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ABSTRACT

The influence of energetic particles generated by various plasma heating methods
on the radial electric field is studied numerically in CHS and LHD. The important role
played by the radial flux of beam particles during tangentially injected NB1 is pointed
out in CHS and the strong negative radial electric field experimentally observed near
the plasma periphery is reproduced. A strong negative radial electric field, expected to
reduce anomalous transport, is found near the plasma periphery in LHD due to the flux of
energetic ion generated by ICR heating. On the contrary, a positive radial electric field is
obtained by taking into account the energetic electron flux driven by ECR heating in CHS.
This can explain the radial electric field transition phenomena observed experimentally.

Keywords : energetic particle, radial electric field, NBI, ICR heating, ECR heating,
Compact Helical System, Large Helical Device



1. INTRODUCTION

The radial electric field, E., is an important issue for transport improvement in he-
liotrons. The orhit of ripple frapped particle in heliotrons deviates from the magnetic
surface and, thus, £, can change the trapped particle orbit drastically. For ripple trapped
ions negative E,. enlarges the orbit deviation from the magnetic surface while positive £,
or strong negative E, (i.e. Vg,p >> Vyp where Vg, and Vg are the F x B and VB
drift velocities, respectively) reduces the orbit deviation and improve the particle confine-
ment. Consequently the neoclassical diffusion strongly depends on E. and, therefore, E,
is expected not only to reduce anomalous transport through turbulence suppression but
also to reduce neoclassical diffusion in heliotrons.

Because the neoclassical diffusion depends on E. in non-axisymmetric devices, we can
determine E,. by the ambipalarity condition of the neoclassical particle fluxes. The ob-
served E, have shown agreements with neoclassical estimations[1]. However, recent ex-
periments(2,3] done in Compact Helical System[4] (CHS:{ = 2 and 1n = 8 heliotron/torsatron)
have shown negative and positive F, that can not be simply explained by the neoclassical
theory. In these phenomena the radial fluxes enhanced by plasma heating would play
an important role and the inclusion of these radial fluxes is necessary for understanding
the experimentally observed F.,.

In this paper we study numerically the influence on E, of the enhanced radial flux
by various heating methods (NBI, ICRH, and ECRH) in CHS and Large Helical De-
vice[5] (LHD: [ = 2 and m = 10 heliotron/torsatron). The generation of high energetic
particles is simulated by realistic NBIL, ICR, and ECR heating models and the complex
motions of these energetic particles are calculated by Monte Carlo simulations, where
we solve the equations of motion in Boozer coordinates based on numerically obtained
three dimensional MHD equilibria. We assume that FE, is determined by the ambipo-
larity condition of neoclassical particle fluxes and particle fluxes of energetic particles,
TNC +pfest = TNC + p/et where I'VC and T{*? are the neoclassical radial flux and the
particle flux of energetic particles of s-species (electron and ion), respectively. The effect
of the anomalous viscosity is also introduced in the plasma periphery in the NBI and
ICR heating calculations, in which strong E, appears near the plasma periphery. Us-
ing this simulation model we study the enhancement of E, by the energetic particle flux
generated by various plasma heating methods.

In Sec. 2 the effect of the beam particle flux on E, is examined in CHS for tangentially
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injected NBI. By introducing the anomalous viscosity the dependence of the magnitude
of E, on the heating power is studied. The effect of the energetic ion flux driven by ICR
heating on F, is analyzed for LHD in Sec. 3. The possibility to sustain strong negative E,,
expected to reduce anomalous transport, is examined. In Sec. 4 we study the generation
of positive E. by the energetic electron flux driven by ECR heating. The results are com-
pared with the E. observed in CHS during transition phenomena. Finally, conclusions

are given in Sec. 5.
2. ENHANCEMENT OF NEGATIVE E, BY NBI HEATING IN CHS

A strong negative F, near the plasma periphery, which can not be explained by neoclas-
sical theory, has been observed in CHS[2]. The origin of this negative F,. has been an
unresolved problem{6].

The tangential injection of NBI heating is used to heat the plasma in CHS exper-
iments. In the previous paper[7] we have pointed out that the tangentially injected
NBI particles show a large deviation of drift orbits from the original magnetic surface,
in a weak magnetic field. The size of the deviation, A, is given by Az = o(p/e){1 +
a2(eo/e)pyo/ato)} "' with o = 1 for the co-injection case and ¢ = —1 for the counter-
injection case when we assume the simple model magnetic field, B, as B(r,8) = By{1 —
e(r/a)cos f+eg(r/a)?}. For the CHS parameters (B = 0.9T and beam energy, E; = 40keV)
the size of the deviation becomes A; ~ 0.5a. These large orbit deviations are expected to
enhance the radial flux, and, consequently, affect E,.

In order to evaluate the radial flux due to beam particles, first, we calculate the birth
profile of neutral beams using NBI deposition code and, next, the beam particle orbits
are followed by taking into account Coulomb collisions with background plasma particles
until the beam particles are slowdowned to thermal energy. Then, finally, the radial flux
due to beam orbit losses is evaluated using the obtained distribution function of beam
particles.

Figure 1 shows the radial flux due to the beam particles for the counter-injection NBI
heating for two different densities; ng = 2.0 and 6.0 x 10!m~3. The large radial flux due to
beam particle, T7** > 1.0 x 101 /sec - m? is observed in both density cases. We assumed
the heating power of 1IMW. 1t is found that the larger radial flux is observed in the high
density case. This is because the shine through loss of neutral beam is smaller for the
high density case and, also, as the birth profile of the NBI beam particles moves towards
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the outer side in the major radius direction due to the larger charge exchange rate. This
outer shifted birth profile in the high density case enhances more particle losses for the
counter-injection in which the direction of drift orbit shift is toward the inner side in the
major radius direction[7]. More than 50% of beam particles are lost by orbit loss in the
high density case.

Using the obtained radial fluxes we can evaluate F, from the ambipolarity condition,
Thearn + TVC = IY¥C where T,y is the radial flux of the beam particles, and T¥C and
T'¥¢ are radial fluxes of background ions and electrons due to the neoclassical 1/v ripple
diffusion, respectively. Fig. 2-(a) shows the change of E. due to the NBI beam particle
in CHS (ng = 6.0 x 10¥m~3). The solid line corresponds to the simulation result while
the dashed line to the prediction of neoclassical theory. A slight increase of the negative
E., compared with neoclassical prediction, is observed in the region r/a < 0.8 while a
strong negative F, is obtained at the plasma periphery. The magnitude of E, becomes
more than 15kV/m at r/a ~ 1. This is due to the fact that the neoclassical flux goes to
0 at r/a = 1. The increase of the negative E, in the lower density (ny = 2.0 x 10¥m—?) is
smaller than the case at the higher density. The density dependence of F, is consistent
with the experimental observations[2].

In the actual plasma anomalous transport would play an important role at the plasma
periphery. Next we show the effect on the simulation results of an anomalous viscosity
in CHS. We, here, introduce the effect of anomalous viscosity and use the ambipolarity
condition given by

1 & o
+ NC _ pNC + ! =
rbeam rz re V! 8’& (V D 31,[) ) Oa (1)

where @ and V' are the electrostatic potential (£, = —8®(r}/dr) and the volume enclosed
in the flux surface, respectively. We assume D = Dof(r) and f(r) = {1 + C1{r/a)2}(C; +
2)/(2+2C) + ;) with C| = 5§ and C; = 8, so that the effect of anomalous viscosity becomes
large near the plasma periphery.

Figure 2-(b) shows the enhancement of E, in dependence on the NBI heating power
in CHS (n¢ = 6.0 x 10”m—3). In order to estimate the role played by anomalous viscosity
we have to compare the strength of the numerically obtained E, with the experimental
one. In the following calculations we fix the value of Dy in such a way that the strength
of the numerically obtained E,. becomes comparable with the experimental one for the
case corresponding to the heating power of P = IMW. We can see that the strength of the
negative F, near the plasma periphery increases with the increase of the heating power.
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Additionally the radial width of the region with the strongly enhanced F, also increases
with the heating power. The poloidal F x B Mach number, M, = Vg, gB/v;; B, is a good
measure to evaluate the effect of the obtained E, on anomalous transport where v,;, and
B, are the ion thermal velocity and the poloidal magnetic field, respectively. It is found
that the heating power of 2MW is required in order to achieve M, ~ 2 for which sudden
changes of E,. would be observed[8,9].

3. ENHANCEMENT OF NEGATIVE E. BY ICR HEATING IN LHD

Tangentially injected NBI, P = 15MW and beam energy E; = 180keV, is being prepared
also in LHD. However the size of the orbit deviation for LHD (B = 3.0T) is small, A; <
0.la and the beam particles are well confined. Therefore the beam particle flux due to
tangential NBI heating is not expected to be effective in order to enhance E, in LHD.

High power ICR heating scenario, P > 12MW, is also planed in LHD. ICR heating pro-
duces energetic trapped particles, whose motions can be very complicated in heliotrons.
The loss of these energetic particles would enhance the radial flux, leading to an enhance-
ment of F,. Figure 3 shows the heating efficiency as a function of heating power (solid
line} obtained by Monte Carlo simulation[10]. We set Z.;; = 1.3 and the parameters at
the plasma center as ng = 1.0 x 102®m~3, T,q = 1.0keV, and T} = 1.0keV. We assume 3%
of proton minority ion fraction in a deuteron plasma. We can see the decrease of heat-
ing efficiency as the heating power increases. Thus, the loss flux of high energetic ions
increases with heating power and the driven radial flux would enhance the negative E,.

In this section we study the influence of energetic minority ions generated by ICR
heating on E,.. Because E, affects the orbit of fast ion while the escaping fast ion flux
alters F, itself, the orbit of fast ions and E. have to be evaluated self-consistently. In order
to obtain the self-consistent sclution of the ambipolarity condition we use the equation
for the time development of £.[11] as

8 16 (., 8¢
gicLEr = ele—eZih = eZ T+ mn (v D 61/}) . @)

The ambipolarity condition is obtained as the steady state solution of this equation where

T, and I'; are the radial particle fluxes for electrons and majority ions, and I'; is related
to the loss of minority ions, respectively. The same anomalous viscosity term as the one
used in the previous NBI calculation is also introduced in this calculation and we assume
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the same value for Dy. I', and I, are calculated by the neoclassical theory and I'f by the
Monte Carlo simulation code.

Figure 4 shows the time development of the radial electric field and of the electrostatic
potential during the ICRF heating with P,;, = 7.5MW and same plasma parameters as
in Fig. 3. We find an enhancement of the strong negative E. at the periphery due to the
radial flux of energetic minority ions escaping out of the last closed magnetic surface. The
maximum value of the strength of E. reaches to 110kV/m and we can obtain a plasma
with M, > 2 using ICR heating. The enhancement of E. is larger for higher 5 plasma
due to the large loss region of energetic ions. We can also find an improvement in the
heating efficiency of more than 10%, compared with the case where no radial electric field
is present (The diamond in Fig. 3 shows the heating efficiency with self-consistent E,.).

4. GENERATION OF POSITIVE E, BY ECR HEATING IN CHS

Positive E, reduces the deviation of ripple trapped ion from the magnetic surface
and, thus, improves trapped ion confinement and neoclassical transport. It is observed
that E, suddenly changes from negative to positive when ECR waves are applied to low
density NBI heated plasmal3]. Ripple trapped energetic electrons are created during
ECR heating and their drift motions across the magnetic surfaces can play an important
role in these phenomena. The effect of energetic electron drift motions on the broadening
of radial heating profile is also pointed out in W7-AS[12].

We have developed a Monte Carlo simulation code{13,14] based on a technique similar
to the adjoint equation for dynamic linearized problems{15]. The linearized drift kinetic
equation for the deviation from the Maxwellian background f{z, v),

7-Vii+a Vofi =C(f1)+SY, 3)

is solved where C{(f;) is the linear Coulomb collision operator and Sgl is the wave in-
duced flux in velocity space {(quasi-linear diffusion term) which is assumed to be a given
function.

Figure 5-(a) shows the radial profile of the enhanced electron radial flux driven by
the ECR heating (X-mode 2nd-harmonic) in CHS (ng = 1.0 x 10"m~3). The temperatures
are set to 400eV for electrons and 200eV for ions (ECR and NBI combined heating). We
assume the heating point to be in the low field side of the toroidal field {the outer side
of the major radius) on a vertically elongated cross section at the radial peint, r/a = 0.5,
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which corresponds to the bottom heating case in the CHS experiments{3]. The quasi-
linear diffusion term 82, is estimated through an analytical model of ECR heating. The
previously obtained enhanced radial flux due to beam particles by NBI heating (P =
1MW) is also shown. We can see that the enhanced electron flux driven by ECR heating
becomes almost half of the beam enhanced flux even for much smaller heating power.
The obtained radial flux is comparable or larger than the neoclassical one and it could
affect the radial electric field.

Figure 5-(b) shows the response of E, (ny = 1.0 x 10°m™3) to changes in the ECR
heating power and, consequently, the enhanced radial electron flux. The ambipolarity
condition is used to determine E.. We can see that a positive F, appears in the region
r/a > 0.6 when the ECR heating power is increased. Maximum F£. strength is observed
at r/a ~ 0.8. It is found that, for significant heating power, the large enhanced radial
flux driven by ECR heating can change the E, profile and, consequently, that the en-
hanced electron flux play an important role in explaining the experimentally observed
E, transition phenomenal3].

5. CONCLUSIONS

We have shown in the present study that the energetic particles created by various
plasma heating methods can affect the radial electric field in CHS and LHD. The en-
hanced radial flux due to tangentially injected NBI beams can generate strong negative
radial electric field near the plasma periphery, as observed in CHS experiments. Al-
though the enhanced radial flux due to the beam particles is not expected to be enough to
enhance the negative radial electric field in LHD, we have demonstrated that energetic
ion flux generated by ICR heating can be used to generate the strong negative radial
electric field in LHD.

Simulations with anomalous viscosity have shown that about 2MW of NBI(ctr.) power
is required in CHS and 7.5MW of ICRH power is sufficient in LHD for obtaining the
poloidal Mach number M, > 2 where we can expect the transition of radial electric field.
More detailed calculations including the nonlinear viscosity term[7] are necessary to pre-
dict the transition of the radial electric field in CHS and LHD.

The generation of positive radial electric field due to the energetic electrons driven
by ECR heating has been shown. The radial drift of ripple trapped electrons generates
a large radial flux which can explain the generation of positive radial electric field as
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observed in the CHS experiment. This creation of a positive radial electric field would
have beneficial effects on the neoclassical transport in the long-mean-free-path regimes.
The possibility of the generation of a positive radial electric field in LHD is now under

investigation.
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