ISSN 0915-633X

'NATIONAL INSTITUTE FOR FUSION SCIENCE -

“

Reduced form of MHD Lagrangian for
Ballooning Modes -

R.L. Dewar

(Received - June 10, 1997)
Sep. 1997

NIFS-507

This report was prepared as a preprint of work performed as a collaboration
' reserch of the National Institute for Fusion Science (NIFS) of Japan. This document is
intended for infomation only and for future publication in a journal after some rearrange-

‘| ments of its contents.
Inquiries about copyright and reproduction should be addressed to the Research

B| Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi, |
Gifu-ken 509-02 Japan.

RESEARCH REPORT
NIFS Senes

NAGOYA, JAPAN



Reduced form of MHD Lagrangian for

ballooning modes

R.L. Dewar”
National Institute for Fusion Science
322-6 Oroshi-cho, Tok:
Gifu 509-52, Japan

Abstract

This mini-review sets out the derivation of the short-perpendicular-
scale-length approximate reduction of the ideal magnetohydrodynamic
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1 Introduction

In the pioneering paper of Furth, Kilieen, Rosenbluth and Coppi (FKRC) [1]
a reduced form of the ideal magnetohydrodynamic (MHD) energy principle
2], involving only a single scalar field, was given for perturbations with short
scale lengths perpendicular to the magnetic lines of force. A form of the
energy principle that is more physically transparent than that of Bernstein
et al. was introduced by FKRC as a starting point for this reduction.

As written, their starting expression for the potential energy, §W, is
correct only if the component of the plasma displacement vector £ parallel to
the equilibrium magnetic field, B, vanishes. The correct expression for the
case of finite {| was given by Greene and Johnson [3], and a heuristic physical
mterpretation of the terms making up the energy expression was given.

In this note we derive a reduced form of the energy principle, similar to
that of FKRC, using a systematic asymptotic approach in which the only
expansion parameter is the ratio of the perpendicular scale length, 1/k,,
of £ to a typical equilibrium scale length, L. The scale length of variation
of £ along the magnetic field lines, 1/ky, is taken to be the same as the
equilibrium scale length. The variational principle we work with is actually
Hamilton’s prineiple, or equivalently the Rayleigh-Ritz variational principle
for mode frequency (or growth rate when the frequency is imaginary), so we
also discuss models for the kinetic energy term in the Lagrangian.

Our derivation avoids the use of an eikonal approximation, and thus our
variational principle (and associated Euler-Lagrange equations} should pro-
vide a convenient starting point for the discussion of cases for which the

simple eikonal ansatz breaks down. The use of this ansatz was discussed



by Dewar and Glasser [4], who used WKB ray tracing to investigate the
spectrum of global ballooning eigenmodes in nonaxisymmetric geometries
such as stellarators. One place our reduced Lagrangian could simplify their
discussion is in calculating the reflection condition at caustics.

A more fundamental problem where it is hoped to apply the reduced
Lagrangian is in the analysis of the case when the contours of constant growth
rate in the three-dimensional reduced phase space, used by Dewar and Glasser
for the ray tracing analysis, are topologically spherical. Although their WKB
analysis indicated that these “broad continuum” modes are highly singular,
the rays being attracted to fixed points in the phase space, it could not be
used to analyse them in detail because the WKB assumption of a separation
in scale length between the exponential eikonal term and the amplitude factor
broke down.

Nakajima [5) has recently found interchange-stable cases for the Large
Helical Device (LHD} that have topologically spherical marginal ballooning
stability contours. Thus the only unstable ideal MHD modes in such LHD
cases are the highly singular broad continuum modes. It is of considerable
physical importance to determine whether kinetic effects stabilize, or greatly
slow down the growth, of these singular modes. As a first step, one needs
to revisit the ideal MHD analysis to derive an equation for these singular
ballooning modes. It is hoped that the present paper will provide the basis
for such an analysis.

In Sec. 2 we briefly review the ideal MHD equilibrium equations, straight-
field-line magnetic coordinates and curvature identities, and in Sec. 3 we

review variational principles for ideal MHD mode growth rates. In Secs. 4 and



5 we motivate the basic orderings by a study of the local plane wave dispersion
relation and introduce a representation for the plasma displacement that
enforces these orderings.

The reduced Lagrangians for the one- and two-field, incompressible and
compressible, wave equations are derived in Sec. 6. A mode! wave equation
1s derived in the single-field case, and the relation of the two-field Lagrangian
to the ballooning-mode Lagrangian of Dewar and Glasser [4] is discussed. In
Appendix A we discuss the geometric interpretation of two important terms,
the “field-line bending” and “field-line compression” terms, of the potential
energy introduced in Sec. 3 and conclude that this terminology can only be
rigorously justified within the short-wavelength ordering. In Appendix B we
give a detailed discussion of self adjointness and the relation between the
“kink term” and the geodesic part of the “curvature term” in the energy
principle.

The approach in this paper is very standard. It is not claimed that the
material is new. Indeed most of it is well known to experts in the field, but the
author has not been able to find a clear discussion in the literature. Partly
this is because modern text books tend to be specialized to axisymmetric
systems because of the dominance of tokamaks in the last two decades. With
large stellarators such as LHD coming into operation it is timely to review
the general, fully three-dimensional formalism. Therefore we have set out the
details and fine points of the derivation, in the hope that newcomers to the
field will be helped in getting started and that established workers will find
it a useful summary for reference. We have also tried to give an indication

of the connection between this classic analysis and modern numerical MHD



stahility codes.

2 Equilibrium

In this paper we have tried to keep the discussion as coordinate free as pos-
sible, but, in discussing the choice of kinetic energy normalization, we shall
have need of a generic curvilinear straight-field-line magnetic coordinate sys-
tem. Assuming the equilibrium magnetic field lines all lie within nested in-
variant magnetic surfaces we Jabel them with the enclosed poloidal flux 27,
Introducing poloidal and toroidal angles § and ¢, we write the equilibrium
magnetic field as

B =V{xVu+¢gVuxVi, (1)

where ¢(¢) is the safety factor (inverse of the rotational transform, +).
We assume there to be no flow in the unperturbed state of the plasma,

so that the condition for a stationary state is the equilibrium condition
Vp=jxB, (2)

where j = VX B/ is the equilibrium current and p(y} is the equilibrium
pressure, with j; being the permeability of free space (SI units).

Following Greene and Johnson [3| we also define the quantities o

il

j-B/B?, proportional to the parallel component of the current, and &
e Ve, the curvature of the magnetic field lines.
Using VXB = pgj and the equilibrium relation Eq. (2), we can prove

the useful identity [3] relating the field-line curvature to the perpendicular



component of the gradient of the total (field plus kinetic) pressure

V . (B? + 2pop)
kK = 282 3 (3)

where subscript L. on any vector £ denotes its projection P, -f onto the plane

locally perpendicular to B, P, being the perpendicular projection operator
EEE (4)

The curvature & is orthogonal to B. It can be decomposed into a com-
ponent, k, = k-V/{Vy|, in the direction of the normal to the mag-
netic surface on which it is being evaluated, and a geodesic component [3]
kg = K-V XB/[BV1 in the tangent plane of the magnetic surface.

Decomposing the current into its parallel and perpendicular components,
J=o0B +j,, and using V-j = 0 we see that B-Vo = —V-j,. From the
equilibrinm condition Eq. (2), it is casily seen that j; = BX Vp/B?, which
is called the diamagnetic current. Taking its divergence and using Eq. (3)

gives an identity relating the parallel current to the geodesic curvature

26-BxXVp

B-Vo= 22 (5)

3 Lagrangian

The ideal MHD equations for a linearized displacement £ with time depen-
dence cos or sinwt are the Euler-Lagrange equations that extremize the

time-averaged Lagrangian

L=w’K —§W, (6)



where w? K is the kinetic energy and §1¥ is the potential energy of the plasma.
As this variational principle can also be arrived at by minimizing 6W under
the normalization constraint K = const, w? then being a Lagrange multiplier,
the choice of K is often referred to as the “normalization”.

Note that, to derive the first term in Eq. (6) from the physical kinetic
energy involving the square of the linearized velocity, 0€/8t, we must assume
that w is real. The case of instability is often treated by considering w
to be imaginary, so that w? < 0, but we must regard this as an analytic

continuation to be performed after Eq. (6) is derived.

3.1 Kinetic energy models

The kinetic energy factor K is defined by

K=} [ dzepomt, ™)
where Q is the region occupied by the plasma. Here we have allowed for the
use of a model kinetic energy with an anisotropic inertia by use of a dyadic
mass density, pas. since, as will become apparent in Sec. 6.1, it is often con-
venient to remove §; from K in order to make the extremizing displacements
purely incompressible (since £ then enters the Lagrangian through the term
in |V-£1?). This does not change points of marginal stability in parameter
space, but can have a profound effect on the eigenvalues.

In this section we consider several choices for K:
1. Physical normalization

Here we use an isotropic density

o = p(u)l. (8)



2. PEST2 normalization

An inertia purely normal to the magnetic surfaces is used in the PEST?2
code [6]
pr = ViV, (9)

Clearly (§1e))-pm = par-(§yey) = 0, as desired. However this model
also annihilates the perpendicular component of &€ within a surface,
and thus gives rise to a very unphysical spectrum. Essentially the

same normalization is used in the CAS3DI1 code [7].

3. TERPSICHORE normalization: Following Cooper et al. [8], we
can also use the dyvadic mass density currently used in the global sta-

bility code TERPSICHORE
pm = (2¢)°V Vi + [ ()] et et (10)
where s is a dimensionless surface label and the basis vector

et = V(-—¢V8e,
BX (VX V)
 V-VIX VY (11)

so that it is orthogonal to B (thus eliminating §) and to VXV,
where § and { are as in Sec. 2. For the surface label we follow the
convention in the VMEC code [9] and label the magnetic surfaces using
the toroidal magnetic flux, 2n®, so that s = ®(¢) /P (¢, ) runs from zero

at the magnetic axis to unity at the plasma edge, ¥ = 1.

This normalization is also not very physical and is not invariart under

choice of toroidal and poloidal angle.



1. Incompressible physical model

If we take

(12)

VuVe VexBVixB
Prp = p(t:) +

Ve [VUPBP
we have a compromise choice that is physical in the plane perpendicular
to B. but still annihilates the parallel component of £ from A’ so V-§
vanishes identically (see Sec. 6.1). From Eq. {18) we see that the Alfvén
wave has no component in the parallel direction, so its spectrum will be
unaffected by the use of this normalization. However from Eq. (19) we
see that the polarization of the slow magnetosonic mode is primarily
in the parallel direction, so how much this normalization distorts the
eigenvalue depends on how much slow magnetosonic component the

mode in question has.

One can also make the argument that the parallel dvnamics in a colli-
sionless plasma cannot be described by ideal MHD and that non-ideal
effects (parallel viscosity) will damp parallel motions, so that pressure
fluctations along the magnetic field line cannot be supported. The lat-
ter fact can be captured by assuming incompressibility as a constraint
from the outset, and the former by only using the perpendicular part
of the momentum equation, leading to a version of MHD called “col-
lisionless MHD” by Freidberg [10, pp. 32-38 and p. 260]. As we
shall see in Sec. 6.1.1, incompressibility is a consequence of Eq. (12}, so
the normalization of Eq. {12) is completely equivalent to “collisionless

MHD”.



3.2 Potential energy

For the potential energy we use the form due to Furth et al. [1], as given in
full generality by Greene and Johnson [3]

Qi | (Q-B — u§-Vp)?
—_ + 5

o to B

W = } Qd%{ +9p(V-£)°

where Q = VX (£xB) is the perturbation in the magnetic field and the
equilibrium quantities are as defined as in Sec. 2. The vacuum energy, 6W.,.,
1s the energy in the perturbed magnetic field associated with the vacuum
region surrounding the plasma (if any}. We also include in this any surface
energy [2].

It is convenient to refer to the five terms making up the plasma contri-

bution to 6W by reference to their heuristic interpretations as discussed by

Greene and Johnson [3] (see also Freidberg [10, p. 259]): We call

¢ the term, Q3 /i, the field-line bending term;

e the second term, involving the parallel component of Q, the field-line

compression term;
e the third term, proportional to vp, the fluid compression term;

e the fourth term, proportional to the parallel equilibrium current, the

kink term;

¢ and the final term, proportional to the pressure gradient and the cur-
vature vector, the curvature term. (Which can also be called the inter-

change term [11, p. 250].)

10



This terminology is discussed further in Appendix A.

It is an extremely important property of ideal MHD that the linearized
force operator is “self-adjoint”, or Hermitian [10, pp. 242-243]. Because of
this it is often useful to write W in the form W (€, &), where W (1, €) is
the bilinear form obtained by replacing the first £ in each term of Eq. (13)
(including those implicit in Q) with the independent vector field n. * That
is, 6W(n.£) is symmetric under interchange of 7 and €.

For example, this allows us to write the first variation of 61 as 26W (o€, £).
This means we can treat £ as a complex variable, replacing L{£, £€) with the
bilinear form L(£*,£), where €' denotes the complex conjugate of £&. The
Euler-Lagrange equations for extremizing L(£*,£) under independent varia-
tions of £ and £ are both physically valid because the equilibrium quantities
and w? are real and hence £ and £€" obey the same equations. This trick is
useful as it is often convenient to use complex exponential notation when
dealing with wavelike perturbations.

Self-adjointness can also be demonstrated when there is a vacuum region
i2], but for simplicity we consider only internal modes, taking £ to vanish
at the plasma boundary and dropping the vacuum energy. Then the only
terms for which the symmetry is not manifestly obvious are the kink and
curvature terms. To demonstrate it for these terms we need to integrate
by parts and use the identity, Eq. (5}, to obtain a cancellation between the

B-Vo term arising from the integration by parts of the kink term, and the

I'Note that we have written the term involving K in the reverse order to that used by
Greene and Johnson [3] so as to define the bilinear form correctly. Alternatively one can

explicitly symmetrize before writing the bilinear form.
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geodesic correction arising from interchanging 77 and £ in the curvature term
(see Appendix B).

Hamilton’s principle requires dL to be stationary under arbitrary vari-
ations of &, the Euler-Lagrange equation giving the equations of motion.
Equivalently, the Ravleigh-Ritz variational principle requires that

w' = ‘5—? (14)

be stationary under arbitrary variations of .

4 Orderings

We shall denote our formal asymptotic expansion parameter by € and adopt

the following scalings as € — 0:

L~k = 0Q1), (15)
ki = O™, (16)
B~ ~§ = 00). (17)

Note that we do not assume k-B = kB to be small, but, rather, take kxB
to be large. That is, the wavelength perpendicular to the magnetic field is
short, but the wavelength along the field lines is comparable with the system
size. By an architectural analogy, such perturbations are often called flute-
like, as the magnetic surfaces of a plasma supporting such perturbations
are deformed into a shape resembling a fluted column whose grooves are
aligned approximately with the magnetic field lines. (Since we assume the
field to have finite rotational transform, these helically fiuted columns are

more baroque than Grecian.)

12



Since there Is no separation between the equilibrium and perturbation
scale lengths along the maguetic field lines. A is not precisely defined as a
wavelength and should be interpreted as denoting e -V log f. where e =
B/ B is the unit vector in the direction of B and [ is any perturbed quantity.
However, in order to motivate these orderings it is nevertheless instructive to
examine the local plane-wave dispersion relation for MHD waves. assuming
temporarily that the concept of wavelength is well defined in all directions.

As discussed by Dewar and Glasser [4], the theory of the stability of static
MHD equilibria can be based on finding relatively small geometric corrections
to the local plane wave dispersion relations (see e.g. Freidberg [10, pp. 234~
238]) for the two MHD wave branches whose frequencies are finite in the
limit € — 0. For k| < k., the dispersion relations and polarization vectors
for the Alfvén wave (w4), the slow magnetosonic wave (ws) and the fast

magnetosonic wave (wy) are given by

p = (kB | £, =kxB/k, (18)
2 W’P(k'BF D2 . - 2
pg = B s = (B° +vp)B — vpk-Bk_/k” . (19)

pws = (B* + )k . & = wk-BB/k. + (B’ + yp)B*k_ [k , (20)

where p is the mass density. {Note that this is for the physical, isotropic
mass density case. The dispersion relations would be different for the dyadic
mass density model discussed in Sec. 3.1.)

Sinee the frequencies of the Alfvén and the slow magnetosonic wave modes
are proportional to k. the orderings in Eq. (15) are necessary in order that
« be finite in the limit. {The actual value of w cannot be found from the

plane-wave dispersion relations of course, but its ordering must be consistent

13



with these relations.) On the other hand, there is no direction of propagation
for which wr is finite in the short-wavelength limit, so the fast magnetosonic
branch must be excluded from the space in which we choose the lowest order
approximation to the solution.

The ordering of the components of £ can also be seen from these consid-
erations: from Eq. (18) and Eq. (19) we see that we must allow both parallel
and perpendicular components in £. However, because we are excluding the
fast magnetosonic wave, the lowest order approximation to € is constrained
to be orthogonal to £r. As this mode is primarily longitudinal {(i.e. &g is
parallel to k to lowest order), the constraint on £ is that, to lowest order in ¢,
it be transverse fo k. As a consequence it is easily verified that the following

orderings hold

VE£~VEL, = 0O(1), {21)

Qu~@ = 0Q1). (22)

For the fast magnetosonic mode, on the other hand, the ordering of these
quantitities would be G(e™).

As a final check, it is readily verified that the orderings Egs. (15-17),

(21) and (22) are consistent with the Rayleigh-Ritz form of the variational
principle, Eq. (14), in that they make w? = O(1) as desired.

5 Representation of £ and Q

;From Eq. (18) and Eq. (19), the motion perpendicular to B is dominated by

the Alfvén branch and is primarily transverse to k, but the slow magnetosonic

14



wave does provide a small longitudinal component. Thus we are led to the

representation

BxVg
&.L = 32

where ¢ = O{¢) is a stream function for the perpendicular displacement and
x = O(€?) is a potential to provide the small longitudinal part. As the parallel
component of £ is a scalar, £, we do not need any special representation for
it at this stage.

In this section we indicate that terms are O(e¢) by enclosing them in square
brackets. Thus, in Eq. (23), the first term is O(1) but the second is O(e).

Since the curl of a gradient vanishes identically, the divergence

B
Vg, =Vx (ﬁ) Vo — V-V, x (24)

is O(1) as required by Eq. (21). Also, V-(§je) = B-V({|/B) = O(1), by
Eq. (15). Thus V£ = O(1) also, as assumed in Eq. (21).

In order to calculate the magnetic field perturbation Q = V x(£xB),
first note from Eq. (23) that

ExB=V,p+{BxV, x]. (25}
Thus

Q = Vx{(V,p)+BV.V,x
+ [VLX'VB - B'VVLX] . (26)

It is immediately seen that the parallel component of Q is O(1), as required

by Eq. (22), but at first sight it appears that the perpendicular component

15



is large, O(e™'), because it contains two V operators. However, by noting
Vip = Vy— (B/B)B-V¢ and observing that VXV = 0 we can prove
the identity

B. B.V
v><vl<,o=va( th)ﬂlmj "’] , (27)

B? B?
whence we see that the perpendicular component of Q is also O(1), so the
ordering in Eq. (22) is now completely verified.
Note that, although x does not contribute to £ at leading order, it does
contribute at leading order to its divergence [see Eq. (24)], and hence to
both the fuid compression term of dW and to the field-line compression

term through the following identity [3}, derived using Eq. (3)

QB — poé-Vp=—-B*(V-£; +2£ k). (28)

6 Reduction of the Lagrangian

Using the above results we find, to leading order in ¢,

2 B-
20W® = [ d%{-ﬁ— Vl( BV;"’)
0
dl

+p ‘v-gl +B-V (E)

(BXVo-V,p")(B-Ve)  (B-Ve)(BXVoV.g)
2B? 282
(kxXB-V10")(VpxB-V,p)
B
(VpxB:-V 10" )(kxB-V, ¢)

> |B*V-£, +26XB-V |2

uy B?

2
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and

2K = | d'x (M + f’[e[) par (ﬁ%f +§ e|) . (30)
where the superscript {0) denotes the part that is O(¢%) and we have used
the “complexified” bilinear form discussed in Sec. 3.2 in order to make sure
the self adjointness is explicit {see Appendix B).

Note that the term in Vo, arising from the kink term after integration
by parts (again see Appendix B), is formally one order in ¢ smaller than the

other terms. It has been retained here for several reasons:

e Tt is closely related to the geodesic part of the curvature term: (see

Appendix B).

o It is of opposite parity in B-V to the other terms so it could pro-
duce physically interesting gualitative changes to “normal” ballooning
mode behavior {e.g. it reduces to the term in j'(r) that drives tearing
modes in axisymmetric, large-aspect-ratio machines [12] so it could be

important for resistive ballooning stability).

e For machines close to marginal stability against ballconing, where the
leading order terms balance [w® = Of{e)], it could be an important

stabilizing or destabilizing term.

e [t could be important in systems with steep current density gradients
[Vo = O{e™!)], for instance near rational surfaces in stellarators when

there are large Pfirsch—Schlilter currents {13, 14, 15].

However, if one is really to take this term seriously one should also check that

we have not omitted other O(¢) terms that should be retained for consistency.
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6.1 Omne-field, incompressible models

If we use the kinetic energy models 2-4 in Sec. 3, which annihilate the parallel

component of £, then the kinetic energy norm reduces to

2K (0) —fﬂdi"x BXV.¢"pn-BXV o o

Bt
Now the only place §; appears in the Lagrangian is in the fluid compression
term. Requiring stationarity of the Lagrangian under arbitrary variations of

£ gives, after integrating by parts, the Euler-Lagrange equation
B-V [V-Si +B.V (%)] =B-VV.£=10. (32)

6.1.1 Fluid incompressibility

On a surface of irrational rotational transform, the only solution of this

equation is the incompressibility condition
V{L+BV(%)EVf=0. (33)

On a rational surface we could in principle have V-£ different on the different
closed field lines making up the surface. However, if we restrict the solution
space for V-£ to continuous functions of 1/ then incompressibility must apply
also on rational surfaces because they are nested arbitrarily closely by irra-
tional surfaces. However, we must still ask if it is possible to find &y such that
V£ = 0 everywhere. This requires the solution of the magnetic differential

equation [10, p. 262]

BV(Q):ﬁV{L. (34)

18



This can be solved by Fourier analysis {11, p. 59]

i(JV'gﬁ)m,n

m — ng

Sllmn = (33)

where the Jacobian factor 7 = 1/V¢-V8xV( and m and n are the poloidal
and toroidal mode numbers, respectively.

As V-£, is completely independent of &, there is no reason to suppose
that the resonant coefficients (FV £ | Jmn. m = ng, will in general vanish on
rational surfaces, so that this model has the fault that it implies divergent
(& )m,n on Tational surfaces.? However, it can be shown {10, p. 290-291] that,
by regularizing the singularity in Eq. (35) and taking the limit as the reg-
ularizing parameter tends to zero, the contribution of the fluid compression
term to 6W can indeed be made to vanish, so that the incompressibility con-
straint does not affect marginal stability boundaries. The contribution to the
kinetic energy would however tend to infinity as the regularizing parameter
tends to zero if we were to use the full isotropic density model of Sec. 3.1,
which implies from Eq. (14) that the incompressibility constraint can have a
significant effect on growth rates (especially in low-magnetic shear systems
with rotational transform close to a low-order rational).

(Aside: It might be thought that the ballooning formalism, in which
Eq. (34) is solved on a covering space in which the periodicity condition is
relaxed [4] somehow magically gets around this problem. This is not the case,
because [ df JV-£, over a field line does not in general vanish: if we impose

& — 0 as # — —oo, then § cannot also tend to zero as # — +oo. Then

21n fact there is a problem on all surfaces for m = n = 0, but this part of Fourier space
is excluded asymptotically by the large-k | ordering. It can also be rigorously avoided by

restricting £ to a “mode family” (7] not including n = 0.
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the infinite sum in the ballooning representation for & diverges on rational

surfaces as ¢ — +oc.)

6.1.2 Field-line incompressibility

We now observe that. to this order, x appears only in the compressive terms
and only through the term V-V in V-£. . (Since we have now set V-£ =
0. in this section V-£, in fact appears only in the field-line compression
term.} Thus varying x* is equivalent to varying V£, and doing this we

find the simple Euler-Lagrange equation
B*V-£, +2:xBV o= (QB — pé-Vp)@ = 9. (36)

Using Eq. (3) and Eq. (24), Eq. (36) can be written as

_ H)-Vaip

V-V.x= 22

(37)

We do not actually need to solve this equation, but it is worthwhile to con-
vince ourselves that it can be solved without having to restrict the right hand
side.

If it were not for the fact that Vx must be projected at each point onto
the plane perpendicular to B there would be no problem — we would have
Poisson’s equation. Applying the Dirichlet boundary condition y = 0 on the
plasma boundary 8§ (appropriate for internal modes), the equation could
be solved using, for instance, the standard Green’s function for the Laplace
operator on the left-hand side.

If we can convince ourselves that the operator V-V | is an elliptic differ-

ential operator, then Eq. (37) is a simple generalization of Poisson’s equation

20



and can still in principle be solved by standard techniques. It 1s here that
there appears to be a problem: The elementary pointwise definition of an
elliptic operator requires the form k-P -k to be nonzero for al/l nonzero k.
Here k = VS, with § being the edihonal, defined through the representation
y = %exp(iS/e), where S and Y are slowly varying as ¢ — 0. However
k-P . -k clearly s zero for k parallel to B.

\We can argue on the basis of our large k, /¢ ordering that the case k_ =
0 is excluded, and that is perhaps sufficient for our purposes. However,
by adopting a more general “weak sense” viewpoint of ellipticity, requiring
fo |V 1x1? d®r > 0 for all x such that [, [x* ¢’z > 0. we can also make the
stronger claim that the problem does indeed appear to be a standard elliptic
one irrespective of asymptotic arguments.

We argue by reductio ad absurdum: If the weak-sense ellipticity condition
were to be violated, then we would have to have ¥V _x = 0 throughout (2,
but with ¥ = const # 0 in some finite region, €' C €1

We can solve V; x¥ = 0 at each point by integrating back along any curve
' made up of line elements everywhere perpendicular to B {so x = const on
') to a surface on which we know the value of x. In particular, if I connects
with 9, then ¥ = 0. Thus, for x to be nonzero in ¥, all integral curves
I' starting within ' must remain in €. As a consequence, any such curve
touching its boundary, 89, must be tangential to 8. In other words, B
must be everywhere normal to 0{2".

But in a magnetic plasma confinement device we can assume that B #
0, and thus the normal comporent of B on 2’ must be of constant sign.

However, by Gauss’ theorem this is impossible. Thus the hypothesized region
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LV, isolated from the plasma edge, cannot exist. We conclude that Eq. (37)
1s a generalized Poisson’s equation and so, unlike the fluid incompressibility
condition, the field-line incompressibility condition should be easy to satisfy.

We note that field-line incompressibility has been found to be very accu-
rately satisfied, even for low-n modes, in both stellarators and tockamaks by

using the CAS3D code [7].

6.1.3 One-field W and wave equation

Accepting that both the kinetic and field-line compression terms drop out of

Eq. (29), we are left with a potential energy involving the single field ¢

B2 B-Vo\P  (VpxB-V  ¢")(kXB-V o)
0 _ 3 ¥ P LP Ly
2w = /adx{ﬁ'.f Vl( B? )} - B

eXB-V ") (VpxB-V ¢

where we have dropped the kink term because it is O(e).
The wave equation, obtained from Eq. (38) by extremizing the Lagrangian
with respect to *, is
1 B2 B-Vy VpxBkxB-Vy
B-V{—-V-|-—P;- .
(o[ (550w (225

BVpxB-V
G Ead R ORI

6.2 Two-field, compressible model

Although, as Freidberg cautions [10, pp. 262-263], the predictions of ideal
MHD regarding the effect of finite compressibility are likely to be unreliable,

1t is nevertheless worthwhile to calculate growth rates using both models 1
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and 4 in Sec. 3.1. If they differ greatly. then that is a good indication that
the parallel dynamics is important and a more sophisticated description 1s
needed, since “collisionless MHD" is not reliable either.

For model 1 of Sec. 3.1, the kinetic energy norm is

2K = fﬂde’x p(¥) ['ng] +|§|ﬂ ' (40)

As in Sec. 6.1.2 we vary V-£7. obtaining from Eq. (29) the Euler-
Lagrange equation

2 2kXB-V
(E— + vp) v, =22V wBv (6—') : {41)
Lo Lo B

Using this to eliminate V-£, from 6W () we obtain from Eq. (29) (again

dropping the kink term)
B-Vo\[
v (%)

2
2WWO = / d%-{i
Q Ha
B g (4) _26xB-Vip
(B? + poyp) B B2
(VpxB-V ¢ ){(kXB-V 1 p)
B4
B (RXB'VJ.QD*)(VPXB'VLQ)}

2

5 (42)

By adding Eqg. {41) divided by (B?/uq +yp) and the identity V-({ey) =
B-V(£,/B) we readily obtain the result

B? 6“ 2kxB-V . (0)
(B2 + povp) [B-V (E) B } = VO )

which makes the identification of the compressibility term in Eq. {42) trans-

parent.
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To make correspondence with the ballooning-mode Lagrangian of Dewar
and Glasser [4], set ¢ = —i(e/k,) exp (iS/€) & and § = Bexp (iS/e)n, S is
the eikonal and £ and 7 are the components of the ballooning eigenfunction
defined in Eq. (49) of Dewar and Glasser. We drop lower order terms, so V_g
is replaced by ik /e. Then the only operators remaining in the Lagrangian
are of the form B-V, so that the volume integration can be restricted to
an arbitrarily narrow flux tube, thus explaining the field-line integral form
of the ballooning mode Lagrangian. From Eq. (43) it is clear that the term
(7 — 26-Bxk&/B%k,) occurring in Dewar and Glasser is proportional to

(V-£)® and thus vanishes for incompressible plasmas.

7 Conclusions

We have reviewed some very old concepts in a modern perspective and
have found a model wave equation for ballooning modes whose analysis
should shed light on the nature of the unstable continuum solutions in three-
dimensional toroidal plasma confinement geometries. By taking care to ex-
plain some obscure points, it is hoped that this mini-review will help make
some of the early literature on ideal MHD stability more accessible to a

modern audience.
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A Interpretation of terms of §W

In view of the fact that there is current interest in alternative forms of ¢W
[16, 17, 18] exhibiting MHD-stability-related geometric properties {(in partic-
ular local magnetic shear) it is timely to revisit the geometric interpretation
of the original FKRC form to enquire whether, and in what sense. the in-
terpretations of some of the terms in the energy principle given in Sec. 3.2
are rigorously geometric. {Though in this paper we do not examine local
magnetic shear.)

We consider, in particular, the field-line bending and compression terms
and seek to make precise the definition of a displacement field £ that (a)
bends but does not compress and (b) compresses but does not bend the
magnetic field lines. If the geometric identifications of “field-line bending
term” and “field-line compression term” are precise, the second term of éW
should vanish under displacements of type {a), while the first term should
vanish under displacements of type (b).

First we need to introduce the concept of the Lagrangian variation. A, in
a physical quantity as the plasma fluid is displaced from its background (in

our case, equilibrium) position to its perturbed state as £ is “turned on” at



fixed ¢. Symbolically, the Lagrangian variation is defined by [19]
A=6+E-V, {44)

where & is the Fulerian variation, i.e. the variation of a quantity at a fixed
point in space. The Lagrangian variation is the change as seen by a fluid
element as it is perturbed from its background to its final position. It is
a property [19] of ideal MHD that the Lagrangian variation of the physical
quantities density, pressure and magnetic field can all be expressed in terms
of the strain dyadic V& and are thus precisely of the same order, O(¢7'), in
the short-wavelength approximation [allowing &y = O(e™!) for the purposes
of this discussion]. Lagrangian variations also have the advantage that they
vanish for uniform translations of the system, which should not change any

energy terms.

A.1 Type (a) variations: field-line incompressibility

To say that field lines are not compressed must mean that their separation
is preserved under the perturbation of the system by the displacement field
£. Since the field-line density is measured by |B|, we define field-line incom-
pressthility by the requirement

A (i?;) =B-Q+¢-V (B;) = B-(V£)-B - B2V.¢ =0, (45)

where the Eulerian variation in B is {B = Q = VX (¢ xB).
The first form in Eq. (45) is reminiscent of the expression (Q-B— uy&Vp)

oceurring in the second term of Eq. (13). However, the equilibrium condition
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Eq. (2) implies

eV () = B(VB)€ - w0 (16)
Thus. unless we restrict £ so that B-{VB):£ = 0, requiring the “field-line
compressibility term” to vanish is not precisely equivalent to the field-line
incompressibility criterion defined by Eq. (43).

The difference, however, is O(e") in the short-wavelength limit, whereas
Q-B = O{e '), so that the two versions of field-line incompressibility are

equivalent to leading order.

A.2 Type (b): curvature-preserving variations

To say that field lines are not bent must mean that the magnitude of their
curvature, k = Vey-ep, is preserved under Lagrangian variations. Thus we

define curvature-preserving variations by the condition
k-Ak =10, (47}

From its definition we can readily show that the Eulerian variation of the
unit vector along the fieid is dey = Q_/B, while the Lagrangian vari-
ation is (§-VB)./B. The Eulerian variation of the curvature is éx =
bey-Vey +¢)-Vde,, while the Lagrangian variation has the same form, but
with § replaced by A. Thus we see that setting Q, = 0 to make the “field-line
bending” term in ¢W vanish will make the Fulerian variation of & vanish,
but not the Lagrangian variation, so that curvature-preserving variations do
not in general make the first term of 4 vanish.

The difference between the Lagrangian and Eulerian variations of the

curvatures, however, is £-Vk = O(e). In comparison, Ak is Oe™?) if
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ky = O{e™!), or O(e™) if kb = O(’). Either way, the two criteria are
equivalent to leading order in the short-wavelength limit.

Thus. although the terminology in Sec. 3.2 is not rigorousty correct for
long-wavelength perturbations, it is a convenient and appropriate designation

for the purposes of this paper.

B The kink term and self adjointness

As only the kink and curvature terms in Eq. (13) fail to manifest obvious
Hermitian symmetry we restrict attention in this Appendix to these terms,
giving some details regarding the relationship between them and showing
that the antisymmetric part of the unsymmetrized version of the reduced
curvature term cancels the antisymmetric part of the corresponding version
of the kink term. This shows that the kink term plays a fundamental role
and may be an argument for its retention despite being formally small in
the short-perpendicular-wavelength expansion. We also show how to get
the version of the kink term used in Eq. (29), where its formal smaliness is
manifest.
The main result we wish to prove is that

2(kxXB-V ") (VpxB-V )
Bt

/Qde [O'VJ_(,D*'VX (Vig)+ (48)

is an Hermitian symmetric form. This is the “raw” form of the relevant part
of Eq. (13) obtained after “complexifying” by changing the first occurrence
of £ in the two terins by its complex conjugate, as discussed in Sec. 3.2,
then replacing &, with the representation in Eq. (23) and dropping the small

terms involving x.
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To prove Hermiticity we first decompose the curvature term into a sym-
metric and an antisyvinmetric part and note the following lemma about the
antisvIiimneiric part

(£XB-V ") VpxB-V ) (VpxB-V_¢*)(6xB-V, )

B B4
B-V¢o
= TBTVL\P*'BXVJ_%C

1
=§le*-chVl@. (49)

where the second form on the right-hand side follows from observing that the
perpendicular part of Vo, 1.e. V0. does not contribute because the scalar
triple product of three vectors lying in the perpendicular plane is zero {three
vectors cannot be linearly independent in a two-dimensional space). Thus
only the parallel part of Vo contributes, which is just the first form.

The identity Eq. {49) can conveniently be proved by decomposing the
curvature into normal and geodesic components {16] k& = K, V1) -+ ks, where
s = VyxB/|Vy|?. Then k, = —B-Vo/2p'(¢) by Eq. (5). Writing out
the left-hand side of Eq. (49) in terms of these components, we find that
the normal component, s, cancels, while the geodesic component becomes
(B-Va /2B*)V _*-[(Vi)s — s(V4)]-V 1. Tt is then readily verified using
B = sx V1 that this is the same as the first form on the right-hand side of
Eq. (49).

We now do a similar symmetric/antisymmetric decomposition on the kink
term in Eq. (48). Using integration by parts (ignoring boundary contribu-
tions, as always in this paper), the antisymmetric part is readily found to

obey the identity
1
5 fnda«"f o[V VXV, ¢) =V, e VX(V "]
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1
-3 / PV, o VoxV o. (50)
Q

il

Comparing with Eq. {49) we see that the antisymmetric parts of the terms
in Eq. (48) cancel cach other and thus only the Hermitian symmetric terms
survive, as claimed.

If we try to apply the identity Eq. (27) directly, the kink term appears to
be O(1). To see that it is really O(e) we need first to use the identity in the
form VX(V 1p) = —VX[BB-(Vw) /B?], then integrate by parts and only
now use Eq. (27), giving
{(BXVo-V_¢*)(B-Vy)

BQ
©*B-V| , (51)

[dgxoVch VX(V,p) = —/d3

olhe

the leading term of which is Of{e), the second term being O(e?). The sym-

metrized version of this identity is used in Eq. (29).
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