angle, and Z is the
height above midplane (Fig.1). It then follows that the metric tensor elements are

z
8, =RR, +R° QoD +7Z7

where R = dR/da’ | etc, and (al,az,a3) = (5,6,¢). And another expression for the

Jacobian is

J* = det(G, ),

G, = ox, | do’ , where (x,x,,x;) = (R, D@, 7).



In equilibrium solver VMEC code the dependence of R, Z and A on the flux coordmate
angles 1s expressed by Fourier series’

R= 2 R _(s)cos(mb —ng),
Z-= EZW{S)Sin(mB—n(p) ; (23)
A= Ekm(s)sin(mﬂ - nE)

These series expansions in eq.(2.3) are used to evaluate the metric tensor elements, the
Jacobian and the contravariant components of B - ali being needed for a 3D ICRF code.

3. NUMERICAL METHOD

In above non-orthogonal system the variable A is expressed in terms of its covanant
components’

A=AZ + A" + AE®

where

The egs.(1.1) are then written in the flux coordinate system using the methods of
tensor analysis This requires a knowledge of the elements of metric tensor whose
elements are delivered by an equilibrium solver code.

The contrvariant components of VxVxA are expressed as

rol‘rc;!r;{.il=l J l’gi{%—%\ —gﬁ[%—aﬁ\+§§{&a2—%—ﬂ—
Jlar [\ a®) T\t &) T \at et/
@
0 18 (08 O\ g (9A AN gn (M, A\,
dr3l J\ad* &) T \axd e’ 7\l é'xZ)J

Poloidal component is.



&[% %\ cszfaAs 3A\ 333{dA2 (;Al\ ]_

- I
rotrotA i = - —1— - + =
{ [ J\ax  a’) g \ad &) T \ad e

J |ox’
®
_5_[&(5 BA\ 312(‘;/13 1\ __3{Az ﬂ\-[}
o | T\ T )T T \a a0 )T T\ & e |
And toroidal component is as:
Jr’otinf)tz_i.]'%——i["}i{éJi 5A2\ gn{r?Ag &A\ 323/5A2 3A 1
g laxt [J \ax? ax®) T \c?x o”x3} J Ut J
&

d [8u (04 AN 8,04 f?AI\JrgB(f?Az GA\ |
o \at ) T \ad ac) T g \a x|

}

In these equations J is the Jacobian of a system ( x', x%, x* ), in our case of the flux
coordinate system (1, 0, ¢):

1 i
Vx[VxivVr | vy[Veve)

J=
3.2 Fourier decomposition

To solve eqs.(3.1)-(3.3) the electnical fields ( E = A ) are expanded in Fourier series to
describe their 8 and ¢ dependencies. Since the equilibrium is not axis symmetric, the
toroidal modes couple and can not be treated independently. Assuming that the
equilibrium and the antenna generally are not up-down symmetrical about plane Z = 0, we
expand the fields in series of the form:

A,0.9) = Y a,, @)™ (34)

The equilibrium quantities are varied in toroidal direction with the periodicity of the
toroidal and/or helical coils, described for a concrete machine by the number Np of a
magnetic field periods. Respectively , we expand the equilibrium quantities in the double
periodic Fourier series of the form:



5’( !{". H, ({‘) = 2 gm” (lp)(’ Hmblen N g)

mh

(34)

Fourier analysis of eqs(3.1)-(3 3) then leads to the system of differencial equations
in quasi radial coordinate, y These equations we will write below in explicit form The
appearing convolution sums will be calculated by fast Fourier transform method.

We stress that due to double toroidal periodicity in stellarators the toroidal harmonics
are coupled through the condition:

NN, +n-k=0 (347)

being some kind analog of axis symmetry of tokamaks reflected to the stellarators.

3.3 Spatial differencing

After Fourier decomposition in 8 and @ we set up a finite difference grid in y only.
Critical moment for that descretization scheme is that for vector A, the identity div(rotA)
= 0 must be hold identically by numerical difference operators. We state that RF induced
current, rotrotA in eqs (3.1)-(3.3), is divergence free vector. Here we satisfy to that
requirement introducing the mesh scheme, where we set up the system of non equally, in
general, spaced “integer” surfaces with ¢, , and a set of “half integer” surfaces, where ;.
1= (y; + 9,1 V2. The integer surface j = 0 is defined as magnetic axis, while that with j =
N is the conducting chamber, surrounding the plasma. We state, that covanant
components a, and a_ are defined on “integer” surfaces, while a, is defined at the half
points. Then contr variant components J°, J* of induced plasma currents (respectively,
rotrotA) of derived vectors are centered at the “integer” surfaces, while the J¥ (and
rotrotAl¥) are centered at intermediate surfaces.

Now we install the expression eq.(34) into eqs.(3.1)-(3.3), assign plasma response
and antenna currents in eq.(2.1) as being for brevity RHS, multiply both sides of
equations by exp{-i(#+kg) ( / and k are integer numbers )and integrate over angles ¢ and
8. Then eqs.(3.1)-(33) are transformed into following equations. In psi direction (we
changed v notation to s variable for simplicity)-

wp (82 88 S 8 -
(RHS J’)Ik—;{\ nl\J)+lm\J}+kn\J) k wal a; (s)+

Lm(k-n)! Np
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In following two another equations we drop temporary the convolution indexes and m,n
indexes for vanables ;. The equation for poloidal component of RHS is:

@ _ o 82 [ 813 (8u), | . (83) % _ &1_) {8, )94
(RHS J)&_g{( o 22} wkom 22 L, + o S, ik S22 k;n(J %_Ek(T)a_;_
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The toroidal component of RHS is:
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(3.7

82\ % O (8ny . (8n)
N TEN T

In these expressions it is understood that the left sides represent the ( Jk ) harmonic of
plasma induced and antenna currents, while the nght hand sides involve summing over all
m and n. The coeflicient in circle brackets refer the /- m, (k - n)/N;, convolution terms.
With a; defined at the half points and a,, a, at the integer points, we make use second
order accurate centered difference formulae to dertve:

. a%+a?
(RHS(DJ) = (—nl(gﬂ) * lm(§33) + kn(gzz) - k?n(§23 ))j+%a§'2}g + (”1(3;35) - kn(gﬂ ))f+}é 1_12_; +

/3
i+
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The discretized poloidal component is.
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(3.9)

The toroidal component is:

a® - g®
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(3.10)
and hatted gis the g3 /J. Again the night hand sides involve summing over all m and n. The
coeflicients in circle brackets refer the / - m { k - n)/Np convolution In these descretize

equations for brevity we used indexes ( 1,2,3 ) instead of (5,0,¢ ) terms.

Now it is to show that the above discretization scheme is divergent free one. The
divergence of any vector A has a simple form for its contravanant components-
- JJA"Y B(JA° JA?

JdivA = ( )+ ( )+3(A)
Js o0 Jp

G.11)

and this is calculated by making use a centered difference scheme for the s {or ¢ )
derivative:

A(JA") 3 (JAS);H.'?. - (‘IAS);AIZ
& As

So this 1s centered at the integer surface j, together with the 8 and ¢ derivatives. Now we
will calculate (3.11) making use the Eqs (3.5)-(3.7 ). With a_ defined at the semi mesh and
3, at the integer mesh, we obtain (for simplicity a_ = 0):
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It 1s easily shown that by summing these discetized equations, the right hand side is
canceled exactly. It means that the numerical divergence is identically zero. For a code
goals it 1s clear, that in general it is necessary to interpolate quantities from one mesh to
the other.



4. PLASMA RESPONSE

The RF induced currents are described by the dielectric tensor, the simplest famous form
of which is realized in a special coordinate system with one axis directed along the total
confining magnetic field vector By So we temporary introduce such a system by
choosing one of its unit vector to be coincident with Vv direction, e, = Vs/|Vs| , second
unit vector e, is directed parallel to the By, and the third vector is orthogonal to the first
two vectors

Vs B

é,=ﬂ, 5,,=|§:-|, E,=¢, xé

In this system the right hand side of basic equation (1.1), related to the plasma
response, 1s written as

RHS = %(EHES +E,E, +E,E,) +6,(E, E, + ELE, +ExE) + &, (B E, +E,E, +ExE) =
5
D, + D,e, + D, {4.1)

We expand this vector over the covariant basis vectors

- - - Vs - - ,
alel + azez + a3e3 =D, _IV l+ D,e, + Dee, “1)
s

Multiplying consequently this equation by e, , e; and e; one obtains:

fa'\ (D)
le.f et -Ie ] 2, J @
\0‘3J \Ds

where matrix p, is given in Appendix. And we find



(al 3 (D, \
l ] = Igv "l J “3)
\D,

)

From other hand we expand the electrical strength vector in the both coordinate systems
(through the covariant components in non orthogonal system) as:

E-AG' + A& +AZ =

beb +FE e 2 €h

IVSI

Multiplying again both sides by basic vectors e;, e, and e;, we expressed the
connection of electrical field components m orthogonal system with the covanant field
components in our non orthogonal coordinate system:

(A ( E, /[Vs] (E, [ A
}A:J—llugl'fzulwt' RIS T AQJ
4 LB £

Now the right hand side of eq.(1.1) can be written in a form:

B (4) (D)
kg TE = ngm E, | =IVSlI£U""HU-l|! AzJ EI DzJ
\EkIVSIJ VA, D,

where Ie ” is different from original I " only due to |¢,] = [E,[lVs] The tast equality

in above equation gives now vector D and we install it in eq.(4.3) to obtain;

(a'y (AN
e L e
\asJ LA,

or in more compact form:



where “transformed”™ dielectric tensor in non orthogonal coordinate system has a form:

8 B\ P B 7 A @5)

Finally the plasma contribution to the right side of eq.(2.1) looks very similar to cases
for simple plasma geometries:

(AN
:, | 4 J , @6
\ 4,
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and respectively, in Fourier representation this looks like:
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In the last two equations we dropped for simplicity the convolution indexes
{-m, (n-k)/Np.
5. BOUNDARY CONDITIONS
As usually we assume that the plasma is surrounded by perfectly conducting boundary

of 2 machine vessel and between of them a vacuum layer (divertor region) is located. The
imposed boundary condition at the last magnetic surface,



{j = N) coincident with the machine first wall is vanishing tangential electrical field:

E(S = SwalI’BD(p)ltang = 0

It means that in a covariant wave field representation

A=AVs+AVO+AVy

the only non zero 1s the first (normal to a wall) term. We satisfy this requirement
by keeping A,=0 and A;=0 for each Fourier harmonic j = M,N:

To denve boundary conditions at the magnetic axis ( ¢ = s = 0) by a simplest way we
make use analogy with the analytical solution for a plasma cylinder with homogeneous
density (near of magnetic axis this is a good approximation). In this case longitudinal
component of wave electric and magnetic fields is expressed through the Bessel functions
of order m:

W mb+n
E, =E.J, (k)™

And we use its asymptotic behavior to derive the g - component asymptotic when s (=)
—0:

Im] 2
a, =5 (vi+v,s" +.)
The transverse electrical fields are expressed through the Bessels and their first radial

denvatives. So it easy to derive asymptotic behavior of the covariant s - and ©
components of E:

-1
a, =st o, wvs7 4 )
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The only the 8 - and @ - components of A are required at the axis s = 0, one has

a, =0 , all mandn,

a” =0 fm=0,

(3(1;"‘ )
=0 ifm=0
s

Now boundary conditions have been established.
6. PARALLEL WAVE NUMBER

The plasma dielectric tensor £(s,6, 4, ), appearing in eq (4.7), depends on k"

through plasma dispersion function Z((w - N, ,/k/"vr.;), where N is the cyclotron
harmonic number. To account the effect of the poloidal magnetic field influence on kj
wave number formation it is usually considered that the k), is the component of the spatial
gradient in the direction of Bq. The gradient operator in a non orthogonal system is

V= Vs—c;,—i-VBi+V(pi
& a0 ap

And we define k., as.
J a
ky, =&, *V =6 (V0—+Vg—
= 3 o8 (pc?tp)

Expanding ¢, over unit vectors ¢, and ¢,

. B B
€, =€, +&€;—r {61)

L2 I &

Finally we have

Bm 2]
=H—+ mE— (6.2)

k
S



where
|B* = BB, = (B°)’g,, +2B° B g,, + (B*)’g,,
This equation (6.2) generalizes the k, definition for a stellarator magnetic field geometry.

The tokamak k;, case is easily obtained from eq.(6.2). In this equation (6.2) the poloidal
field dominates the k,, variation when

¢
= n

7. ANTENNA AND ITS FOURIER SPECTRA

As a starting point we consider a single loop classical antenna exciting into plasma the
Fast Waves. The antenna is fed by two radial feeders. The imposed RF antenna current
follows antenna’s magnetic surface at s = s, and flows poloidalily and radially in short
end parts of the loop (Fig.2). The poloidal distribution of antenna poloidal current
density is given by

Jols =5,,,.8,0) = jo(¢)cos(6)

and the poloidal variation of the radial currents, j(8), is given by delta function 8(6 = 6,).
The poloidal antenna extension is 20,, the maximal toroidal broadness of an antenna is
D. The toroidal variation (in coordinate ) of an antenna current is assumed to be absent (

its dependence over ¢ angle is a step function with a base equal D ).

We expand these current density distributions in the Fourier series:

Js0.9)= DT TE(s—5,)

Js(s,0.9) = Y I ()



Simple calculations give

" J, sin(ag )[sin{m+ )8, sin(m-p)o ]

® T4x’R ng, | m+p ¥ m-p |

J. cos(po
JT(s) = i—-9—~4—n—(2—?sm(m9 )

a

sin(ng,) s,

ny,
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where angle « is due to non orthoganality
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Here R=R, + acosf, , ais a plasma minor radius at equatorial plane and J; - total antenna
loop current at the middle of the loop. In the expression for sin(a) metric elements, [V
and Jacobian J may be evaluated reasonably at s=s,, and 6=0,,.

These formulas can be readily extended to toroidal multi loop arrays with an imposed
loops phasing.

8. ABSORBED RF POWER
The total absorbed and mode converted RF power is given by

1 ﬂ‘ -:
(s.0.¢) = =Re(E" “],)

The plasma current density, induced by RF waves, is expressed as

}P(S, 6, (P) = 2 6’(5,8,@) krn )Emn (5)61(m8+nq;)

and we have



PG5, 0.9) = %ReEE;H(S)E"(S,B,@,kI'"")EM (s) (8.1)

where we introduced dielectric tensor # = 4mi/ wG + 1 and £°is anti hermittian part of
this tensor.

If a multi loop antenna is properly phased and radiates some traveling Fast Waves, the
RF power, absorbed by the electrons, drives in toroidal direction some current which is
readily evaluated by

192 x10"° kT, j
J, (5.0)= <— : "{—d“ P(s,0,9) (8.2)
A n, p, v

where the angular brackets mean average over toroidal angle . The normalized current
drive efficiency j¢/ps 1s a strong function of the local parallel phase velocity u = vy/vy. =
o'k vr. . Thisis givenin [ 11 ].

In stellarators usually needs for the RF driven currents are small ones: they may be
needed for a compensation of some unwanted equilibrium currents or to compensate
possible driven currents produced by NB heating.

9. STRUCTURE OF THE STELION CODE

STELION is constructed as a boundary value problem code. The notation and layot
follow strictly to the standarts and conventions of usual methodology to ensure that
program is readily understood and easily trasferred from one computer to another.
Mnemonic variable names correspond closely to the notation used in this report and the
program file contains indexes of all subroutines, COMMON blocks and variables used
throughout the code. No extended library is required, the packet of subroutines for a
complex matrix inversion is included. Here we use compact pointer storage method [ 14 ].

The most effort is expended in initialization since the matrix of block bands diagonal
system 1s calculated only once. Fig3 shows the calling sequence in STELION.
Equilibrium date is input, using the format of the VMEC code, in WOUT file. This data
is used to construct the metric tensor and other coefficients in METRIN . Splines technic
is used to transfer this equilibrium metric from VMEC flux coordinate mesh {“radial”) to
fine flux mesh, required for a treatment of small scale Fast waves and smaller scale
converted waves {(in present version of STELION code - kinetic Alfven waves,
important for a treatment of “Heivy” minority tons scenario and “magnetic beach”
scenario) in IC frequency range.



This is accomplished in METRIC Then metric elements and another coefficients are
consequently replaced by their Fourter transforms in FOURT!

On a basis of these fine quantities the kinetic tensor g, is calculated in TENSOR, and
again it consequently replaced by their Fourier transforms in FOURT2  The
vectorization procedure is used in the code because these transforms are possible to do
independently on each radial (flux coordinate) mesh position. To construct basic matrix,
descibing wave processes, are used 21 functions, RRIP, RFI, ..., ZZIP, describing the
coefficients in descretized equations and accumulating an information on metric, Jacobian
and kinetic tensor. Using these functions nonzero elements of the matrix are constructed
in MATR.

Fourier transformed antenna currents are calculated in RIGHT. To correctly describe
toroidal component of the exciting currents some information on a metric is needed from
METRIC. This provides a right hand side of complex linear system Ax =b. This system
is solved in SOLVER making use a compact pointer storage method. The found electrical
fields X, together with the kinetic tensor from FOURT2, are used to calculate space RF
power deposition profiles to ions and electrons, as well as as an antenna complex
impedance ( neede for a mathcing with RF generator) and its toroidal and poloidal
spectrums, in POWER. Output information and plotting are provided by OUT
subroutine.

APPENDIX

Calculation of matrix Mu.

In this section we derive the rotation matrix connecting the covariant components A;
of an electrical vector with the (E,, E;,, E; ) components of the same vector in (s, b, h )
orthogonal coordinate system introduced in sec.4. The h- coordinate of orthogonal local
system is along a total magnetic magnetic field

B-B%,+ B, (A1)

and unit vector directed along the By 15

e, = I;’/lqm B’/ Be, +B* | Be, = ce; + ;8

where the total local confining magnetic field is given by



We recall that, for example,
8 =€ "€ =
Muttiplying the eq.(4.4) by covariant basis vector e, one has
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Opening the vector product as
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This matrix is installed in eq.(4.2) and to following formulas.
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Fig.2 Dimensions of an individual antenna loop




Fig.3 Subroutine calling sequencies (3D ICRF STELION code)
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