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Abstract. In some plasma discharges the phase measured by mucrowave
reflectometry has many fringe (27 rad.) Jumps A new algorithm to detect and
remove fringe jumps has been developed. and apphed to the data in the JIPP TII-
U tokamak Using this algorithm, quantitative properties of fringe jumps, and their
effects on the analysis of phase fluctuations are investigated. It was found that the
fringe jumps occur randomly, and the distribution of the time scale (half period) of
jumps has a peak around 4 ~ Gus. The rms value of high frequency phase fluctuations
in fringe jump periods is larger than that in fringe yump-free periods. Besides this high
frequency fluctuations. fringe jumps themselves have rmuch smaller power than that
of Buctuations in high frequency range. In low frequency range, however, the power

spectrum is dominated by the random fringe jumps.
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1. Introduction

Microwave reflectometry is a powerful method to measure density profiles and
fluctuations in magnetically confined plasmas [1.2.3.4]. Microwaves launched into a
plasma are reflected at the cutoff layer of which position is a function of density (for O-
mode waves). Measuring the phase of the round trip propagation. we can get information
on density profiles and fluctuations. One of the probiems in microwave refiectometry
15 the phase runawayv effect. which is the phenomenon that the measured phase moves
nareasonably fast in one direction. This phase runaway has been observed by many
reflectometers in fusion devices {3.6.7.3.9i.

Experimental results in the JIPP T II-U tokamak [10] indicate that the phase
runaway 1s not caused by errors in the measurement systemn, but is a result of
interaction between microwaves and the plasma [7]. Several different tvpes of microwave
reflectometers have been used in JIPP T II-U, and phase runaway was observed in all
systems. Furthermore. it was found that the runaway is not caused by the effect of noise
in the measurements. These results suggest a complicated picture for the reflection {ayer.

[n order to get information on density profiles and density fluctuations. the
mechanism of the phase runaway and its effect on the measurements should be
investigated. Although there is some inference on the mechanism of phase runaway [3,
9.11]. it is not fully understood. The understanding will lead to an appropriate
measurement scheme or to an appropriate analysis method. -

[ this article the data with the following properties are analyzed. In some discharges
in JIPP T II-U and JFT-2M, plasma devices. the phase runaway consists of many
discrete fringe jumps (i.e. 27 phase differences). Furthermore. the phase behavior
besides fringe jumps appears to be reasonable [6.7]. On the other hand, in some other
discharges, the runaway seems to be caused by continuous phase running [8].

Automatic removing of fringe jumps has been used in interferometers or even in
a reflectometer [6]. and it is rather a standard procedure. However. the situations of
interferometers and reflectometers are quite different. In interferomters. fringe jumps
occur due to noises or due to rapid phase change. Fringe jumps are much faster than
the time scale of interest. and they are much larger than the amplitude of phase
fuctuations. In addition. they do not occur as freqeuntly as those in reflectometer.
As a result. it is not so difficult to remove automatically such fringe jumps which have
quite different properties from thoes of the phase behaviour of interest. On the other
hand. in reflectometers. the time scale and the amplitude of phase fluctuations are close
to those of fringe jumps. A new algorithm to detect and renove fringe jumps has been
developed. and applied to reflectometers. Using such an algorithm. not only we can
get fringe jump-free phase hehavior, but we can investigate quantitative properties of

fringe jumps. Those properties will lead to the mechanism of fringe jumps and phase



runaway. In addition, we can address the problem whether the properties of phase after
removing {ringe jumps are dilferent from those of the onginal phase. The resulis may
give validity of the analysis we had often used under the influence of fringe jumps. For
example. it 1s assumed that high {requency components of fluctuations are not affected
by fringe jumps and phase runaway [3]. In section 2. we describe the principle of the
algorithm. The application to the microwave reflectometry 1s demonstrated 1n section
3. Using the guantities obtained by the algorithm. the properties of fringe jumps and

phase fluctuations are presented In sections 4 and 3. respectively.

2. Principle of the algorithm to remove fringe jumps

Generally the measurement of phase has the ambiguity of an integer fringe (2xn. where n
is an integer). Thus, the first procedure in analysis 1s to fix the ambiguity and connect
each data point. This is an inevitable procedure for almost all phase measurements.
In a time series of phase. the possibilities of 0. £2x phase ambiguity is checked. and
the phase which vields the minimum phase change from the previcus phase is selected
(figure 1). This connected phase is subsequently referred to as the original phase. and
this procedure as the phase connection process. In order to avoid misconnection the
phase should be sampled with a time interval shorter than the time scale of phase
movement. All further analysis s apphed to the original phase.

A schematic time behavior of a fringe jump after the initial phase connection process
15 shown in figure 2(a). In a long time scale. the phase has a fringe jump (27 phase
difference). In a short time scale (during a fringe jump). however. the phase changes
graduallv. The phase also has fast fluctuations. in which we are interested. The
measured data include many fringe jumps. Furthermore. the time scales of each fringe
jump are not the same. Thus. a new algorithm to detect and remove each fringe jump
automatically 1s required.

The basic pattern of a fringe jump can be represented as being constant before and
after the fringe jump. and having a linear 2= change during the jump {line CABD in
figure 2(a)). The algorithm has the following four steps: {1) The tirming of a fringe jump
(time (#4 +tg)/2 in figure 2{a)) is detected. {11} The width (¢4 — tg) is determined for
each fringe jump. Note that the width may be different for each fringe jump. The data
points during the fringe jump {4 ~ t5) are skipped. (i) After skipping fringe jumps the
residual phase (data points) are connected using the same method as the initial phase
conunection process. Smce the data before and after a fringe jump have the difference
of about 27, the jump is removed by the phase connection process (figure 2(b)}. (v}
The skipped data are reconstructed from the original data. We assume that the phase
during a fringe jump is the superposition of a linear 2% change and fluctuations.

Here the step (1} and (1) are described usiine a negative-going fringe tump written
p ol [ o o Lo



as

flty = F+ fltow) + f(1), (1)

where f is the time averaged component, and fo(t, wy) is the basic pattern of a fringe
iump, which is modeled as

+7 t < —uwy
foltowy) = $ —wtjuw; —w; <t < +wy
— E2 4wy

where wy > 0 is the half period of the fringe jump. wy is a free parameter which
characterize fringe jumps, and it could take different values for each fringe jump. f(t) is
the remaining component, which fluctuates around the basic pattern. The algorithm is
explained for a negative-going fringe jump, and the case for a positive-going one follow
the same procedure except some signs in equations. We recognize a iringe jump when
the period of the jump is much shorter than the periods being almost constant before
and after the jump. A natural numerical method to detect a fringe jump is to convolute
the phase signal with a kernel which has a similar time behavior as the fringe jump
(figure 3). The kernel function g{¢,wy) is defined as

F1/27w, —wi <t <y
gltowg) = ¢ —1/27wy 0<t < +uy
0 t < —U,';;,f > +wr

where wy > 0 is the width of the kernel function. The convolution of f{#) and ¢(t.w)
is written as

ps,we) = [ dif(bgit - s,m0)
- /dt (folt-ws) + F(0)) glt — s.)

. /s dt (folt,wp) + f(1)) — - /s+wkdt(f (t.wy) + f(t))
N Qﬂ'w,i; S— Wi R Q}TLUJC 5 R
l 5 S+ wy
- 2wy, (/;—M dtfoltws) - /; dtfolt. wf))
+ 5 (.)E(t)is—wk<t<s - f(t)Es<t<3+wk) - (2
LWl
The second term is expected to be very small. because !ml < w. The first term

has a peak at s = 0. The convolution is normalized. so that the peak height for the
stepwise fringe jump (fo(f.ws = 0}) is 1. The convolution shows a positive peak for a
negative-going fringe jump and a negative peak for a positive-going fringe jump. Each
peak (fringe jump) can be detected by an appropriate threshold level in the convolution
(figure 3).



The convolution of the basic pattern fu(f.204) and the kernel function consists of
Huear parts and parabolic curves. 1f the tume s normalized to i the convolition
(pls.we.wy)) becomes a function of wy/wiy(= ) {figure 1}, The peak height is wntten
as | — /2. and the height decreases with the increase of &. The width of the fringe
jump fylt.wy) is @ by definition. Let us consider the case wi and o are given. When
the threshoid level is set to be £(1 — a/2). we can detect fringe jumps with w; shorter
than aws.. Then we skip the data in the time window |f — f,.,1] < awwy, where £, 18
the time of the peak.

\When the time scale of a fringe jump is shorter than awy. this method skips not only
the data points during the fringe jump. but also extra data points outside the fringe
jump period. In order to minimize this over-skipping. the fringe jumps with almost
same w; arve detected and skipped at one time. This is realized by increasing wy step by
step. In this procedure, faster jumps (i.e. smaller wy} are removed earlier. and slower
jumps (i.e. larger wy) are removed later. The kernel width ; is increased gradually.
At each step. fringe jumps with w; = cwy are detected and skipped. The fringe jumps
with shorter w; are already skipped in the previous steps. In our case. wy is increased
from 6 to 130us. This range corresponds to 2 to 130ps in wy = cwy. o is fixed to be
1/3. This value implies that the algorithm finds a fringe jump which has at least twice
longer constant period than the period of the fringe jump. At each wy. fringe jumps are
detected and the data during jumps are removed (skipped).

The next processes are the steps (i) and {iv). After removing all fringe jumps.
the residual phase consists of many fragments interrupted by fringe jumps. The phase
in each fragment includes no fringe jumps. Each successive fragments have almost
integer fringe difference (i.e. 2nw}. These residual phase are connected using the phase
connection process, so that the connected phase include no fringe jumps. The data
during fringe jumps. which are skipped in the step (ii). are reconstructed as follows:
The linear trend during each fringe jump is calculated. and the trend is subtracted irom
the original data. This reconstructed data do not have fringe jumps. and are connected
smoothly to the residual phase (figure 2).

Here we summarize brieflv the concept of this algorithm and describe possible
problems we would encounter. When we recognize a fringe jump by our eyes. the
phase shows a jump of integer fringe. and the time scale of the jump is relatively shorter
the pertods of constant phase before and after the jump. The main component of fringe
jumps is expressed as fy(/.wys). The algorithm finds this pattern by the convolution
of phase witl: the stepwise function g{f.w.). This is a kind of wavelet transform [12].
Since the algorithim can detect fringe jumps automatically. it might be usetnll for other
phase meastiements, For instance. the algonthm can be applied to interferometers.
Thev could suffer from fringe jumps due to small probing beam power. or due to spikes

caused by X-rays in their signals.



Although we reconstruct the data during jumps, we do not know whether the
properties of fluctuations of residual phase are the same as those of the data during fringe
jumps. Thus, a comparison of characteristics of fluctuations in {ringe jump periods and
those in fringe jump-free periods is required.

3. Application to microwave reflectometry

This algorithm has been applied to the data of a microwave reflectometer in the JIPPTII-
[ tokamak. A Gunn oscillator with the frequency of 37CGHz is used as a probing
microwave source, and a backward osciliator is used as a local oscillator. The X-mode
microwave 1s launched into the plasma and reflected at the cutoff laver at the plasma
edge. The reflected wave is measured by a heterodyne system. The beat frequency
15 about 1.1GHz, and it is down-converted to 830MIz by a feed forward tracking
receiver [13]. The phase of 880MHz signals is measured bv a sine-cosine detector. The
detector yields two outputs which are proportional to the sine and cosine components,
respectively. The signals are sampled by an ADC with the time interval of ius. The
phase and the amplitude of the reflected wave are measured. and the signal to noise

ratio can be monitored. More information on the experiments will be available in [7..
In some discharges. we can observe many {ringe jumps by our eves (figure ). and the
algorithm is applied to such data. In other discharges. we cannot identify fringe jumps
by our eves. and the application of the algorithm might be meaningless.

Figure 6 shows the fringe jumps detected at a step in the increasing wy. Fringe jumps
with wy < auwy are detected by the threshold of £(1 — «/2) = £5/6 in the convolution.
Since faster fringe jumps are already removed, only the fringe jumps with w; =~ aw; are
detected at this step. The data points in the time window |t — f,e0t] < @wy = w; are
skipped. The experimental fringe jumps in this step, fluctuate around the basic pattern
(dotted lines in figure 6{a)}. so that the linear approximation for phase change during a
frirge jump seems to be reasonable. The jumps with long w;, however, deviate from the
line. Figure 7 shows the phase as a function of normalized time for short and long w;.
Each dot represents one time sample, and data from four similar discharges are plotted.
While the phase with w; < 10ps shows a linear change during jumps. the phase with
longer w; appears to be represented by three-fold lines. The phase has a fast change at
the middie of the fringe jump. and slow change at the start and end of the jump. This
deviation from the line could cause errors in the timing and time scale of a fringe jump.

Figure 8 shows the ratio of residual data points to the total points {a). number
of detected fringe jumps (b} and square average of the convolution (¢} as a function
of wy, which corresponds to each step in the increasing wy. As we increase wy. more
fringe jumps are removed. so that the ratio of residual data decreases. All fringe jumps

within the time window of 30ms are removed when w; is increased up to 100us, and



the final ratio of residual data points, which exist i {ringe jump-free periods. s 33%.
The other 13% are data ponts during {ringe jumps. 77 is a mweasure of fringe jumps.
Each fringe jump causes a peak in p. so that p? decreases as the number of fringe jumps
decreases. When fringe jumps are detected at certain w;. p? drops {e.g. arrows in
Fig. 8). After removing all fringe jumps. p? stays almost constant. which arses from
phase fluctuations.

Figure 5 shows a part of time behaviors of the original phase and the corrected
phase. While the original phase includes several fringe jumps. all those are removed by
the algorithm in the corrected data. During the whole measurement of about 200 rus. the
original phase moves more than 1000 rad. On the other hand. the corrected phase (after
removing fringe jumps) moves about 20 rad. The corrected phase stiil includes several
fringe jumps which could not be removed by the algorithm. These fringe jumps have
relatively long time scale, and it 1s difficult to distinguish such slow fringe jumps from
the time variation of the phase. In this experiment, the plasma edge 1s measured. so that
the phase is expected to represent the movement of the edge. rather than the density
variation. The slow behavior of the corrected phase seems to be reasonable. Thus.
we can conclude that the data points in fringe jump-free periods represent macroscopic
movement of the cutoff laver. From these results of the application, 1t is shown that
the algorithm is a powerful tool to detect and remove fringe jumps. In addition, the
algorithm produces many interesting quantities. In the foliowing section. the data set of
30ms long. which includes the data figure 3. is analvzed. In some analvsis. four similar
data sets are used to reduce statitical errors.

4. Properties of the fringe jumps

By using the algorithm we get two quantities for each fringe jump. One is the occurrence
time , and the other is the time scale wy. When we can assume that the time scale wy 1s
much shorter than the tvpical time between successive fringe jumps, these fringe jumps
are classified as a marked point process. Fringe jumps are events on time, and have a
mark iy for each event. In this section. we show the properties of occurrence time and
iy from the view point of a marked point process.

The simplest model for a random point process 1s the stationary Poisson process. In
this process. each occurrence is independent and the mean rate A that events occur is
a constant. [t is the only parameter for the process. As a counting process. the counts
in period T obev the Poisson distribution with the mean counts of AT. Consider the
case we observe n events in an interval I and measure the interarrival time. which is
the time between two successive events. Let N be the number of interarrival times of

duration exceeding 7. Then the expectation of .V iy

E[N(r)] =ne VT, {3



This negative exponential arises from independence property of the stationary Poisson
process. The distribution function of the interarrival time, namely the derivative of (3)
with 7. also has an exponential decay.

Figure 9 shows the number N(7) defined above for observed fringe jumps in 30ms
time window of a discharge. N{7) decreases exponentially with 7. As a test for a
stationary Poisson process, the oy range is also plotted in the figure. The range is
calculated as [14]

For A. we took the measured mean rate, which is the best estimation for a given
number of counts. The observed points are distributed in the range Loy except the
points around 7 = ims, which represent one interarrival time (fringe jump). We can
conclude that the fringe jump occurrence obeys a stationary Poisson process within
the statistical error. This implies that the fringe jump occurrence is random and show
neither periodicity nor clustering.

Figure 10 shows the distribution of the time scale wy of positive and negative-going
fringe jumps. Four data sets with the mean rate of 2.6 ~ 3.7jumps/ms is accumulated
to reduce the statistical error. It has a peak at wy = 4 ~ 6us, and decreases gradually
with w;. It should be noted that the number of fringe jumps seems to decrease as wy
decreases to zero. If it has an infinite peak at w; = 0. then 1t is impossible to detect
all fringe jumps even though we measure the phase with very fast measurement system.
In our case, the minrimum detectable time scale is wy ~ Ipus, which is the sampling
time. This property is very important for practical measurements. The distributions
of positive and negative-going iringe jumps are different. The negative-going one is
extended to longer time scale, and the total number of fringe jumps is smaller than that
of positive-going jumps.

The relation between the interarrival time and the time scale wy is not clear. When
we plot wy as a function of forward or backward interarrival times, there seems to be
neither positive nor negative correlation between them. The marked-point process is
classified as a compound Poisson process when the interarrival times (or occurrence
time) and the mark w; are independent [15]. This process can be represented as a
superposition of independent Poisson processes, and each process has different wy.

The facts that fringe jumps occur randomly and that the time scale of jumps
distributed over wide range imply that the fringe jumps are caused by neither a
periodic (in time-domain} structure nor a regular (in spatial-domain) one. A two-
dimensional simulation of the propagation of microwaves has demonstrated that periodic
unidirectional phase change (fringe jumps) can be caused by a regular perturbation

moving perpendicular to the direction of microwave propagation [L1]l. On the other



hand. the experimental fringe jumps are not periodic  Moreover, the experimental
phase has both positive and negative fringe jumps. Obtained properties of fringe jumps

suggest the existence of much more stochastic structure.

5. Phase fluctuations

When we use a microwave reflectomerer. we expect that the measured phase include the
information on density fluctuations in plasmas. In this section. the properties of phase
flnctinations and effects of fringe jumps will be shown. One of the issues is the difference
between the properties of fluctuations during fringe jump and fringe jump-free periods.
To clarifv the difference we calculate root-mean-square (rms) values, distributions of
phase increment and power spectra.

Since the time scale of fringe jumps is rather short. the time window for the
calculation of rms values should be shorter than the period of fringe jumps. A linear
trend is subtracted before calculating rms values, because the phase during jumps have
an obvious linear phase change. Fringe jumps with wy = 8 ~ 10us are selected for the
calculation. because the phase with longer w; deviates clearly from a linear relation
(figure T{c).(d}). Then the time widow for the calculation is set to be 18us ~= 2w;.
This rms value represents the amplitude of fluctuations with the frequency higher than
about 30kHz. The same procedure is used to calculate rms values In fringe jump-iree
periods. and time windows which are far from {ringe jumps are selected to avoid possible
effects of the fringe jumps. Figure 11 shows the distributions of rms values for the phase
fluctuations in fringe jump-free and fringe jump periods. It is clearly seen that the
former is distributed at smalier rms values. while the latter one is distributed over wide
range of rms values. The average rms value during fringe jumps is about twice larger
than that for fringe jump-free periods.

Phase increment between two consecutive data points. which have 1us difference
in measurement time. represents short term properties of the fluctuations. Figure 12
shows the distribution of phase increment during positive and negative-going fringe
jumps. and that for fringe jump-iree periods. The last one has a narrowest symmetric
distribution. and the distribution at large phase increment has the power law of Ad™%7
{figure 12{b)}. On the other hand. the distributions during fringe jumps are asymmetric.
[n the case of positive-going fringe jurnps. the slope in positive Ao is much larger than
the svmmetric distribution. but the slope in negative Ao is close to the symmetric
one. The distribution for the negative-going jumps tollow the symmetric one in positive
Ao, and it is lager than the symmetric one In negative Mo. It i1s notable that these
asymmetric distributions are not a simple positive nor a negative shift (i.e. Doppler
shift) of a svmmetric distribution. Thus. the fringe jumps cannot be attributed to a

simple movement of the cutoff laver along the direction of microwave propagation (i.e.



radial direction).

The power spectra of the original phase and the corrected phase are calculated.
While many fringe jumps exist in the former, basic patterns of fringe jurnps are removed
iz the latter. As illustrated in figure 2, fluctuating components are included in both
original and corrected phase. The spectrum of original phase has much larger power
than that of the corrected phase in low frequency range (figure 13). This large power
is due to the random fringe jumps. The difference decreases gradually with frequency.
In order to clarify the effect of {the basic patterns of) fringe jumps. we simulate a
phase with iringe jumps {figure 14}. of which number and time scale are the same as
those appear in the original phase of figure 5. The simulated phase does not have any
fluctuations. and the occurence of the jumps are distributed randomly on time. We
can aiso simulate a phase with stepwise (w; = 0) fringe jumps. Figure 15{a) shows the
spectra of simuiated phases and that of the origiral phase. To decrease the statistical
error in power, 23 spectra of simulated phases are averaged. These three spectra show
almost same power at the frequencies lower than about 10kHz. Thus, the low frequency
spectrumm of the original phase is dominated by the random fringe jumps. On the other
hand, they start to diverge as the frequency goes higher. The power of the sirhulated
phase is lower than that of the original phase. and their difference coinside with the
power spectrum of the corrected phase (figure 15(b}). As a result, we can coclude the
power spectrum of original phase is the summation of that of corrected phase and that
arises from basic patterns of fringe jumps. In other words, the power spectrum of the
corrected phase represents that of fluctuations. and the effecs of fringe jumps themselves
is small in the corrected phase. The power of the simulated phase with stepwise fringe
Jumps has the largest power near the high frequency limit (figure 15(a)). because a
stepwise change include very high frequency components.

6. Conclusions

A new algorithm to detect and remove fringe jumps has been developed. It can be
applied to phase measurements. such as reflectometers and interferometers. It was also
found to be a very powerful tool to investigate quantitative properties of fringe jnumps.
The application to microwave reflectometry in JIPP TII-U revealed the following results.
The fringe jumps occurs randomly, and the time scale of jumps distributes over wide
range. These properties indicate that fringe jumps are not caused by a movement
of regular perturbations. Fringe jumps affect the frequency components of phase
fluctuations. The rms values of high frequency phase fluctuations during fringe jumps
are larger thau those in fringe jump-free periods. The low frequency components in the
original phase are greatly enhanced hy random positive and negative-going fringe jimps.

On the other haud. the power spectrum of corrected phase was found to represent that



of fluctuations. and the effect of fringe jumps themselves on the spectrum is excluded.
The distributions of phase mcrement for positive and negative-going [ringe jumps are
asvmmetric. and they arve different from the symmetric distribution for fringe jump-free

periods. These properties indicate that the plasma has very stochastic perturbations.
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Figure captions

Fig.14
Fig.15

Figure 1. Schematic drawing of the phase connection process. When the phase crosses
{2n &£ 1)7n, following phase data are shifted by =2% to get continuous phase.

"Figure 2. Schematic time behavior of phase with a fringe jump {a), and that after

removing the fringe jump (b). The former and the latter are referred to as the original
phase and the corrected one. respectively Open circles repersent the reconstructed
phase, which existed in the period of fringe jump

Figure 3. Basic pattern of a fringe jump, kernel function, and their convolution. ¢4
and tp are the start and the stop timings of a fringe jump.

Figure 4. Convoultion of fy{t.w;) and g{t, wg) The time is normahzed to wg. This
plot shows the case wy < 1/2 wy.



Figure 5. Expernimental time behavior of original phase (solid line}, and corrected
phase (dotted iine). The original phase includes many fringe jumps.

Figure 6. Fringe jumps (a) detected at a step in the increasing wg. In this case,
wr = 18us. The convolution and threshold are also shown in (b). Both positive-going
and negative-going fringe jumps are overplotted by shifting each fringe jump by {5..: -
The time range 2w, and 2wy = aw, are indicated by dashed lines. The dotted lines

show the case for the fringe jump of the bassic paitern.

Figure 7. Phase evolution duriag fringe jumps for shorter and longer w; and for
different directions. The time scale is normalized to wy. The straight lines are line for
the basic pattern of the fringe jump, which changes linearly from &7 to F=.

Figure 8. Ratio of residual data points (a). number of detected fringe jumps (b) and
square average of convolution p2 (¢) as a function of w ¢. The arrows show one of the

steps where a fringe jump is detected and removed.

Figure 9. Number of interarrival times of duration exceeding 7, where 7 is an
interarrival time. The solid curves show the +o range for the stationary Poisson
process with the mean rate A = 103{Count]/30{ms].

Figure 10. Disteibution of the time scale w; for positive- and negative-going fringe

jumps.

Figure 11. Distribution of rms valuses for fringe jump-free periods {a) and for periods
of fringe jumps (b}.

Figure 12. Distribution of phase increment during positive-going [filled circles) and
negative-going (open circles} fringe jumps. and that for fringe jump-free periods {sold
curve). The peak height is normalized to be about one. Distributions are shown as a
function of Ao (a) and |do] (b).

Figure 13. Power spectra of original phase (solid curve) and corrected phase (dotted

curve).

Figure 14. Sinmulated rune behavior of a phase with the fringe jumps. of which number

and time scale are the same as tliose appear in the originai phase of figure 5.



Figure 15. Figure (a) shows power spectra of the simulated phases (with fringe jumps
and stepwise fringe jumps) and that of the criginal phase The open circles in figure (b)
represent the difference between the power of original phase and that of the simulated
phase with fringe jumps The error bars arises from the statistical error of the power

of the original phase. The power spectrum of corrected phase is also shown in figure

(b).
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