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Abstract

Neoclassical transport processes of electrons and ions are investigated in de-
tail for toroidally rotating axisymmetric plasmas with large flow velocities
on the order of the ion thermal speed. The Ounsager relations for the flow-
dependent neoclassical transport coefficients are derived from the symmetry
properties of the drift kinetic equation with the self-adjoint collision opera-
tor. The complete neoclassical transport matrix with the Onsager symmetry
is obtained for the rotating plasma consisting of electrons and single-species
ions in the Pfirsch-Schliiter and banana regimes. If is found that the inward
banana fluxes of particles and toroidal momenium are driven by the parallel
electric field, which are phenomena coupled through the Onsager symmetric
off-diagonal coefficients to the parallel currents caused by the pressure gradi-
ent and by the flow shear, respectively.
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I. INTRODUCTION

Improved confinement modes of tokamak plasmas such as high-confinement modes (H-
modes)! and reversed shear configurations?® are attracting considerable attention as promis-
ing means for achieving controlled fusion. Such a reduction of the transport level is generally
considered as caused by the large radial electric field shear {or sheared flow). In the Japan
Atomic Energy Research Institute Tokamak-60 Upgrade {JT-60U).* the internal transport
barrier (ITB) with the steep ion temperature gradient is formed in the region where the
gradient of the toroidal flow is steepest.® In rotating plasmas with the large flow velocities
on the order of the ion thermal speed vr;, the toroidal flow shear influences the transport of
particles, heat, and momentum as an additional thermodynamic force, although, in conven-
tional neoclassical theories® 7, the flow velocities are assumed to be on the order of vp, and
the direct effects of the flow shear on the transport do not appear in the lowest order. Here
6 = p/L is the drift ordering parameter, p; the ion thermal gyroradius, and L the equi-
librium scale length. It is important to derive the transport equations including the flow
shear effects at the same order as particle and thermal transport for understanding the ITB
physics. Neoclassical ion transport equations for rotating plasmas were obtained by Hinton
and Wong® and by Catto et al.’ However, neoclassical electron fluxes are also required for
a comprehensive description of transport processes. For example, the neoclassical parallel
(bootstrap) current is associated with the parallel electron viscosity and is necessary for
determining the equilibrium configuration self-consistently. In the present work, we derive
full transport equations for neoclassical electron and ion fluxes in the rotating plasma with
the toroidal flow velocity on the order of the ion thermal speed.

Hereafter we consider only axisymmetric systems, for which the magnetic field is given
by

B = I{¥)V({ + V{ x VT (1)

where ( is the toroidal angle, ¥ represents the poloidal flux, and I{¥) = RBy. In the
axisymmetric systems, the poloidal flow decays in a few transit or collision times and the
lowest-order flow velocity Vj is in the toroidal direction®:

Vo=Vl, Vi=RVS=—Rc®(¥) (2)

where ®(W) denotes the lowest-order electrostatic potential in § (which corresponds to
®_; in the paper by Hinton and Wong®) and Ey = —V®, = —®, V. The toroidal angular
velocity V¢ = —c®] is directly giver: by the radial electric field and is a flux-surface quantity.

For particle species a with the mass m, and the charge e,, the phase space variables
(x', e, i, &) are defined in terms of the spatial coordinates x in the laboratory frame and the

velocity v/ = v — Vg in the moving frame as®'®



1 s m i )2 v’ )
X =x, f=-m (v )+, u= M%B;) — = e cosf+exsiné. (3)
2 v

Here (e;,e;.b = B/B) are unit vectors which form a right-handed orthogonal system at
each point. v/ = ¢/b + v, vy = v - b. and

— = 1
=, =e,P — Emai»}f (4)

where &, = ®; — (®,)[= O(8)] is the poloidal-angle-dependent part of the electrostatic
potential. The magnetic flux surface average is decoted by {-). The lowest-order distribution
function is the Maxwellian which is written as

me \3/2 ma(v')? L mg \3? £ ;
Joo = e (m ) P (_ Q(T ) = A (%T) =P (_T) (&)

where the temperature 7, = T,(¥) and N, = N (V) are flux-surface functions although
generally the density n, depends on the poloidal angle 8 through =, and is given by®

Tg = Ny exp (—?—2) : (6)

This dependence of the density n, on the poloidal angle ¢ is one of the causes which com-
plicates the derivation of the classical and neoclassical transport coefficients for the rotating
plasma. For plasmas consisting of electrons and single-species ions with charge e, = Z.e, we
have®

e = _ m(VP(R* - (R%)
T. ' 2(ZT.+Ty)
Z:N.(T¥) = N,(T)exp (—@L‘g—ﬂ) (7)

where the charge neutrality condition 3, e.n, = 0 is used and m./m,(< 1) is neglected.
In toroidally rotating axisymmetric systems, the linearized drift-kinetic equation is writ-

ten as® ¢

1

T Fao (W1 X1 + WoaXeo + Wor Xv + Wog Xg) (8)

b V. — CHda)

where CL denotes the linearized collision operator [see Eq. (8) in Ref. 11] and g, is defined
in terms of the first-order gyrophase-averaged distribution function far as
oz e, [Hdl o  B? (2)
Ja = fa1 — fa()i/ B (BE“ - @(BEE ) (9)
Here ['dl denotes the integral along the magnetic field line, and Eﬁz) =b-(-V3P -
¢ 1A /dt) is the second-order parallel electric field.  The thermodynamic forces
(Xa1, Xa2. Xv, Xg) are flux-surface quantities defined by
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1 G(NT) 3(‘1’1) 8,Iya

S A 2= "5y
_AvE 3%, _ (BE{™)
WETow " e =T (10)
The functions (W1, Was, Wy, W) are defined by
. I
War = 2250 ¥ (RVS + 2of ) = o VU
€q B
£ )
Wy = W (T ~2) = b VU
. . I N RB?
Wy = T; “ub- [m (Ri’vf + Evﬂ) +u——§f-J =v\b- VU
€a’U”B
aB = B (11)

10,11

The neoclassical entropy production is kinetically defined in terms of f,; and CL and is

rewritten in the thermodynamic form by using Eq. (8). The surface-averaged total neoclas-
sical entropy production is given by

@ nec 1 nc nel v
ZT Dd ZT </d3 ;1CL(fal)>:Z(ra ]-’ a1+?qa 1Xa2+Ha 1}&.1/) +JeXg

(12)

where the neoclassical transport fluxes (2, q8el/T, T8 Jp) conjugate to the forces
{(Xa1. Xa2, Xv, Xg) are defined by

rgd = </d3'v gaw‘a1> 3 T qu = </ d3v ga a2>
(BJ))
M= ([ PoaWn), o=l =5 ([ dvamis). (13)

Here T2l g2l and I12¢ denote the surface-averaged radial fluxes of particles, heat. and
toroidal {angular) momentum, respectively, and Jg represents the surface-averaged parallel
curreni. The neoclassical transport equations connecting the conjugate pairs of the fluxes
and forces are written as

FECI = Z(LT?XM + L‘ngbg) + L?VXV + LSEXE

1
T

Yomy = Z(LVlel + Ly Xio) + Lvv Xv + Lyp X
"3 b

&
@9 Z(Lg’bel + L8 X)) + Lo Xy + L2 X 5

JE = Z(L%lxbl + LE;EQX(Q) + LEVXV + LEEXE (]_4)
b



where the transport coefficients are dependent on the radial electric field through the toroidal
angular velocity V¢ = —c®f.

The remaining parts of this work are organized as follows. In Sec.Il, using the formal
solution of the linearized drift kinetic equation (8), we prove the Onsager symmetry of
the neoclassical transport matrix for the rotating plasma consisting of electrons and multi-
species ions with arbitrary collision frequencies. In Sec.III. we describe the transport fluxes
other than the neoclassical fluxes to give the total transport of the particles, heat. and
toroidal momentum. In the cases of single-species ions. the explicit forms of the neoclassical
transport matrices for the Pfirsch-Schliiter and banana regimes are given in Sec.IV and
Sec.V. respectively. Conclusions and discussion are given in Sec.VIIL. Appendix A shows the
classical transport coeflicients for the rotating plasma. In Appendix B, the first-order parallel
flows and the parallel momentum equations, which are useful to derive the neoclassical
transport eguations, are obtained from the drift kinetic equation. The parallel viscosity
coefficients for the plateau regime, from which all the plateau transport coefficients except
for Ly can be derived, are shown in Appendix C.

II. ONSAGER SYMMETRY OF NEOCLASSICAL TRANSPORT EQUATIONS
FOR ROTATING PLASMAS

In order to prove the Ounsager symmetry of the neoclassical transport equations, it is
useful to note that the solution of the linearized drift kinetic equation (8) is written as

Jo = > (GunnXo1 + GapzXi2) + Gov Xy + GopXg {15)
b

where Gy (m = 1,2) and Gy (M = V, E) are defined as the solutions of the following
equations:

1 i,
Ui’]b . VGabm - ZCQLQ-'(GCme: Ga’bm) = 6abﬁfbﬂwbm (m = 132)

1
vib - VGay — S CL(Gorr,Garnt) = f‘faOWaM (M =V,E). (16)

Substituting Eq. (13) into Eq. (13}, and comparing it with Eq. (14), we find that the
neoclassical transport coefficients are given by

Lf-,-fn = </ dsv WamGabn (m,n = 12)
= ([ @0 WanGu)  (m =123 =V,B)
Lglm :Z<]d3U WaMGabm> (m:12,*M:VE)

Luy =% <] Pu WQMGQN> (M,N =V, E). (17)
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Here, let us consider separately two types of variable transformations, ¢.e., vy — —vj
and V¢ — —VS. For an arbitrary function F of v}, and V¢, we define Ft*, F+— F~* and
F~~ as parts of F which are even-even, even-odd, odd-even, and odd-odd with respect to
the transformations v — —v} and V¢ — —V*, respectively. From Eq. {11), we find that

Wom = W'_H- W - W+_ = W_+ =1 (m — 172)

am ?

Ware = Wiy + Woar Whr =W, =0 (M =V,E). (18)

Then, the first equation in Egs. {(16) is divided into the ++, +—, —+, and —— parts as

1 -t
vib- VG, Z Gaoms Gargm) = b_é)fbowanj
U”b vGﬂ{abm zcaa’ ab'rn} a’bfm.) 0
‘U;Ib ) VGjbm Z aa’ G b ;bm) =0
. _ o 1 e
,Ulf|b ) VG;-bm Z Caa’ abm: Ga"bm) = 6abﬁfb0]/vb‘m (m = 1! 2) (19)

Similarly, the second equation in Egs. (16) is divided into parts with these symmetries,
which is straightforward and not shown here. Next, we regard the transport coefficients as
functions of V¢ and write them as the sum of even and odd parts with respect to V¢: for
example, L% (m,n = 1,2) given in Eq. (17) are written as

LY, =L+ L% (m,n=1,2) (20)
where
LEHVE) = L2V = ( [ o (WEG: + W6z
Lo (V) = —Li (~VO) = ([ o WG+ WarGaD))  (mn=1,2) (21)

From Egs. (19) and (21), we obtain

mﬁ=-zT</f

a' b

})i_nccf’b’(G-{“!- Gb’am) + Ga’bnca’b’(G__ Gl;;m)

a’am? a’am?

alam ™~ a

+ GlramCEy(GE, Goi) + G L CLL(GE, G > =Lkt

a'am a’am

. 1o, . _
Ln_?n bt Z'Ta, <—/d3vE :’b'nvlb VG + G ,EmU”b VG

++
Gaamv”b 1 a'bn a'am

— Gaam¥ib - VG ] > = — [t (m,n=12) (22)
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where we have used the self-adjointness of the linearized collision operator [see Eq. (9) in
Ref. 11} and the antisymmetry relation

</ v xv|b- '\7'1'> = </ d*v vub - Vx) (1, : arbitrary functions).  (23)

Equation (22) gives the Onsager symmetry for the coefficients L2 (m,n = 1,2) which is
rewritten as L2 (V¢) = Lf (—V¢). In the same way as above, we can derive the On-
sager symmetry for the other coefficients. To summarize, the Onsager relations for all the
neoclassical transport coeflicients are given by

LE (VO =Ll (V) (m,n=12)
Lun{VS) = Lyy(-VY) (M,N=V,E)
Lo (VO =—L% (-VY) (m=1,2M =V,E). (24)

We can see from the derivation here that the Onsager relations in Eq. (24) are robustly valid
even for the cases of multi-species ions and arbitrary collision frequencies.

Here, let us consider the case in which the system has up-down symmetry B(#) = B(—6)
(#: a poloidal angle defined such that § = 0 on the plane of reflection symmetry). In this
case, it is convenient to use the transformation 7 : (UI’E,B,VC) — (=), =0, -V ¢). We note
that, under the transformation 7, W,y is invariant while W,,(m = 1,2) and W,z change
their signs. Also, the operators ’ul’lb -V and CF commute with 7. Therefore, we see that
Gy 1s symmetric and Gepr, (m = 1,2) and G, g are antisymmetric with respect to 7. Then,
it is found from Eq. (17) that L2 | L% ., Lyyv, and Lgg are even while L2, and Ly g are
odd in V;. Thus, for the system with up-down symmetry, we obtain the restricted forms of
the Onsager relations

Lon(Ve) = Ly (=VE) = Ly, (V) (myn=1,2)
v (VY = =Ly (=V¢) = Ly, (VS (m=1,2
Lop(VS) = Lo p(=V©) = ~LE,(

Eye(V) = = Lg(—VE) = ~Lov (V¢
va(‘/() = LVV(*‘VYC
Lep(V) = Lep(=V*). (25)

)
)
VY (m=1.2)
)
)

III. TRANSPORT FLUXES OTHER THAN NEOCLASSICAL FLUXES

The particle, heat, and toroidal momentum fluxes for species a consist of the neoclassical
and other transport parts, and are written as'®



I‘a5<[d3v fav.vm>

=T¢ + 5" + T + T 412%™

qa_Ta</dvfa(Ta ~)v-ve
— qzl + qzci 4+ qf{ + q(E) | qz.nom
II, = </ d>v famaUeV - V\I‘>
= 19 4TI+ 17 4 T1(E) 4 [remem, (26)

Here the classical fluxes T'Y, ¢¢, and I are caused by particles’ gyromotion with collisions.
Their definitions and the classical transport coefficients for the rotating plasma are shown
in Ref. 10. The momentum conservation in collisions assures the intrinsic ambipolarity of
the classical particle fluxes, which implies that ¥, e,[S = 0 is valid for arbitrary values
of the radial electric field. In Appendix A, the classical transport coefficients for the case
of single-species ions are given. The fluxes I'{¥), ¢!, and II{® [see Eq. (20) in Ref. 10
for their definitions] are given from the inductive electric field E®Y = —¢ 19A /8t and do
not contribute to the entropy production. The anomalous transport fluxes ['2°°™, ¢2"™, and
[128om gre driven by turbulent fluctuations and are defined in terms of the fluctuation-particle
interaction operator [see Eq. {26} in Ref. 10]. Then, the intrinsic ambipolarity of the particle
fluxes T'2"°™ and T'F) are separately derived from the charge neutrality: ¥, e,[2%™ =
Y. el = 0. The fluxes T2, ¢, and TIZ are defined in Ref. 10, and are related to the
thermodynamic forces X, 1, Xg2, and Xy through the nondissipative antisymmetric transport
coefficients which satisfy the Onsager symmetry Eq. (24) [see Egs. (23) and (24) in Ref. 10]
and vanish if the system has up-down symmetry.

It can be shown that the sum of the neoclassical fluxes (T2, g2 I12<!) and (T2, ¢Z T1H)
gives

BE{Y oI /F
nel H _ _ ( ¢ llal
LY+ = —cl{ng ——=5— B 6a< B >

ne (BE{Y) ¢ Iy e 3 _
7@ el = et (nZ) ‘E‘(fd%m“ (“,%*R?VC) (z-2) Cf(g“)>

(BE[™)

nel H _ ¢ 2 i

Ha +Ha = —'maCIV (naR >—<"§'2'5"—
“ I N\N* R°B?
— 7;68 <fd3'u [ma (R2VC + E’Uf[) +u—g P} C’f(ga)> (27)

where F,; is the parallel component of the friction force F,; = [ d®v m,v' C,{f,). Those
fluxes in Eq. (27) that include (T'Z, ¢ TIZ) are referred to as the neoclassical fluxes by
Hinton and Wong and by Catto et al. In Ref. 10 and in the present work, (T'Z ¢# TZ) are

8



considered separately from the neoclassical fluxes since the former result from the collision-
less particles’” gvromotion and are related to the nondissipative parallel gyroviscosity. Now
that the Onsager symmetry is shown to be satisfied by the transport coefficients for both
(Lol goed Ty and (07 g# T1H), the symmetry is also valid for the transport coefficients
for their total fluxes in Eq. (27). From the charge neutrality and the momentum conserva-
tion in collisions with Eq. (27), we find that the particle fluxes (T2! + T'#) are intrinsically
ambipolar:

S eI +TH) =0, (28)

Using the ambipolarity condition in Eq. (28), the number of the pairs of the particle fluxes
(T2! + T#) and the conjugate thermodynamic forces appearing in the transport equations
can be reduced by one without breaking the Onsager symmetry of the transport matrix.!!
In the following sections, we consider the case of single-species ions {i) with charge e, =
Z,e per particle, and derive the transport equations combining the five transport fluxes
[(T2eh + THY (g2 + ¢f)/T., (gr + ¢ff )T, (T12°! + TIF), Jg] with the five thermodynamic
forces (X7, Xeo, X2, Xy, Xp):

e+ TE ) [ L5 Lgs L% Lo Lig | [ X ]

(a2 +¢f) L5 LS5 LSy, LSy Lip | | Xeo

Fgd+gf) | = | LE Ly Ly Ly Lyp | | Xe {29)
e + ¥ v1 Ly Ly Lvv Lve | | Xv

L JE 1 L% L%y L Lev Lee | | Xk |

where the Onsager symmeiry for the 5 x 5 transport matrix is already guaranteed. Here,
we have neglected IT2¢! + IT# whick is O(m,/m;) smaller than [I2?' + [T#. The first thermo-
dynamic force X, is defined by
o Xa_ 1ONT) 1 9NT)
KXo =Xat Z, N, ov ZN, o0 (30)
TWith this reduction, we see that the (&) radial electric field —3{®,)/d¥ disappears from

the thermodynamie forces. Thus, in the axisymmetric toroidally rotating system, the O(§)

radial electric field neither affects the transport nor is determined by the ambipolar condi-
tion. Recall that the transport coefficients in Eq. {29) depend on the radial electric field
of O(6°) [not O(8)] through the toroidal angular velocity V¢ = —cd®,/d¥ and that the
thermodynamic force Xy is proportional to the radial gradient of the O(8°) radial electric
field [see Eq. {(10)].

IV. PFIRSCH-SCHLUTER REGIME

In the Pfirsch-Schliiter regime, the ratio of the particles’ mean-free path to the equilib-
rium scale length A = vr,7ae/ L is used as a small ordering parameter, where vy, = 1/27,/m,

9



is the thermal velocity and 7,, the collision time defined in Ref. 6. In this section, we derive
the full neoclassical transport equations for the rotating plasma consisting of electrons and
single-species ions in the Pfirsch-Schliiter regime. Here we retain terms up to Of{m./m;)'/?]
in order to obtain the electron transport coefficients, which are not considered in Refs. 8
and 9. In Ref. 8, the rotation speed divided by the ion thermal velocity Vy/vr, is assumed
to be as small as A'/2 although, without this assumption, our results here are valid even for
Vo ~ vr;.

According to the conventional analytical technique for the Pfirsch-Schliter transport, let
us expand the O(§) distribution function g, in terms of the expansion parameter A as

Go=g0 D+ 450 4. (31)

In the lowest-order with respect to A, the linearized drift kinetic equation (8) reduces to
CE(gi-V) = 0, from which we have

5 m (v')?
. 1 a a
g((I U= (CL’( D -+ ?a i(]l ) i'l + ]ia 2Ta faU(Et \I!) (32)

Here, the O(6A~!) quantities o™, uE([fl), and Téf Y are independent of the velocity vari-
ables (e,1). In Appendix B, some relations on the parallel flows and the parallel mo-
mentum balance equations are derived from the drift kinetic equation. The quantity
ufizl) represents the O(6A™!) average parallel flow velocity, and is related by Eq. (B4)
in Appendix B to O(6X7") surface quantities T';"(¥) and ¢lg"(¥) as neul;” = BT,V

and q”al = uananul = qul;l). Then, we have _EF( = qgel), and therefore obtain

“[(|11) =18 = ¢&Y = 0 by noting from Egs. (4) and (7) that =, is dependent on the
poloidal angle §. In the next order with respect to A, the linearized drift kinetic equation (8)

is written as

1
CHY) = vb- v - TfaOWaEXE (33)

where Xy = (BE{")/(B?)/2 is considered to be on the order of (=1 since it is balanced
with the parallel current multiplied by the resistivity {oc AC"V) although the other thermo-
dynamie forces X,1, Xy, and Xy are regarded as O(A\%} quantities.

In the derivation of the transport equations for the Pfirsch-Schliiter regime, only the
leading order terms of O{§2A~!) are retained in the radial fluxes of the particles, heat and
toroidal momentum, which are written from Eq. (

(BE (A) F
Fncl I\H - _ [lel
e + € CI<n€) (B e <

(BEY™) oI [FuA\ oI |F
ncl — I Il el flel=e il fle2
(q +qe ) 9 (n’e e> (B2) + e B + e B

10




(4}
ncl H cf <BE ) cf F A, \ cf AF||12
= - A . R A 14
>

nel H__ﬂ ¢ 2< & < Fllel 2
e + I = Zisz (n.R )———————(Bn}> +Zz€m,l B R (31)

where we have used the definitions A, = Z,/T,, Faa = [ d®v mv'im,(v")?/2T, — 5/2]C,
(a = e.i), and the momentum balance ¥, + F,; = 0 in collisions.

Multiplying Eq. (33) by mat (1YL ?(2?) (j = 0,1,2,-- ) [L§P(2?) = 1, L) =
3/2 — 2%, --- : the Laguerre polynomials ; 2 = m,(v /QTa] and integrating them in the
velocity space give the O(6A(~") parallel momentum balance equations. Then, we obtain
Flo, = [ & movi (=1 L¥P(2?)Co{fa) = 0 for j > 3 and

(I,B-Va{"V+IB.VI{Y — TLUB. VA, + eBYBEY) /(B?)
2B VTV
: Ae Ae 0 0
. BFjei/ne __ M 11~ , ne(u\(le)l _ul(hi)?) (35)
i B-F]le?/ne NeTee | — E152 )\5‘2 g(q]tel/T Aen u][el)B
5 (—1) Flia m, ;, 2 q[(i?l) 0)
R Rk & A ) B )

which correspond to the leading order O(6A~1) parts of Egs. (B3). Here, the dimensionless
friction coefficients Af;, A%, A5y, and A}, are related to the dimensionless coefficients oy Q)
%, and K} given in Ref. 7 as

A = Ail ‘:;\?2 _ ) _\/_O‘H
—Afy A%y —\/gd]l
1t 2 ~i
Using the results of the 29-moment {29M) approximation in Ref. 7, we have 5\‘{1 = 0.672,
Xe, = 0.558, AL, = 1.943, and M, = 1.110 for the case of Z; = 1.

Using the magnetic surface average operations { - ) and (A, - ) (A, = Z,/T.; a=e,i)in
the parallel momentum balance equations (33) and (36), we obtain the following equations:

Oll

{ (AB-VTED) + o BEY)
0

L ;\fl —j\fz (BQ>( ry ZF(O})
T 2<Bﬂ>qe£/fr 2(B2°A)TY

MNeTee
el | (ne) X + (nele)Xeo + (AN X/ Zi + m VS {n . R2)Xv | Z;
€ (ne>Xe2

ye Ve
*’\12 22

(38)
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HAB - VTLY)
_ M. [ Se Re ] (B2ANTD — ZTQ)
T PeTe b 1272 2(B%A.)g ?/T HBPADTY
o [{neAd) X5 + (neA2) X
€ ] (neAe)XeQ
) (39)
'>X1'2:0 (40)

oI [ (neAA)Xi2)Z; + miVS{n R2ANXv | Z;
€ 0

2 o I
(9% - (o) +

z

2 2 qz(e 2 A2\ (0 S i (-1) |
3{(3&-)1: (B* A7) TG +~——-(nA)X12_ S 22(AB vrYy o (41)

where it should be noted that n,7, {a¢ = e, ) are independent of the poloidal angle 8. We
also have from Eq. (B6)

ZAAB - VI 4+ (AB- VI = 0. (42)

Now, using Egs. (38)(42) and (B4), we can express the O(6A®) poloidal flows (T, ¢{9),
the O(6A) parallel flows (ufi?l)l, qﬁ?z)l) and the parallel friction forces (Fjjo1, Fle2) in the linear
forms of the thermodynamic forces (X7, Xeo, Xio, Xy, Xg). Then, we can calculate the
transport fluxes in Eq. (34) and obtain the transport coefficients in Eq. (29). The resultant
transport coefficients for the Pfirsch-Schliiter regime are given by

(( BQUTA U. > — (nUIANVT) (B?V A V] )‘1 (neVeAeUe))

NeTee €2

Lss Lg | me &I
€€ €e -
12 L22

(43)

_ me AP [5{(BMn.A) — (B2A) )}/ cor T
= & {5 (B (BPAT) — (BPA)2) (”6U6)+<BQAU>

T e s T\ /o2 -1 (5 {{BH{n.A) — (B2A M n. 5
- (nUTAV])(B*V.AV]) ( 5 {i ( B)2<) 5 l;) ( = Z\f)?i} (B Ve>+(neA,-Ve))}

X [_A H (44)
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Lig{ _ _ | Lo
Lse L,

= ¢l ((neUZAevj) (B°V A V)
(B2 (BA) | | (n)

rao oo M )\9) 21 n?
27 nr, 222\ B? (B2A;) (B%A?) {n,A;)

I n {< ><neA1> - (BQA1><ne>}
e Z{ i (< > &) (B (BPA%) — (BPA))
o (BB A — (B2A )
R e A)2}2>

S (5 {{B?){n.A,) — (B?A,){n.)} (BQVD N <neAiV§>) <B2V6Aevg~>—l

-1

(B‘z)l/z ~
0

2 {(BH(B2A}) — (B2A)?}
(Ul B0 v pava) [ 5 ] )

2 {{(B2)(B2AY) — (B2A)?} —Ala
Lf‘zV:L%
e e AP [o ([RRPAN 5 2\ {{B% ) (neAs) = (BA)(ne)}
_miwn Te Z_eg{ o (( B? >+5< ) {B2NB2AY) — (B2A:)?) )

. o 13BN A — (B*A)(ne)} / povsr T
_ [)\11 }\12] (5 [(B2)(B2AZ) — (B2A, )2} (B V. ) + <neAéVe >)

} (48)

oo (RA) §<B‘) v2 {{BX{n.A) — (B2A){n.)}
(- |

"e
Af1

x (B*V,ANVT) " (n.RV.) 5,

{{B2){B2A?) — (B2A;)?}

je le 5{(B (n/_\) (B2 A1)} / o T
_ [All _)\12] (5 {(BQ)(BQA;?) — (BQA!)Q} <B ‘fe ) +<neA5Ve >)

} "
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e . 2 pt
vazm?(vg)g—m ‘ (/\'i;1<ne >

ReTee Z2€2 B
— [X =6 | (neRVTY BV ANVT) <neR2Ve>|: )Ei D (50)
M2
Lyg=—Lgv

I {{(nR

B _mivch- (((122—)1/)2‘
- [R5, ] (. RVTY B2V AVT) <B21/2 ) (51)
Leg = ne;fg (822 0] (B2V.AVT) [(3‘21/2} (52)

where terms up to O[(m./m;)'/?] are retained, and the 2 x 2 matrices A., U,, and V, are
defined by Eq. (37) and

2
U. = LA ; V, = 5
0 1 0 1

In Egs. (43)—(52), M denotes the transpose of M and (M} is defined by (M) = [{(M;;,)] for
an arbitrary matrix M = [M;].

(53)

It is found thaf, even if there is no up-down symmetry, the Pfirsch-Schliiter transport
coefficients in Eqgs. (43)-(52) satisfy the restricted version of the Onsager symmetry given in
Eq. (25) since the inhomogeneity of the magnetic field is ignored within the mean free path
in the Pfirsch-Schliiter regime [see also Eq. (A3) in Appendix A showing that the restricted
version of the Onsager symmetry is also valid for the classical transport coefficients].

V. BANANA REGIME

In order to analytically obtain the neoclassical transport coefficients for the banana
regime, we hereafter consider the large aspect ratio toroidal system and use the toroidal
coordinates (r,#8,() where the minor radius r is a label for magnetic surfaces. The major
radius is given by R = Ry+rcosf (Ry: the distance between the major axis and the magnetic
axis) and r/Ry < 1 is assumed. The banana regime is represented by wraTe, > (Rp/r)*?
where wr, = vra/(qRo) is the transit frequency and g = rBr/(RoBp) is the safety factor.
When wreTee > 1, the dominant parts of the radial transport fluxes in Eq. (27) are given
by
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e+ Il ~ (;9 <]d31' m(t))'B- Vf’c>
CLy

ncl H ~_ (.I / 3 . ’, 2 me(l”)g B i ) g
(Qe +QG )— (’Bg < d v me(LH) ( QT — 2 B Vhe
3., , (U')Q 3 7
ZGBQUdL (02 ( o —;Z—)B-Vh,>
cl , ~

ne m.c I? R’B} _
H,L ]+ Hf{ o~ —E‘ <f ds’U (miﬁ(b‘ﬁ)? H B P) C:L(gz)>
—m RSVC </ v m, UH)zB Vh, > (54)

where the distribution functions h, (a = e,1) are defined by Eq. (B2).

It is shown from Eqs. (4), (6), and (7) that, in the lowest-order with respect to the inverse
aspect ratio r/ Ry < 1, the electron and ion densities are also regarded as surface functions:
ne = Z,n; ~ N, where O(m,/m,) terms are neglected. Then, the surface-averaged parallel

momentum balance equations for wr,7, 3> 1 are obtained from Eqs. (B4). (B5) and (B6)
as

(q,““‘ +¢)

[ dPv m(v))’B - Vh,) + nee(BE( )y
I
<fd v me(UH) (mz(T‘v - )B Vh >

o me Zﬂi\l —“ffz BQ (Feﬂ - Zirig)
° %Q_EH/TE

n.Ccl

Tee

e =4 -~
=y 15 € X

X2 (AN X/ Z; + mi RV Xy ) Z; D (55)
be}

2 mz‘(U,)g 5 s\ onmi (2 5T | nel
<]d3U mi('U;}) (‘—é':z—i— - 5) B N th> — _1227_—“ (gBO—j:l“ + —Z:"‘é'“Xiz) (56)
< [ & m, (] )?B - Vhe> + < [ & mix)B- va) —0 (57)

where the dimensionless friction coefficients are given by

~ - 3 - 13 -
5y = 4, 12 = 52 S = V24 2% = V2. (58)

In Egs. (55) and (56), we have used the notation G.p = g0 — (Za)Tae (@ = €,7) and the
13-moment {13M)} approximation to express the friction forces in terms of the flows.

Now, let us use the banana regime parameter (Ry/r)*?(wreTua) ™! € 1 to expand the
distribution functions as

=0 i+
Fo = A 4 BV 4. (59)
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The lowest order of the linearized drift kinetic equation is written as vjb- VA = 0 which
shows that A% is independent of the poloidal angle 4:

Y = pO(g, y; @). (60)

Thus A® (¢ = e,i) make no direct contribution to the neoclassical fluxes as shown by
substituting Eq. (60) into Eq. (54). In the next order, the linearized drift kinetic equation
gives

Uflb VALY = CE(A) + C'L [ fao (Ua1 Xa1 + U2 Xaz + Uav Xv)] + faOWaEXE (61)

Then, we have the solvability conditions® for Eq. (61) as

dl ma(v')? 5 1 I? R’B?,
i (B = j{ & ¢ | aTa 27, 2+ 5 | megslv Wit B 4

dal .. B dal ( . ,macI{ (5 5) 91 ¢
f —CHA) = ffb” (C [faO st (73 Xag—l-maRVXV}]

||
e, D
T <32>1/2@‘|XE)

where h{?) is divided into the even (+) and odd (—) parts in v}:
RO = pl +pl. (64)

We need to calculate the lowest-order parallel viscosities ( J d3v my(v))*B - Vﬁg”) and

<f d*v ma(v))” (%%ﬁ - %) B Vﬁg”) (a = e,i) in order to obtain the radial fluxes in Eq.
(54). Tt is found from Eq. (61) that only the odd part h{™) is necessary for calculation of
those lowest-order parallel viscosities. Following the standard procedure by Hirshman and
Sigmar,? we can obtain the solution 4™ of Eq. (63) and derive the parallel viscosities, which

are written in the linear forms of the poloidal flows:

<I d3v ma(UH)QB Vh, ) B r\12m
[(f d®v mg(v))? (m’;gi’ — %) B-Vh > = 1469 (E) EBO

Fa@
%q_ae/Ta
(65)

~

Ha2 Ju‘a.3

.ual NQQ :I

The dimensionless coefficlents fi,; (a = e,i; j = 1,2,3) are defined by

7 8 [= 4,22 [ 2 5)j_1( ’I)1/2 o
an Ty 1+— 2T =et; ) =12,
Haj 3ﬁjo dr z"e (.CL' 5 + 5 TaVp(z)  (a=ei; j=1,2,3) (66)

where the velocity-dependent collision frequency v§ = v§(z) (x = v'/vr,) is defined in
Ref. 6, and T denotes the square of the toroidal flow velocity normalized by the sound
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wave velocity: T = mJg-’ NZT.+T,). For 0 < 7T < 1. the banana regime dimensionless
coefficients fi,, (e = e,7: j = 1.2.3) defined by Eq. (66) are fitted as

fier = 0.533 (14 0.923Y — 0.50172 + 0.1997%) + (1 4+ 2.064Y — 1.6907% + 0.7657*) Z,

fier = —0.625 (1 +1.551T — 0.960Y% 4 0.392Y3) — 1.500 (1 + 3.124Y — 2.70972 + 1.2397%) 7,
fleg = 1.386 {1+ 1.5337 — 0.998Y2 + 0.41473) + 3.230 (1 +3.3927 — 3.029Y2% + 1.39573)Z,
fa = 0.333 (1409237 — 0.5017% +0.19973)

fhe = —0.625 (1 + 15517 ~ 0.96077 + 0.3927*)

fly = 1.386 (14 1.533Y — 0.99817 + 0.414T%) (67)

where the ion-electron collision contributions of O(m,/m,) are neglected. Appendix C shows
the parallel viscosity coefficients for the plateau regime. from which all the plateau transport
coefficients except for Lyy can be derived.

Now, by using Eqs. (55)-(57), (65), and (B4), we can express the parallel viscosities
<f d*v ma (v ’B - Vﬁa>, <f d*v ma(v))? (-@% — %) B- Vﬁa> (¢ = e,2) and the parallel
current Jg = e{nfuy — wye)y/{B%)"? in the linear forms of the thermodynamic forces
(X7, X2, Xio, Xv. Xg). We find that the effects of the toroidal flow velocity (not its shear)
on the electron and ion parallel viscosities for the banana regime are included only through
Y in Eq. (66). As in Ref. 8, we have used here the approximate expression for the paraliel
velocity vf‘ of the trapped particle in the toroidally rotating plasma with the large aspect
ratio:

mo(v)? uBy T _
5T, 7% |1 T2 + R ( + .’172) COSB] {a =e,i) (68)

In the right-hand side of Eq. (68), the term proportional to YT is derived from the poloidal
dependent part of the potential function =, which consists of the electrostatic potential
and the effective gravity potential due to the centrifugal force [see Egs. (2), (4). and (7).
The sum of this poloidal variation =, and the poloidal magnetic variation forms the well
for trapped particles, which is expressed by (r/Rg)(1 + Y/z?)cosé in Eq. (68). Thus, the
toroidal rotation increases the trapped particles’ population and accordingly the parallel
viscosity coefficients as shown by the enhancement factor (1 + Y/z?)/? in the right-hand
side of Eq. (66).

In order to obtain the full transport equations, we need to also derive the linear ther-
modynamic expression of < J v [m;I(v])?/ B* + uR*B} [ BICk (§2)> which is necessary for
the radial flux of the toroidal momentum in Eq. (34). This requires the solution fzgﬂ of Eq.
{(62), which can be given as in Ref. 8 by minimizing the positive definite functional:

R \ X 2 2R2
</ dgv?l— {h?f) L Tt Vo (th(UfE)Q n #R P)]
i0

2Z,eT; B? B
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aeey  TicX I? R2B2
X C:E hs) +%%sz (mz—(vi'lf—!—u P)jl) (69)

where CE denotes the linearized ion-ion collision operator with the ion-electron collisions

neglected. Then we have the approximate solution

o4y _ micl?Xv (n}/B%) .
= e (70)

from which <f d®v [m;I*(v})?/ B® + uR*B% / B|C{(g; ) is given in the linear form of Xy .
Thus, the final banana transport formulas form a 5 x 5 system of the coefficients as
follows:

ee Jee 1/2 . 7] 2 Iy Iy
LII 12 — 1.469 ( ) Nl CZIV [ ff’el ife? (71)
;g ng RO e BPTee L He2 [He3

B _ B 1 (f‘” miVOQ) I (72)
Lg % Zi\i 2L, J | L3
v _ Vi :miRng
L5y V2 Z;
e | _ || o4 469( r )1/2 ne [V et fez 2 (74)
SE T2 Ry Bp (15,155 — (I52)?] | fte2 fles | | 152

y 12 .2 V2 =)’ [1; V2 ?
L= 1469 (1) e v (ﬂw (”2))+—(’f2—m 0) g (1)

12

L;i] (73)

Ry Ze? By i ZP \ 2T
Lév = L§/2 = “WMZ{:%% (ﬁz? - mzt—;?) it (76)
‘fZE =—Lp = %‘ (gf - mzlg—?z) i (77)
Lygp=—Lgy = migfvo iE (79)
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12

15,0508 — (502 V7 fleo fies

where s = (€20, Tee /e )50/ 15115 — (15,)?] denotes the Spitzer resistivity and Bp = |[V|/R
represents the poloidal magnetic field. The dimensionless friction coefficients fj (. E=1,2)
are written in Eq. (58) and the dimensionless viscosity coefficients fi,; (a = ¢,i; j =1,2,3)
are given by Egs. (66) and (67). Recall that ¥ is used to define the radial transport fluxes
and the radial thermodynamic forces in such a way that ¢, = (q,-V¥) and X,» = —07,/07.
When we use r instead of ¥ to define the radial fluxes and forces, the resultant transport
coeflicients are immediately given by replacing {V¥| in Eqs. (71)-(80) with the unity.

We find that, in the large aspect ratio system, the banana transport coeflicients in Egs.
(71)-(80) are much larger than the classical transport coefficients in Eq. {A2) by a factor
of O[g*(Ro/r)*/?] except for the diagonal banana coefficient for the toroidal momentum
transport Lyy  5o59%(07 /7. )nsm, RE|V'¥|? which is comparable to the classical one Ly, ~
S%(p?/m)nlmﬁgwlmz. All the coefficients in Egs. (71)—(80) are functions of ¥ as seen
from the explicit appearance of V; and from the flow dependent viscosity coefficients [see
Eq. (66)]. From Eq. (73) with the small electron mass terms neglected, the toroidal flow
dependence of the ion thermal diffusivity LY, appears through [ft3—(f2)?/fta] = 0.653 F(T)
where the enhancement factor F(7T) for the ion thermal diffusivity is fitted for 0 < T <1
as

F(Y)=1+0.765T + 0.631T% 4 0.2807°. (81)

This enhancement factor is in good agreement with that given by Catto et al.® F(Y) =
14+0.757T +0.60Y% +0.26 T3 [see Eq. (98) in Ref. 9 and note that Y is written as X in their
notation], in spite of the difference between the solution methods: our calculation is based on
the moment expansion method with the 13M approximation while they use the variational
technique. We find from Egs. (67), (71), and (81) that the banana particle diffusivity and
the banana electron and ion thermal diffusivities are monotonically increasing functions of
Y. This is because the potential well due to the toroidal rotation increases the number
of the trapped particles as mentioned after Eq. (68). We also find from Eq. (74) that the
coefficient LS, for the bootstrap current {see below) depends on the toroidal flow velocity
through (f1e11%, -+ fealSy) = 3.962 G(Y) where the enhancement factor G(T) for the bootstrap
current coefficient is fitted for 0 < T < 1 as

G(T) =1+ 0.868Y — 0.53972 4+ 0.22973 (82)

where Z, = 1 is assumed.
The transport coefficients in Eqs. (71)—(80) satisfy the restricted version of the Onsager
symmetry given in Eq. (235) since we have used the large aspect ratio approximation where
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the magnetic surfaces (r = const} have circular cross sections. A well-known pair of Onsager
symmetric neoclassical transport coefficients is that of L and L§, (= —L{g) [see Eq. (74)].
The off-diagonal coefficient LSy < 0 indicates that the parallel electric field Xg gives the
inward particle flux [', = L X ¢ < 0 due to trapped particles, which is known as the Ware
pinch effect.!? The counterpart L%,(= —L$g) represents that a negative radial pressure
gradient X, produces the parallel current (the bootstrap current) Jg = L%, X7;. Since
the toroidal momentum transport II; and the flow shear Xy enter the transport equations
for the toroidally rotating plasma as a new conjugate Hux-force pair, there appears a new
physically important pair of Onsager symmetric neoclassical transport coefficients Ly g and
Lpy{(= —Lyg). The coefficient Ly g = (m;RoVo/Z;) L5 ¢ [see Eq. (79)] shows that the parallel
electric field Xz gives the inward toroidal momentum flux II; = Ly g Xg (which has the
opposite sign to V) due to the pinched trapped ions with the mean toroidal velocity Vj.
From its partner Lgy (= —Lyg), we find that the How shear Xy drives the parallel current
Jg = LgyXy. The ratio of the flow shear driven current to the pressure gradient driven

current is given by

LEVXV _ nzmi% d%/d’f‘ -7 LP

- T2 $3
L5, X5 dPjdr Lr (83)

where Lp = —(dln P/dr)~! denotes the gradient scale length of the total pressure P =
neT, +n.T, and Ly = —(dInVy/dr)~! represents the toroidal flow shear scale length which
is equivalent to the radial electric field shear scale length. Thus, if {(dIn P/dr){dInV3/dr) > 0
(< 0), the pressure gradient driven current and the flow shear driven current flow in the
same direction (in the opposite directions). The result given by Eq. (83) is understood in
the following way. Both the neoclassical currents result from the parallel electron viscosities
and are proportional to the poloidal electron flow ['ep [see Eq. (65)]. Then, in the large
aspect ratio system with the large toroidal flow, they are approximately proportional to
the perpendicular current J: which consists of the diamagnetic part driven by the pressure
gradient dP/dr and the ion polarization part driven by the inertia term n,m;Vp dVp/dr. The
former corresponds to the denominator and the latter to the numerator in Eq. (83).

VI. CONCLUSIONS AND DISCUSSION

In this work, we have studied neoclassical transport for the axisymmetric system with
the large toroidal flow velocity (~ vr;). In the toroidally rotating plasma, the transport
equations involve a new pair of the transport flux and the thermodynamic force: the radiai
flux of the toroidal momentum and the toroidal flow shear which is proportional to the
radial electric field shear. For general rotating plasmas consisting of multi-species particles
in arbitrary collisional regimes, the Onsager symmetry of the neoclassical transport matrix
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is proved by using the formal solution of the linearized drift kinetic equation with the self-
adjoint collision operator. and its restricted form for the system with up-down symmetry is
also shown. The complete neoclassical electron and ion transport equations are derived for
the Pfirsch-Schliiter and banana regimes in the case of single-species ions and the Onsager
symmetry is directly confirmed by them.

We have found that the toroidal rotation causes the centrifugal force and the poloidal
variation of the electrostatic potential. which result in the increase of the trapped particles
and therefore the enhancement of the parallel viscosities, the particle and thermal diffusivi-
ties, and the transport coefficients concerned with the pressure gradient driven (bootstrap)
current and the Ware pinch. It is also shown that the parallel inductive electric field drives
the inward banana flux of the toroidal momentum in addition to the Ware pinch of the par-
ticles. These inward particle and momentum fluxes driven by the parallel electric field are
related through two pairs of the Onsager symmetric off-diagonal coefficients to the pressure
gradient driven current and to the flow shear driven current, respectively. The ratio of the
flow shear driven current to the pressure gradient driven current is written as the inertia
term n,m,Vy dV;/dr divided by the total pressure gradient dP/dr so that these currents flow
in the same direction (in the opposite directions) when (dP/dr}(dlnVy/dr) > 0 {< 0). In
such shear flow regions as the ITB observed in JT-60U.* toroidal flow effects on the par-
allel current (the flow shear driven current and the enhancement of the coefficient for the
pressure gradient driven current) are roughly estimated to reach the order of ~ 10% of the
pressure gradient driven current calculated without taking account of the flow effects, and
thus should not be neglected for accurate calculation of the current profile and the magnetic
configuration.

Nagashima et al.'® obtained from the JT-60U experiment the toroidal momentum diffu-
sivity y. and the inward velocity ©igwerq for the toroidal momentum transport. These are
related to the transport coefficients given in the present paper by Lyy = n,m,Rix,|VT|?
and L3 Xp = —nm,RoVolinwaral V|, and are written from the results in Sec.V as
Xo = 2556 + )0} /7 a0d tipware = 2.4 Z7 G(Y)(r/Ro)"*¢cEy / Bp for the banana regime.
Their experimental results give typically x, ~ 1 m?/s and vigwarg ~ 1 m/s, which are
much larger than the predictions by the above neoclassical model x4 ~ 107* m?/s and
Vnwarda < 0.1 m/s. Thus, the radial transport of the toroidal momentum is considered to be
dominated by the anomalous processes. In our previous paper!’, the anomalous transport
fluxes for the rotating plasma are formulated based on the gyrokinetic equations, and the
simple expression for the anomalous toroidal momentum diffusivity is given for the mixing
length level of the ion temperature gradient (ITG) driven turbulence [see Eq. (66) in Ref.
10 where p#t corresponds to yg]. This mixing length type estimation can give a larger mo-
mentum diffusivity on the order of the experimentally observed one. However, in order to
describe the anomalous pinch of the toroidal momentum and explain the significant reduc-
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tion of the transport at the ITB, more elaborate investigation on the anomalous transport
fluxes in the rotating plasma is required as a future task.
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APPENDIX A: CLASSICAL TRANSPORT FOR TOROIDALLY ROTATING
PLASMAS CONSISTING OF ELECTRONS AND SINGLE-SPECIES IONS

The classical transport equations for the rotating plasma consisting of electrons and
multi-species ions are derived in Appendix A of Ref. 10. In the case of single-species ions,
they are written as

re (L)55 (LD5s (L% (L% ] [ X2
2| _| g (19 (0% (I | | X "
= (LY5 (L% (L% (I | | Xe
I (LN (L52 (Lre (Lwy | | Xy

where the classical transport coefficients are given by

10

(L (L5 | _ [ nem. 2R2B}
B A 1

(L% (Y5 ]~ \ e @B

lll _112 1 Ae
g, I 0 1

(LS| _ (L [ neme 2R232A 10 je.

(L% (@D ]\ 7 ZeB T |A 1] | -l
(i?’z(%%1:<%§wmm§%% 1o [ >
(L) (L5 Tee Zi€2B? | A, 1|1 -15,

ER2B2
clyit T C R B 9T T
(L )22"-< e e QBQ( -i—l 14 ﬂzmTee)>

ELY: i e o NeTte ¢*R2B2 .
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(Lyy =

2.2 § p2ry2 2
ZZ; <RB§;p ((R Bf;: 172 \an’l LRV )273T17€zr]§1)> (A9)
Here, the poloidal magnetic field is given by Bp = |VU¥|/R and the collision times 7
(a = e, ¢} are defined in Ref. 6. The dimensionless friction coefficients are given by A§1 = Z,
5= 32,15, =V2+ 32, I}, =2 and I = /2. The classical ion particle flux is given
from the electron particle flux through the intrinsic ambipolarity condition 'Y = I'd/Z,.
With respect to the small mass ratio m./m,, we have retained the terms up to O[(m./m,)*/?]
in Eqgs. {Al) and (A2) although the terms of O(m./m;) such as II? have been neglected. We
see from Eqs. (A2) that the classical transport coefficients satisfy the Onsager symmetry

(LN mn(VE) = (L5 (=V) = (L905(VE) (ab=ei;mn=12)
(LN (V) = =(LDpu (V) = (L5 (VS) (a=eiz m=12)
(LN (VE) = (Lwv(=VY) (A3)

which has the same form as Eq. (25) and is valid even without up-down symmetry since the
classical transport is a spatially local process.

APPENDIX B: THE FIRST-ORDER PARALLEL FLOWS AND PARALLEL
MOMENTUM BALANCE EQUATIONS

From Egs. (8) and {11), the linearized drift kinetic equation is rewritten as

- 1
vib- Vhe — C7(Za) = i’faoWaEXE (B1)
where
_ 1 i ) )
ha = Go — Tfao (D(ﬂXal + L’agXag —+ Uavxv) . (BQ)

Multiplying Eq. (B1) by the unity and (¢/T, — 5/2), and integrating them in the velocity
space give the continuity equation and the energy balance equation of O(é) as

B.V /d%ﬁv—f' :B-V(n “”“1)+V-(nuu)=o
aB aB a a

B-v|f e (£-3) 3] =B V(%) +V @ =0 (B3

Integrating Eq. (B3} along the magnetic field line, we have the O(8) parallel flows:

Cl
o CB (Xa1 + AQXQQ -+ maRQVCXV)

Naljjal = dev falv"l = BTa(¥) +

Qe = £ 59
él_,l Efd% far (——5) v

_ Bqagﬁ ) n“d [A Xa +(

a

244 ) Xoo + AamaRQVCXV] (B4)
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where the surface quantities ['y(¥) and ¢,e(T) are obtained as integration constants.
Multiplying Eq. (B1) by m,v) and m,v{[m.(v')?/2T, — 5/2|, and integrating them in the
velocity space gives the parallel momentum balance equations of O(6):

) BE{
[ @0 ma(ef?b - Vha - naeaB<<B—2> [ & maCHE) = Fia
me(v')? 5 z ma(v)? 5 _
fd%’ (’UE] ( — 5) b-Vh, = /d3v mav) ( T 5 CHGa) = Fjjez- (B5)
Using the charge reutrality Y, n.e. = 0 and the momentum conservation in collisions
. Fu = 0 with Eq. (B5). we obtain

Z/d% mq())?b - Vhe = 0. (B6)

Equation (B6) expresses the balance of the total stresses in the rest frame of the plasma.

APPENDIX C: PARALLEL VISCOSITY COEFFICIENTS FOR THE PLATEAU
REGIME

Here, we derive the parallel viscosity coefficients for the plateau regime for the large
aspect ratio toroidal system [see Eqs. {65) and (66) for the banana regime] where (Ry/r)3/2 >
WraTea > 1 18 satisfied. For that purpose, it is convenient to rewrite the O(8) distribution
function h, as

ho = AU=D + &, (C1)

where h{/=Y) is the / = 1 component in the expansion by the Legendre polynomial Pi(n) of
n = v;/v', which is written in the 13M approximation as

. MV B 2Ga (ma(vV)? 5
(i=1) — y 2 et _ -
fa™ = fao T ng [P 5T, ( 27, 2/ (€2)

Then, let us divide %, into the even {+) and odd {—) parts £(*) and k{7 with respect
to the transformation (v,8) — {(—vy,—0): k. = (" + k(7). 1t should be noted that
only the odd part k(™) contributes to the parallel viscosities ( J &v ma(v))*B - Vﬁa> and
(f d® ma(v])? (1”—?% -3)B-Vh,). From Eq. (C1), (C2), and (B1), we have the drift
kinetic equation for £{~) in the plateau regime as

8 7a 2 R
58 T 2 a2

1r . Y mat By 200 (ma(V'? 5
= §§0 sin & (1 + —3'3'5) fag — I:Fag + -5— — == (CS)




which is solved to give

s-y I Mmav BO
A’ntI - R{) ( ) faO QT n

2Gag [ malv')? 0 ——1/3/'gc o 173, —73/6
[Fag-i— T( 5T 5)1% " | dr sin(f — o nrle (C4)

where 7, = (WreTea)  Teaa?B()/x {2 = v'/vr.). Then. by using Eq. (C4), we obtain the
parallel viscosities as

<f d*v ma(v) B - Vi_za> _ VT ) (L 2 Vg
(f d*v ma(v})? (% - %) B- Vﬁa> =5 meb Rg) qRyp

5 - (C3)

ﬁ'al !:La2 raé)
[}Ja? [1&3 %QGG/Ta

Here the dimensionless coefficients ji,; (j = 1.2,3) are defined by

=["a 5—12(3;—3)”(1+:£)2 (a=e.i:j=123) (C6
Wf() T o8 5 pe a=e¢e1:7=12, )

which gives

1
[La121+‘f+§r2

1 1. 3.,
NURS PO o
Haz=35 =51 =71
13 9. 13
fr = o + 70+ =12 (C7)

Noting that Egs. (54)(57) are still valid for the plateau regime and using them
with Eqs. (C5)- (C?) we can express the parallel viscosities < fdv ma(va)QB-Vﬁa>,
(f v ma(v])? (mz(; — —)B Vh, > (6 = e,i) and the parallel current Jp = e{n.(u; —
)}/ (B2)1/? in the linear forms of the thermodynamic forces (X7, Xe2, Xi2, Xv, Xg). Ac-
cordingly, we can obtain all the transport coefficients in Eq. (29) for the plateau regime
except for Lyy, which are immediately given from Eqs. (71)-(77), {79), and (80) by re-
placing the banana parallel viscosities 1.469 m,Bi(r/Ro)Y 27 jia; (a = €,i; j = 1,2.3)
[see Egs. (65)-(67)] in them with the plateau viscosities TmaBg(r/Ro)Q(vTa/qRo);zaj
(a=e,i: j=1,2,3) [see Egs. (C3)—(CT7)].
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