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ABSTRACT. Effects of finite-3 and radial electric fields on the neoclassical
transport in the Large Helical Device are investigated with the DKES (Drift Kinetic
Equation Solver) code. In the finite-J configuration, even orbits of deeply trapped
particles deviate significantly from magnetic flux surfaces. Thus. neoclassical ripple
transport coefficients in the finite-3 configuration are several times larger than those in
the vacuum configuration under the same condition of temperatures and radial electric
fields. When the plasma temperature is several keV, a bifurcation of the electric fields
appears under the ambipolarity condition, and sufficient large radial electric fields can
be generated. As a result, the E x B drift rectifies orbits of particles and improves

significantly the transport coefficients in the finite-/ configuration.

Keywords. neoclassical transport. LHD finite- 3 configuration, improvement by

E x B drift, bifurcation of electric fields, DKES code.



1. Introduction

It is important to theoretically investigate neoclassical particle and energy confine-
ment performances to design a reactor-grade collisionless plasma with good confinement
performances and to understand transport phenomena in experiments.

From the viewpoint of the magnetohydrodynamic stability, helical configurations,
e.g. the Large Helical Device (LHD} [1], have an advantage that in principle there does
not exist a current driven instability such as in tokamaks. Here, the LHD is the pole
number L, = 2 heliotron/torsatron type helical machine with superconducting coils of
the pitch number Af, = 10, and the configuration can be constructed by only external
coils. On the other hand, the configuration has strong helical ripple components of the
magnetic fleld, thus a geometrical symmetry disappears. For the plasma with a weak
collisionality, trapped particles in the helical ripples mainly contribute to the diffusion of
the plasma. As a result, the ripple transport dominates the confinement performances.
This means that the fransport coefficients are proportional to 1 /v, where v is the collision
frequency. However, if in the plasma there exists an electrostatic potential difference
which is the same order of or larger than the plasma temperature, the E x B drift rectifies
the orbits. From this effect, the transport coefficients can be improved significantly.

It is not easy to analyze quantitatively the neoclassical transport in realistic-systems
because of complexity of the three-dimensional (3-D) magnetic field configuration with-
out a symmetry. Hirshman et al. [2] have developed a powerful tool to analyze the
neoclassical transport by solving the drift kinetic equation for plasmas with 3-D toroidal
geometries. The tool is called the DKES (Drift Kinetic Equation Solver) code. This
code is able to analyze the neoclassical transport under large radial electric fields. By
using this code, several studies have been done to investigate the neoclassical transport
in 3-D realistic-systems [2, 3, 4, 5]. For the LHD vacuum configuration, Ogawa et al.
have estimated the neoclassical transport with the DKES code [5]. They calculated the
thermal diffusivities only for the LHD vacuum configuration and studied the effect of

multi-helicity of the magnetic field on the neoclassical transport coefficients.



In this paper. we study the neoclassical transport in the LHD finite-3 configuration.
especially noticing effects of finite-3 and radial electric fields. As effects of finite-3, drift
surfaces of particles deviate significantly from magnetic flux surfaces, thus we have to
take into account the finite-3. And when we investigate effects of electric fields, radial
electric fields have to be given by the ambipolarity condition. In the previous study
by Ogawa et al. 5], they neglected effects of finite-3 and used electric felds given
apriori to estimate improvements of the confinements by the E x B drift. To more
carefully investigate the confinement performances, we take into account both effects
of finite-3 and radial electric fields given by the ambipolarity condition. Furthermore,
it is necessary to study effects of positions of the vacuum magnetic axis, because the
confinement performances can be improved significantly by moving the vacuum magnetic
axis inward [6, 5].

We select four configurations: the standard configurations A, = —0.15 {m] with
By = 0% and 6%, and the inward-shifted configurations A, = -0.25 [m] with G, = 0%
and 8%, where 3 is the beta-value at the magnetic axis and A, is the shift of the
position of the vacuum magnetic axis which is measured from the major radius of helical
coils Ry = 3.9 [m]. Note that the vacuum magnetic axis can move horizontally from
R = 3.9 [m] to 3.6 [in] in the vacuum. This movement corresponds to changing A,
from 0 to —0.3 [m]. To investigate the neoclassical transport coefficients by using the
DKES code, we need to obtain the Fourier spectrum of the magnetic field strength B
in the Boozer coordirates. We apply the 3-D equilibrium code VMEC [7, 8] to the
LHD with the central maguetic field By = 3 [T] under the fixed boundary condition and
with the assumption of the pressure profile P = Fy{l - ®0rmal > and no net toroidal
current, where ®uoma = ®1/®5°% is the normalized toroidal fiux, ®r is the toroidal
flux, and ®5#° is the value of the toroidal flux at the edge. We use the parameter A, to
label the configuration, although the actual position of the magnetic axis in the finite-3
configuration moves from A, to an outer position by the Shafranov shift [9].

In Section 2, we review briefly the method of calculation of the transport coeffi-



cients with the DKES code, following to Refs.[2, 3]. And the transport in the LHD
configuration is interpreted by analytical results of Refs. {10, 11]. In Section 3, we calcu-
late the transport coefficient under the ambipolarity condition, and try to understand
qualitatively their behavior. And the transport under several additional conditions is

investigated. The results are summarized in Section 4.

2. Transport analysis with the DKES code

2.1. Linearized drift kinetic equation solved by the DKES code

First of all, following to Refs. [2, 3], we review briefly the method of calculation of
the transport coefficients by the DKES code. We can expand a distribution function of a-
species-particle fo(, v) around a local Maxwellian distribution /& = [n./(7v%2)¥ ¥ exp { - K,}
as follows:

Jo=fu+ I (1)
where ¢ denotes the species of charged partieles, i.e. o = i for ions (hydrogens in this
paper) and o = e for electrons. Here, f* is the perturbation, = (p,0,¢) denotes
a position in the Boozer coordinates (p = @®1/27), v = (v,£,¢) is a velocity in the
spherical velocity-space coordinates, a density n, and a temperature 7, are constant
on a magnetic flux surface labeled by p, v = \/m 1s the local thermal velocity,
M, is the mass, and K, = (v/vg,)? is the normalized kinetic energy. Under the Boozer

coordinates {p,#, () the magnetic field is represented as
B=Vpx V8 -+VpxV(, (2)

where ¢ i3 the rotational transform. Following to Refs. [2, 3], we consider the lirearized

drift kinetic equation:

V(fT) = C(f} = Da, (3)
where
V(S = v VfE4E % (4a)
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Vpx B

vy = U COSEb -+ EP—W: (4b)
: 1 1
fL = —:'2"'0 Sin é-B -V (E) ) (4(:)
oy 1 d .5 af{x
C(fi) = 5" 5cost (sm gﬁcosg ’ e
Do = [—v%-Vp{AS + K, AS) — BucosEAS] f3, (4e)
.1 m(vsing)?
% = o [EQE { > Ve B} x b
. 2
+[be—(b-be)b](—?i~%)S—€), (4f)
o _ dlnn, 3dInT, e.E, )
AT = dp 2 dp T, '’ 4
dinT,
« _ e {E-B) 4
A= Ly )

and b = B/B is the unit vector in the direction of the magnetic field, E, is the radial
electric field, Q. = e,B/m, is the cyclotron frequency, e, is the charge. Here {---)is

the flux-surface-average operator defined as

[rdedc--- 8 5)
[ fded¢ /g ’

where /g = (Vp- V8 x V()™ is the Jacobian.

()=

Using the DKES code which soives Eq.(3) based on the variational principle, we
can calculate the transport coefficients. Here the variational function, i.e. the entropy

production rate S,, is given by
S, = 8¢ + 52, (6)
where
S¢ = 2{FrVED) - {F5,CEN} +{F7,CED)} - {FE.Da}. (T2)
$¢ = —{FI Da}- (7b)
Here F= is defined by F¥ = (g¥£h§)/2; g = f7*/ £ and A (cos &, k) = g7(— cos, —E,)

are perturbed distributions, operators V and € are defined as V(g) = f3V(gf) and
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C(g®) = C(f&g%). The inner product {X,Y} is defined by
(X,Y} =2 / d(cos €) [ dv o? (XY). (8)

Note that S& is a stationary value of S,. The second term in the right hand side of

Eq. (6) can be described by using the thermodynamic fluxes I and the forces A%:
3
S2=—{g}, Do} = > I AS, (9)
j=1

where the fluxes I7* are represented as the product of the transport coefficients L%, and

the forces AgZ;

Ir = (I',-Vp)= Z neL3,AS, (10a)
e’ \% 3 o e

I; = <Q-T'—p> = —Zna 215:‘41::‘ (IOb)

g = (u-B)= ZnaL {(10c)

Here, I', = [ d*v v} f is the particie flux, @, = T, f dPv v K, f is the total energy
flux, and nou - B = B [d% v ff'. Note that the least entropy production rate o2 is

described as ¢ = —5% > 0, which is positive definite.

2.2. Behavior of the velocity dependent diffusion coefficient

By using the variational method for Eq.(6) (see Ref.[2]), the energy integrated
transport coefficients L7, at a given magnetic flux surface labeled by p = constant are

given as
e /B
n= - Lth)f AR, Ko+ exp {— Ko} Du(Ko), (11)

o

I

where 1 < j, k < 2. Here, the particle diffusivity and the thermal diffusivity are repre-
sented by L) and LS, respectively. Values Dy (K, ) are the velocity dependent diffusion
coefficients calculated by using the DKES code [2]. The diffusion coefficients Dj; are
given as a function of the inverse of the mean free path CMUL = v/v and the radial



electric field parameter EFIELD = E, /v (see Figs.1 and 2). The velocity dependent dif-
fusion coefficients D,, are interpreted as mono-energetic diffusion coefficients. Hereafter
we use the effective minor radius r to designate the label of the magnetic flux surface
p, where the effective minor radius r is defined by r/a = v/®orma: and o is the plasma
minor radius.

Let us compare the diffusion coefficients D;; obtained from the DKES code to ana-
lytical results of Refs. [10] and [11]. As shown below, we can represent mono-energetic
diffusion coefficients under radial electric fields F. and the simplified magnetic field

model given as
B = Byl — €, cos 8 — ey cos{Lpf — M, ()], (12)

where ¢, and e, are the toroidal and helical ripples, and # and ( are the poloidal and
toroidal angles, respectively. Here we assume € < €. From the viewpoint of mono-

energetic particles, the diffusion coefficients D under radial electric fields are classified

into [10]
Dy « 1fv for eqwe < v
D={ Dpp o« v?jwg??  for e, wp < v < enwp (13)
D, « vjwg? for v < €%y lwp,

where wg = F,./rB and E, = (dp/dr) E,.
The magnetic field strength of the LHD is represented as

B =" Bumcos(£8 — m¢), (14)

tm

where £ (£ =0,1,2,3,---) and m = pM,, (p = 0,£1,£2,43,---) are the poloidal and
toroidal mode numbers, respectively. Main terms (i.e. the largest three components)
of B of the standard configuration A, = —0.15 {m] with 8, = 0% are By, Bigcosé,
and Bs 10c0s(28 — 10¢) (see Fig. 3(a)}. The ripples are given as ¢, = Bio/Boo and €, =
By 10/ Byg, respectively. Therefore, the magnetic field strength can be approximately
represented as Eq.(12), and the ripples are estimated ¢ = 0.11 and & = 0.14 at
(r/a) = 0.8. Next, we compare D;; in Fig. 1(a) with Eq.{13) in this case. As shown

=1



in Fig.1(a), we have three slopes on a line with a fixed EFIELD, i.e. there are the v,
v1/2 and 1/v regimes. In the v and v*/2 regimes, Di; has dependence on the electric
fields E, and decreases when EFIELD increases. On the other hand, in the 1/v regime
it is independent of E,. For a fixed nonzero EFIELD, if CMUL is decreasing, the slope
of Dy, changes from 1/v to v!/? and finally to ». In our calculation, the critical value
of CMUL from 1/v to v*/? is estimated as ~ ,EFIELD and agrees with Eq. (13). From
Fig. 1{a), we can show easily that values of Dy, in the v!/? regime are proportiornal to
CMULY2/EFIELD*?, as given by heuristic-derived results Eq.(13). The critical value of
CMUL from %2 to v, however, is different from the scaling ~ 2e, “'EFIELD.

Next, let us examine the case of ¢, > ¢ in the standard configuration A, = —0.15
fm] with 8y = 0%. The behavior of Dy; for ¢, = 0.07 and €, = 0.05 at (r/a) = 0.5 is
shown in Fig. 1(b). In this case, the diffusion coefficients D;; are also classified into the
v, v}2, and 1/v regimes. From Fig. 1(b), the critical value of CMUL from 1/v to »1/2 is
obtained by ~ e EFIELD, even if ¢, > ¢,. This result can be explained by effects of the
helical ripple ¢, and effects of the toroidal ripple e; may be negligible at this critical
point. This result is interpreted by the estimation of Ref. [10]. When there is no radial
electric field, orbits contributing to the transport deviate significantly from magnetic flux
surfaces by the VB drift in the right hand side of Eq. (3), thus the diffusion coefficients
are proportional to 1/v in the regime satisfying v/e, > wy, where wy = ,7/(er?B).
While, under the radial electric fields with wg/uwy, > 1 the B x B drift in the left hand
side of Eq. (3) cancels the V B drift and the orbits are close to the flux surfaces (i.e. the
transport is improved significantly), thus the 1/v regime is suppressed into the regime
wg > V/ey > wy and the v1/2 regime may appear in v/e;, < wpg.

Now, we examine effects of finite-3 on the diffusion coefficients D;;, comparing Fig. 2
with Fig.1. In general, the difference between orbits of deeply trapped particles and
magnetic flux surfaces becomes large as the 3 value increases [12, 13], thus we can expect
easily that the transport coeflicients of o = 6% is larger than those of 0%. By making

a comparison between cases of 3y = 0% and 6%, we can see effects of a deformation



of magnetic flux surfaces on the diffusion coefficients Dyy. For the same value of the
radial electric fields, D, becomes larger with an increase in the 3 value. From the
calculations in Fig. 1(b) and Fig. 2(b), it is found that D); with 55 = 6% is about two
times larger than that with 3, = 0%. This result is caused from the effect of helical
ripples Bym with (£,m) = (2 +p,10); p = —=2,—1,1,2,- -+, (see Refs. [6, 14]), which are
the same order of magnitude as the component (£, m) = (2,10). Actually, we notices
a deformation of the structure of the magnetic field by finite-3 as follows. In Fig. 3,
the main components (¢, m) = (0,0), (1,0), (2,10) are dominant over all of the Fourler
components of the vacuum magnetic field strength, while in the finite-3 {8y = 6%)
magnetic field, amplitudes of the Fourler components with (2+p,10) are the same order
as of the main components and helical ripples are located to the outside of the torus.
Hereafter, by using Eq. (11), we calculate the transport coefficients at r/a = 0.5 for
the several configurations. In general, the transport coefficients at r/a = 0.8 are smaller

than at r/a = 0.5 because of a Jower temperature at r/a = 0.8.

3. Transport coefficients and radial electric fields
determined under the ambipolarity condition

By performing the integration of Eq.(11), we can obtain the transport coeflicients.
Particle diffusivities of ions L}, and electrons L$, are shown in Fig.4. When the tem-
perature of the plasma is about one keV (we gssume T; = 1. = Tand ny = ne =
(BoBo/4u0T) [1 — (r/a)z]g, where mug = 47 x 1077 [henry/m]), both of ions and elec-
trons are in the 1/ regime. While, if the plasma under large electrostatic potential
differences le¢/T| > 1 has the temperature of several keV, for example, T = 4.64
[keV] (i.e. 1/T%? = 107"), ions are in the »*/? regime and electrons are in the 1/v
regime, where ¢ is the electrostatic potential, —d¢/dr = ¢/a = E,, and is defined as
Hr=ay=0.

The diffusion of plasma across a magnetic flux surface is determined by the ambipo-



larity condition:

Jo=ell —el® =0, {15)
where J. = e(I'; — I',) - Vr is the radial net current across a magnetic flux surface,
T = I Vr = —mi(Li; A} + Lipdb), and I7 = I - Vr = —n (L5, 4] + L5,45). Here,

AfF and AS are rewritten as

o« _ dinn, 3dInT; e\ ding

e +(T&) ar (162)
. dhT,

a5 = == (16b)

Note that we assume <E||> =(F-b) =0, i.e. A7 =0. Both the transport coefficients
L%, and the forces AT depend on the radial electric fields E, = —d¢/dr, thus Eq.(13)
is a nonlinear equation for E., and by solving this equation at a fixed temperature, the
radial electric field is determined.

Before calculating radial electric fields and the transport coefficients under the am-
bipolarity condition, we try to understand qualitatively the behavior of the particle
fluxes under |e¢/T,| 2 1. The transport coefficients L%, are independent of the sign of
the radial electric fields F, because of the stellarator symmetry of the magnetic field
{see Ref. [15]). We assume that ions and electrons contributing to the transport are in
the v/? regime and in the 1/v regime, respectively. Since the transport coefficients in
the v1/2 regime are even functions of F, and generally decrease with E, increases, the

coefficients of ions may be written as

[
:A — —J:._.__.

where L;‘S’) and I3, are independent of £,. On the other hand, in the 1/v regime the

transport coefficients are independent of ., so that the coefficients of electrons are
0
?k = ngc g (18)
Thus, we can represent the particle fluxes of ions and electrons as follows.

2
P 7i Al
L= =) mly4
k=1
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_‘{ AN (dlnnl 3dln’ﬂ_eE,)

1+0L,E2\ dr 2 dr T,

'Y (dmT,
TTTLEE\ar )| (192)

2
e —_ e e
F'r - z :ne IkAk
k=1

dlnn 3dinT, eFE
_ {0} e Y e r
= T {Lu ( dr 2 dr + T. )

oy (A1,
Iy 5 (—anr—) } . (19b)

Therefore a bifurcation of solutions to Eq. (15) can appear. If both of ions and electrons

are in the 1/v regime, the particle fluxes can be represented as

dlnn 3dInT, e E
l—.a:_&La(U) o 2 a  taelr
" ”{”(dr 2 dr TG)
dlnT,
Al it
- (5} (20)

In this case, both of T and I'¢ are linear functions of electric fields E,, so that a number
of solutions of Eq. (15) is only one.
To actually calculate the particle luxes, we assume the following relations:

dlnn, dhnT, E, o
dr ~ dr ¢’

n; = n. =n, and T} = T, = T, where —E./¢ = dIn¢/dr. Under this assumption, the
total flux T for a fixed temperature T can be calculated as in Fig.5. In Figs.5(a)
and (c), the temperature of the plasma is 1 [keV]. Both ions and electrons are in the 1 /v
regime, so that we can understand easily the behavior of It by using Eq. (20). While,
in Figs. 5(b) and (d), the temperature is 4.64 [keV]. For the vacuum case, ions are in the
v'/2 regime and electrons are in the 1/v regime (see Figs.4(a) and (b)). On the other
hand, for the finite-3 case, ions are in the /2 regime and electrons are in the transient
regime between the 1/v and v*/2 regimes (see Figs.4(c) and (d)). In the vacuum case,
the behavior of T'**! can be explained by using Eqs.(19a) and (19b). However, in

the finite-8 (8 = 6%) case, a behavior of I'? is different from Eq.(19b), because the
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transport coefficients depend on electric fields as shown in Fig. 4(d). Electrons in the
finite-7 configuration are affected strongly by electric fields as compared with electrons
in the vacuum.

Next, using Eq. (15), we determine the radial electric field E,. as in Table I, in partic-
ular, for the standard configuration A, = —0.15 [m| with 8y = 6%, E. is calculated as in
Fig.6. In Fig. 6, we can see a bifurcation of £ at T = T; = 3.67 'keV]. And there exist
three roots of E,. satisfying Eq. (15) within a region T = 3.67 [keV] < T < T.o = 5.54
[keV] (i.e. 1.42 x 107! > 1/T3? > 7.67 x 1072). If the temperature 7 is greater than
T.:, then the large positive electric fields which correspond to the electron roots can
be realized. When the temperature T increases from some low temperature (T < Ty).
however, we may not observe the electron root, because the plasma chooses the eleciric
fields E; given by the line of the ion root until T = T,5. Therefore, to induce the electron
root in the plasma with T < T, we may need to heat electrons.

After determining radial electric fields £, we can calculate the transport coefficients.
In particular, we are interested in the thermal diffusivity for the only thermal conduction.
Note that the thermodynamic flux I§' defined in the DKES code denotes the total energy
flux, (see Eq.{10b)). To calculate the thermal diffusivity, we need to separate the total
energy flux @, into the conduction part g, and the convection part (5/2)T,I,, i.e.
Q. =4q,+(5/2)T,I,, (see Ref. [16]). Now, we change definitions of pairs of fluxes and

forces. New fluxes are

Y& = (I'y-Vr), (22a)
o« qa-Vr>
o= (%), (22b)

and the conjugate forces are

o _ dlnn,  dInT, [e.0) dlng

Xt = 5t +(Ta) o (23a)
o _ dInT,

X5 = == (23b)
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In this case. the fluxes are described by using the forces as

vy Xg
= '”naNa 1 (24)
£y X3
where N, is defined by
NE N
N, = 1 -Vr2 ’ (25)
N3 N3

and N5 are new transport coefficients. The relation between AT and X7 is

As Xe
=T . (26)
Ag Xg

where the tensor T is defined by

TE(I-%Q). o
0 1

Even if pairs of fluxes and forces are changed, the least entropy production rate oy does

not change [17]:

2 2
o= -3 I?AT=—-3 YFX§. (28}
i=1 k=1
Thus N§ are described by L as
Noe=T'L, T, (29)

where T* is the transpose of T and L, = (L;-’k). Then we can calculate the thermal
diffusivity N$ for the thermal conduction, using Egs. (15) and (29). Note that Nf} =
& . We obtain the particle diffusivities N7} and the thermal diffusivities V3, as in Table
I. In particular, for the standard configuration A, = —0.15 [m] with 5y = 6%, N7 and
Ng, are calculated as in Fig.7. In these figures, we can see that if the temperature is
greater than 7}, = 3.67 [keV], the transport coefficients are improved significantly by

large positive electric fields which correspond to the electron roots.
If the electron root is realized, then the large positive radial electric field appears,

thus the transport coeficients for ions with 7; = T, = T" = 4.64 [keV] can be suppressed

13



within the same order of the coefficients for the one keV plasma (see Table I). Although
the E x B drift can suppress the transport coefficients for ions as shown in Table I, the
coefficients of electrons are insensitive to the electric field, because the thermal velocity
of electrons is much faster than the F x B drift velocity.

On the other hand, in the inward-shifted configuration A, = —0.25 [m] with §; =
0,8% the transport coefficients are improved as shown in Tables I{¢) and (d), because
the helical ripples are localized to the inside of the torus as shown in Fig. 3(c) and
orbits contributing dominantly to the transport are improved [6, 5]. By transferring the
vacuum magnetic axis inward, the the helical ripples move to the inside of the torus (see
Figs.3(a) and (c)).

From Table I, it is found that the transport coefficients increase with the temperature
increases. When the temperature changes from T' =1 [keV] to 4.64 [keV] in the standard
configuration A, = —0.13 [m] with 5y = 6%, the coefficients for ions and electrons
change one order and two order larger, respectively, if the plasma stays on the ion
root. Especially, the electron thermal diffusivity N, is too large; N§ =~ 73 [m?/sec]
in the standard configuration. A characteristic time of thermal conduction of electrons
is estimated as % = a?/N§,, where a is the plasma radius. In this case, we have
74 = 4.90 x 1073 [sec] and the ion-electron collision time 7 & 5.84 x 1072 [sec]. Thus
the electron thermal conduction proceeds faster than the isothermalization between ions
and electrons, so that the temperature of electrons can become lower than of ions in
the transport time scale. Then we assume T; =~ 27,, and re-calculate the transport
coeflicients under the ambipolarity condition, as shown in Table I1. If this situation is
realized, all of the transport coefficients for the high temperature plasma (7; = 4.64
[keV] and T, = 2.15 [keV]) are suppressed within about 2 [m?/sec], and the energy loss
of electrons is limited to the acceptable value.

Finally, even if the ion temperature is low, to easily observe a bifurcation of radial
electric fields, let us consider that only electrons are heated and the ion temperature T}

is fixed. Now, we set T} = 1.5 [keV]. If T./T; > 2.56, then the bifurcation can appear,
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(see Fig. 8).

4. SUMMARY

We have investigated effects of finite-3 and radial electric fields on the neoclassical
transport in the LHD configurations with A, = —0.15 im], 8o =0,6% and A, = —0.25
[m], Bp = 0,8%. We have applied the DKES code to calculate the transport coefficients.
We have found that the transport coefficients increase when the 5 value increases, but
the coefficients for the finite-3 case are improved significantly by radial electric fields
determined by the ambipolarity condition.

In Fig.4, the transport coefficients for Jy = 6% are about two times larger than for
B3y = 0%. This is caused mainly by the ripples with the Fourier components (4,m) =
(247,10}, p=—2,-1,1,2,- .

The radial electric fields have been determined under the ambipolarity condition. We
have seen that the three roots of the electric fields are acceptable within some region of
high temperature {e.g. see Fig. 6), there are two stable roots (ion and electron roots) and
one unstable root. The obtained values of the electric fields and the transport coefficients
have been shown in Table I In the finite- 3 configurations, i.e. the standard configuration
A, = —0.15 [m] with 3, = 6% and the inward-shifted configuration A, = —0.25 [m] with
By = 8%, if the plasma temperature is several keV, then the large positive electric fields
are realized, and the transport coefficients of ions are reduced significantly. However,
the coefficients of electrons keep large values as compared with those of ions. Especially
the thermal diffusivity of electrons, N§,, is two order larger than of ions Nj,. Based on
the fact that Ng, is too large as compared with Ni,, we have assumed T} ~ 27, and
re-calculated the transport coefficients (see Table II). From this calculation, we have
found that the values of all of the transport coefficients of both ions and electrons are
less than about 2 [m?/sec].

Finally, we consider the situation that only electrons are heated and the on temper-

ature is fixed. If we set T3 = 1.5 [keV], then for 7,./T; > 2.56 we may easily observe the

15



bifurcation of radial electric fields as compared with the situation of T, = 7,.
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Figure captions

FIG. 1. Velocity dependent diffusion coefficients Dy [1/mT?] (calculated with the
DKES code) as a function of the mean free path (denoted CMUL = v/v [1/m]) at (a)
r/a =0.8 and (b) r/a =0.5 in the standard configuration A, = —0.15 /m] with 3, =0%.
Here the radial electric fields ave introduced by the parameter EFIELD (= E, /v

[V sec/m?]).

FIG. 2. Velocity dependent diffusion coefficients D1y [1/mT?] calculated at (a)
r/a =0.8 and (b) r/a =0.5 in the standard configuration A, = —0.15 [m] with 3, =6%.

FIG. 3. Ripples By, /By for several Fourier mode numbers (£, m) of the magnetic field
strength as a function of the normalized effective minor radius r/a in the standard
configurations A, = —0.15 [m] with (a) 80 =0% and (b) By =6%, and (c) in the
inward-shifted configuration A, = —0.25 [m] with 8y =0%. Here By is the amplitude
of the (0,0) component of the magnetic field strength ai the magnetic azis. In these
figures, we show the largest seven components used in the calculations with the DKES
code, except for By itself. The variation of the magnetic field strength B [T] along the
magnetic field line is shown below as a function of the poloidal angle 0 [degree].
Poloidal angles 0 and 360 degrees correspond to the outside of the torus, and 180

degrees is the inside of the torus.

FIG. {. Particle diffusivities L, [m?/sec] as a function of a temperature in the
standard configuration A, = —0.15 [m] with 8o =0% for (a) tons a =i and (b)
electrons o = e, and with By =6% for (c) ions and (d) electrons. Here the normalized
electrostatic potential e/ T is used instead of the radial electric fields E,, where

T =T, =T. Values 1/T%? =0.03, 0.1, 1 correspond to T =10, 4.64, 1 [keV],
respectively. From the stellarator symmetry of the magnetic field, LT, are independent

of the sign of e¢/T, see Ref [15].
FIG. 5. Particle fluzes T, [10%/m?sec] as a function of the normalized electrostatic
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potential ep/T in the standard configurations A, = —0.15 [m] with (a) 8y =0% and
T =1 [keV], (b) o =0% and T =4.64 [keV], (c) 8o =6% and T =1 [keV], (d) 3y =6%
and T =4.64 [keV]. Here T, =T, =T.

FIG. 6. Radial electric fields E. [kV/m] (defined by the ambipolarity condition) as a
function of the temperature T(= T} = T.) [keV] in the standard configuration

Ay = —0.15 [m] with 8y =6%. Here 1/T3/? =0.03, 0.1, 1 correspond to T =10, 4.64, 1
[keV], respectively.

FIG. 7. Particle diffusivities N& [m?/sec] of (a) ions a =1 and (b) electrons o = e,
and thermal diffusivities NS, [m?/sec] of (¢} ions and (d) electrons. These are given as
a function of the temperature T(= T, = T.) [keV] in the standard configuration

A, = —0.15 [m] with §y =6%. Here 1/T*?=0.03, 0.1, 1 correspond to T =10, 4.64, 1
[ke V], respectively.

FIG. 8. Radial electric fields E, [kV/m] (defined by the ambipolarity condition) as a
function of the rate of electron and ion temperatures, T./T;, in the standard
configuration A, = —0.15 [m] with fy = 6%. Here, the ion temperature is fized at
T = 1.5 [keV]. AtT./T; = 2.56, we can see the bifurcation of E..
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TABLE I. ELECTRIC FIELD AND TRANSPORT COEFFICIENTS

TABLE I(a): A, = —0.15 [m].

Go=0%, r/fa=03

T keV] | @ kV] | E. [kV/m] | N, [m?/s] Ni, [m%/s] | N [m?/s] NS, [m?/s]
1.00 -2.46 -4.45 3.596e-1 1.283 9.264e-3 3.323e-2
4.64 -2.83 -5.22 1.153 3.545 2.097e-1 6.201

TABLE I(b): A, = —0.15 [m],

G =6%, r/fa=0.

T [keV] | o [&V] | Ex [kV/m] | Nj; [m®/s] Vi, m*/s] | Nfy [m®/s] N5, [m?/s]
1.00 | -259 | -450 [9.922e1  3.732 2.638¢-2  1.208¢-1
464 | <111 | -1.92 | L190e+1  3.357e+l | 7.019 7.34de+1
464 | +124 | 4214 | 25731 66331 | 2.254 1.058¢+1

TABLE I{c): A, = —0.25 [m].

Go=0%, r/fa=05

T [keV] | & [&V] | B [KV/m] | N, [m®/s] NG, [m®/s] | Ny [m®/s] NG, [m?/s]
1.00 | -225 | -4.06 |2.156e1  6.79%-1 |5.899-3  1.830¢-2
464 | -437 | -7.90 [4233e-1  1.83 1.760c-1  1.615

TABLE I(d): A, = —0.25 [m], 8o = 8%, r/a = 0.5

T [keV] | ¢ [kV] | Br [&V/m] | M}, [m®/s] Nip [m?/s] | Nf; [m?/s] N3, [m?/s]
1.00 | -243 | -414 |99llel  3.550 2.677¢-2  1.093¢-1
464 | -1.94 | -330 | 6423 2.040e+1 | 3.630 4.016e+1
464 | +13.11 4223 |2103e1 43911 | 1778 1.008e+1




TABLE I1. ELECTRIC FIELD AND TRANSPORT COEFFICIENTS
FOR Ti= 2 Te

TABLE II(a): A, = ~0.15 Im], 8y =6%, r/a= 05

T [keV] T. [keV]|¢ [kV] | E, kV/m] | N}, [m?/s] Ny, [m?/s] | Nf; [m?/s] N3, [m?/s]

4.64 2.15 -7.08 -12.3 7.074e-1 2.187 1.851e-1 1.051

TABLE II(b): A, = —0.25 [m], 3y = 8%. r/a = 0.5

T keV] T, (V] | o (V] | En [V/m) | NIy [m?/s] N [m?/s] | N fmd/s] Ng, [m?/s]

4.64 2.13 -7.94 -13.5 6.486e-1 1.929 1.42%e-1 7.996e-1
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