——
ISSN 0915-633X

NATIONAL INSTITUTE FOR FUSION SCIENCE -

On the Stability of Mercier and Ballooning Modes in
Stellarator Configurations

C.C. Hegna and N. Nakajima

(Received - Aug. 22, 1997)

NIFS-510 : Oct. 1997

/ -
d-t
s, v
. -

This report was prepared as a preprint of work performed as 4 collaboration
i| reserch of the National Institute for Fusion Science (NIFS) of Japan. This document is;
- i| intended for infomation only and for future publication in a journal after some rearrange-
i1 ments of its contents. -

_ Inquiries about copyright and reproduction should be addressed to the Research
B! Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi,
Gifu-ken 509-02 Japan.

5 Snt— Y
. x gl
o :

RESEARCH REPORT
_NIFS Series

7

NAGOYA, JAPAN



On the Stability of Mercier and

Ballooning Modes in Stellarator Configurations

C. C. Hegnat and N. Nakajima
National Institute for Fusion Science
Nagoya, Japan 464-01
tDepartments of Engineering Physics and Physics
University of Wisconsin, Madison, WI 53706-1687 USA

Key words: ballooning modes, Mercier criterion, Stellarators

Abstract

The stability properties of pressure driven ballooning and Mercier modes
in general stellarator configurations are studied. A method originally introduced
to study tokamak stability by J. M. Greene and M. 5. Chance [Nucl. Fusion 21,
453 (1981)] is generalized to three-dimensional systems. This method introduces
a way to examine various stability physics mechanisms by using a perturbation
theory. Variations in equilibrium quantities are introduced to a localized region
whose amplitude is small but whose cross field derivative is large. Consistent
with this ordering, changes in the magnetic coordinates and metric elements are
calculated using Boozer coordinates. In the general case, the set of equilibria are
characterized by two free functions, which are usually chosen to be the local
variation of pressure and rotational transform profiles. In this way, a stability
space for Mercier and ballooning modes is generated which is parameterized by
the average shear and pressure gradient at the magnetic surface of interest. If an
additional currentless constraint is imposed, the change in the local rotational

transform profile and the local pressure gradient are related; in this limit only



one free function parameterizes the set of equilibria. A different way to view the
stability information is plot the stability curves in a space parameterized by the
local pressure gradient and the field-line-averaged parallel current. When
viewed using these plots, it's possible to show that a second stability regime
always exists for Mercier modes at sufficiently large pressure gradient.

Pac. Nos. 52.35.Py, 52.55.Hc, 52.55.Dy



I. Introduction

As the confinement properties of stellarator configurations improve with
increased understanding and improved design, the question of beta limits in
stellarators becomes an issue. Since most stellarators operate with little or no
equilibrium current, kink and tearing modes are not expected to limit
performance. Therefore, criteria for ballooning and Mercier stability are often
used to predict the stability limits in these configurations. While little
experimental evidence exists in stellarator experiments to justify this,' a variety
of high performance tokamak experiments have shown that marginal stability
properties of ballooning modes determine the pressure profile over extensive

portions of the plasma cross-section >3

In this work, we examine the
fundamental ideal magnetohydrodynamic (MHD) equations involved in
predicting Mercier and ballooning stability. A useful analysis tool will be
introduced which can be used to develop insights into the nature of stellarator
stability, and hopefully provide some intuition into improving the stability
properties of helical systems.

In general, the stability properties of equilibria to ideal MHD modes are
obtained by numerically solving a partial differential equation. Considerable
simplicity is found by considering localized modes with large wavelengtl1.4’5 In
this limit, the stability properties are described by an ordinary differential
equation, the ballooning equation, which locally can also be applied to general
three-dimensional geometries.6 Mercier stability is determined from an
analytically derived criterion which can be obtained from the asymptotic
properties of the ballooning equaﬁfion.7

For stellarator configurations, it was suspected that as long as the average

magnetic shear, as measured by the gradient of the rotational transform, was

positive (d+/dy > 0), ballooning modes would be stable as long as Mercier
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stability was satisfied.® A counter-example to this thesis was found in a Heliac
conﬁguration.9 This result can be explained by noting that the Pfirsch-Schliiter
current effects can change the flux surface averaged magnetic shear and cause
ballooning instability in the de/dy <0 region.10 However, additional numerical
calculations of the ballooning equations have also uncovered ballooning
instabilities in the positive shear region of stellarators which is in direct conflict
with the Shafarnov conjecture.]1

Since the ballooning eigenmode equation has a rather simple structure, it
is useful to examine this equation to discover the various physical mechanisms at
work. Several aspects of ballooning modes in tokamak configurations were
clarified by using an interesting approach for generating a class of related
equili‘oria.12 In Greene and Chance,'? (denoted GC for the rest of this paper),
additional small amplitude, short length scale variations in various quantities are
imposed on an initial arbitrary MHD equilibrium. The variations are constrained
such that the resultant state is also an equilibrium. The GC technique allows for
the independent variation of the gradients of the pressure and safety factor, so
that their impact on ballooning stability can be studied separately. One result of
this work was showing the importance of the local shear in ballooning stability.
In particular, the appearance of the second regime of ballooning stability was
shown to be present due to the movement of the point of small local shear from
the bad curvature region towards the good curvature region as the pressure
induced variation of the local shear increases.

In this work, we generalize the calculations of GC to three-dimensional
equilibria. Asin GC, the local shear plays an important role in determining the
ballooning stability properties. In addition, the effects of flux-surface-averaged
parallel currents and curvature can also be quantified. Recent studies have been

carried out with a similar goal in mind, to get a good physical feel for the



underlying ideal MHD stability properties of stellarator configura’cions.n'15 The
advantage of the present approach is that the stability properties of any
equilibrium can be explained without invoking the stellarator expansion or
assuming small aspect ratio, small plasma beta, or weak shaping. In principle,
this approach could then be used to study any class of stellarator configuration,
and can be used to augment the various ideal MHD stability studies that have
been performed for particular c:onﬁgura’cions.l6"21

A significant difference between the ballooning stability of stellarators and
tokamaks is in the spectrum.14’22’23 In systems with a continuous symmetry,
such as a tokamak, the ballooning mode eigenvalues are characterized by the flux
surface label, w, and the radial wave number 6y, and are independent of the field
line label o. In general three-dimensional equilibria, the eigenvalues are a
dependent, and therefore the structure of the eigenfunction in the (y,8i,0) space
may be much different from the analogous eigenfunction of tokamak-like
equilibria. In particular, the level surfaces of the eigenvalues for tokamaks are
topological cylinders in the (y,8x,0) space, whereas the level surfaces of the
eigenvalues for stellarators can be spherical in this space due to the strong o,
dependence. It is suggested that the technique introduced here can be used to
clarify in what region of parameter space the distinct topological structures may
be important.

In the following section, the Boozer coordinate systemz * will be
introduced to describe the MHD equilibrium quantities. Using this coordinate
system, the GC technique will be used to generate a class of equilibria that are
parameterized, in the general case, by two free functions. Mercier stability for
these equilibria are determined in Section IIl. In Section 1V, the ballooning
equation for this class of equilibria is derived. In Section V, the special limit of

stellarator equilibrium is considered where the flux-surface-averaged current is



taken to be zero. In this limit, an additional constraint is imposed on the
equilibria variations, so that only one free function parameterizes the set of

equilibria. A concluding discussion is given in Section VL

II. MHD Equilibrium

In this section, we characterize the MHD equilibrium using Boozer
coordinates. We assume the existence of three dimensional equilibria with a set
of nested flux surfaces. Whether such equilibria exists or not is still an open
theoretical question which we will not address here. In particular, we view the
problem of resonant denominators as an issue of an ill-defined equilibrium that

can be resolved by introducing magnetic islands.?

A. Boozer Coordinates

Boozer coordinates®® allow the magnetic field to be expressed in both a
covariant and contravariant basis set of the variables (y,0&), which are
respectively, the toroidal flux function, the poloidal angle and toroidal angle.

The magnetic field is written
B = Vyx V(@ -+ , (1)

B = JVC + IVO +pVy 2)
where + is the rotational transform, and ] and I are flux functions. The function
J(y) is proportional to the amount of poloidal current flowing outside the flux
surface y, while I{y) is proportional to the amount of toroidal current located
within flux surface y. The function $ is a function of all three magnetic
coordinates in general, and is related to the Pfirsch-Schliiter currents. The
Jacobian of this coordinate system is related to the spectrum of the magnetic field
strength by the relation
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where V'(y) =$dl/B, (2n)*V(y) is the volume enclosed by the flux surface and

the sum excludes (m,n) = (0,0).

Since equations (1) and (2) must represent the same magnetic field, the

conditions
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must be satisfied, where the metric elements g.. = 0x /0¢;-0x/ d; are constructed
gl] (p]

from the inverse mapping of the magnetic coordinates x = x(y,6,0), where ¢

(v,8,0.
The MHD equilibrium condition J x B = Vp is given by

A R A
B (. +(a‘;++ae)ﬁ =p'Ng , 7)

where the prime refers to the derivative with respect to the function’s argument.
The flux surface average of Eq. (7) yields the relation ]+ +I" = -p"V"which is
essentially a description of the diamagnetic current. The term B can be written as
a Fourier expansion. The elements of the expansion are related to the magnetic
field spectrum by Bmn = PV 8mn/i(me - n). An additional useful expression is

that for the parallel current

J-B J—
?=G—ka, (8)



where ¢ is the flux-surface-averaged net parallel current and is related to I by

V1
o = I’ -+ p ; (9)
J++l
and X is a measure of the Pfirsch-Schliiter current spectrum
A= T Ay eo-int (10)
mn
where the Fourier coefficients are related to the magnetic field spectrum by
mJ +nl an

Ama = Smny ST D

which is derived from the condition p'V'A = (B x Vy-Vp)/ B2,

B. Generation of Equilibria

We now proceed by considering variations in the plasma quantities
imposed on some given initial arbitrary equilibrium. The initial equilibrium
satisfies Egs. (1)-(10), with the profiles denoted p(m(\p), %(0)(\;;), 0(0)(\4;), ](0)(\11),
I(O)(xp), and [3(0)(1;;,6,@ and coordinates defined by x(O)(w,G ,0). Since Mercier and
ballooning stability are determined by the local values of the pressure gradient,
shear, etc., it's useful to construct these variations localized to a particular
magnetic surface of interest. Following GC, we consider variations in the
parameters which are small, but whose cross-field gradients are large. All
quantities will be expressed in terms of the magnetic coordinates of the initial
equilibrium, but since the magnetic field is allowed to vary, these coordinates are
not the magnetic coordinates of the perturbed magnetic field. In what follows,
we will write the variations in the inverse coordinate mapping, but we show in
the Appendix how this is related to the associated magnetic coordinate variation.

The pressure profile is then described in the vicinity of the magnetic

surface y, by the expansion



py) = pPy) + pPiy) + . (12)
where y = (y — wp)/ 11, and p << 1 is the expansion parameter. Notice that dp/dy
= p(O)‘ + p(l)‘ has an order unity variation although the variation of the pressure

amplitude itself is small. In a similar way, we expand the functions

) = + 90 + pePy) + (13)
) = 1% + P + . (14)
1y) = 1% + i) + .. (15)

To be consistent with MHD force balance, it is required that the function p have
order unity corrections caused by the equilibrium variations. An appropriate

expansion is given by

Bw,8,0) = 8P00,0 + 8Vy,00 + OW .. (16)

The coordinate mapping is also perturbed and written

x(w,0.0 = xV0.0 + wixPy,00 + ... . 17)

From Eq. (17), the metric elements

Soo = gge(m + OQ) , (20)

are unaffected to lowest order, but the metric elements

o o0

g‘;"-l’ - g‘;‘-&! + ac : ay + O(p) . (21)
©) (D

gow = 8ou® + -2 4 o @

by — Sby a0 oy ’



6x(0) ax(l) ax(l) ax(l)

© ]
+ 2 + By oy + O(u) , (23)

Byy ~ Byy oy 0y

have order unity corrections due to the variations.

The induced variations are constrained so that the profiles in {12)-(17) also
describe the equilibrium. In addition, the variation is assumed to keep the value
of the magnetic field strength fixed to lowest order in y, so that at the magnetic
surface under scrutiny the magnetic spectrum as given by (3) is undisturbed.

The condition of MHD force balance, Eq. (7} leads to the conditions

JO 4 JO@ _ _ Dy o0
O 0 M (1. ,
(EH- of =P Ng-V) , (25)

where V* and \g are the initial equilibrium values. Equations (24) and (25)
describe the additional diamagnetic and Pfirsch-Schliiter currents generated from
the pressure variation. Clearly, B(D is given by a Fourier expansion whose
components are given by B = p(l)’V’Smn /ime® - n) which is analogous to the

same expression for B(O) in terms of p(m’

and the magnetic field spectrum.
The condition that the magnetic field strength is undisturbed to lowest

order is given by the condition

6}((1) ax(O) (’)x(o) ax(l)

5y o8 < o =—an]§—o (26)
which implies oxP/ Oy can be written
(1)
BxV
S, = CB+D ;2‘”, @7)

where C and D are yet to be determined. Equation (6) has order unity
corrections due to the variations, which can be written B(l) = BO.(xV/ dy). This

leads to the condition



B

C = (28)

Since C and Bm are proportional to pm’, the variation in x'!’ along B can be
obtained by integrating up the fast variation. A similar procedure can be used to
find the cross field variation once an expression for D is obtained.

The final constraints are obtained from the corrections in Egs. (4) and (5).
To lowest order these two equations are unaffected by the variations, but since
the derivatives of ] and I enter into the force balance relation, it's also important
that the y-derivatives of (4) and (5) are also satisfied. A linear combination of the

derivatives of (4) and (5) leads to the condition

0):(1). M1 - 1 (]

x©@ 5 5 x® 5 ax® (0)8):(0) 5 axV
- + - 2 e e —
oc 600y 08 oL oy 20 06 0y

+JO )

o 0% a® oax®sa®  ax®oan®
o i €7 + % - +2 .
or 88 oy 80 8¢ oy ac ag oy

) . 29)

By using (24), (27) and (28), Eq. (29) can be simplified to yield a relationship

involving D and £,

6 + 2l v’
0= Dy *_)D (] S a0 J 1(1), (M

,(30
az; 28 WaeTe gVY gv 50

where g¥¥= Vy-Vy, and unless otherwise explicitly specified, all the terms are

given in terms of the initial equilibrium. We introduce the notation

$Q = aﬁde 95;%(3 31

to define the flux surface average of any quantity Q. By applying the averaging
operator to (30), a consiraint equation involving the rotational transform gradient

is derived.
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where the Pfirsch-Schliiter coefficient A as defined in Egs. (10)-(11) has been used.

1 1 A
0 =+ _ Vg % s @gw +p WV + e (32)

Equation (32) can also be written

1 A
0 = +D _6® g44p % +pDrgeaD $ (33)

gV’
by using Eq. (9) to identify the variation in the net parallel current. In the limit of
zero net current, (33) shows that the rotational transform gradient is affected by
the combination of Pfirsch-Schliter currents and noncircularity. This is
essentially the same physics that was pointed out in Ref. (10). Using Eq. (32) to

substitute for I'V” in (30), an equation for D is derived:

0 3} . 1 1 1
(—++—)D = % (== - $—)
o 50 1 wy Yy
. @g\p—w 24 g
(1),V’(I+PI) A 1 1 A .
_p ( ? - ? ) (34)
'ﬁ_lqn?; gw g\w gw gw
24
which describes the coordinate variation D in terms of the functions -1-(1)’ and

1.
p .

In summary the eight function variations, (12)-(17) are constrained by six
conditions, given by Egs. (24)-(26), (28), (32), and (34) where C and D are defined
by Eq. (27). In this way, the set of equilibria produced by these variations are
classified by two free functions which are typically taken to be pm’ and +Y". In
the following sections, we will classify the stability of these equilibria by
considering the two free variations independently. Another potentially useful
choice for the two functions is p(l)’ and o'V where the average current is
substituted for the average shear. By this choice one is able to address the issue

of stability in currentless stellarators. This will be discussed in Sec. V.



II1. Mercier Stability

Mercier stability is determined by the quantity

1
Di=E+F+H-7, (35)
where D; > 0 indicates instability and E, F, and H are defined in Ref. (26). The

various quantities in (35) can be evaluated in the perturbed equilibria. Using

(1}~ 1)

P and + to classify the equilibrium variations, Mercier stability is

determined by

_ Tp T 1
Dy = - (0),+_1_(1),)2‘7H -1 (36)

where

1 A
Vit = J+ +I)W”§>g-@ + +’V'w]

221 A 1
_p’W’(]++I)]2{%§’gw-(4’ )+ by b5 (37)

&V e v gt
is a function of the initial equilibrium only. The Mercier stability boundary is
given by a parabola in the p’-+” parameter space. If V1t < 0, the unstable region
lies where p” > 0. The case where Vit > 0 is shown in Figure 1 which shows the
larger the magnitude of the average shear the larger the allowable pressure
gradient for a Mercier stable plasma. Another way to write (36) is by writing it as
a function of the Mercier stability index of the initial unperturbed equilibrium,

D(O),

o - p(O): +p(1): _1_(1)f2
1 p(l), (1_(0),_‘__1_(1),)

~o, L1
2\DI +4) "‘4 ’ (38)

which shows that the condition VH > 0 (< 0) corresponds to D((In > - 0.25 (<

—0.25).



IV. Ballooning Equation
The ballooning equation describes the stability properties of short

wavelength modes. In the incompressible limit, this is given by

Ik, 12 2
BV BJE BVE + Bk, w0 )(Bxk J,-Vp)i+§5‘°2’ki‘2€ =0, (9

where «x is the magnetic field curvature vector and p is the mass density. By

writing the curvature vector as

B x Vy
& gV

and defining the local shear

(40)

K = K,Vy + K

B x Vy B x Vv
g = \fé o -Vx—gW‘ , (41}

and transforming the angle variables to « =0 —+{, n =, so that

10
BV =—— 42)

Vgon

the ballooning mode equation can be written in Boozer coordinates as

o B2 o
= yyy 2 .
—{an Qv + g''L r*"“an +2p"Ng J + Dl + k,L)g

2
B
+ cong(ﬁ + g‘sz)ﬁ =0, (43)
where L is related to the local shear by the integral

1
Lm) = [dq'stm) (44)
Nk

with n,_playing the dual role of an angle-like position where the integrated local

shear is chosen to vanish and as a measure of the radial wave vector.22



In Boozer coordinates, the curvature components are given by

15 B B g
K. = —S—(5+p} +
nT oy 2 P ole(eeD) on
2Ng_ Vg
o JBun "By 00 (45)
vggV'  2g( + 4D
2Ng_ joNe
% ® (46)
Ke =~ . 7.
& 2g(J+eD)
The local shear has two components given by
-1
s = v+ T BT B n

o vgg"
where the first term is the average shear, while the second term varies on a flux
surface and is annihilated by averaging over a field line.

The stability properties of the mode is determined from the competition
between the stabilizing field line bending term, given by the first term in (43),
and the potential destabilizing pressure/curvature drive of the second term in
(43). Ballooning instability occurs when Eq. (43) has a negative eigenvalue, o’ <
0. In general, the eigenvalue and eigenmode are functions of y,0x and the field
line label a.

We will now consider the effects of the equilibrium variations on the
ballooning mode coefficients. Since we'll be interested in determining the
ballooning stability boundary o> = 0, the term containing the eigenvalue will be
ignored in what follows. It can be shown that self-consistent variations in the
equilibrium leave «,,, «, and g*" unaffected to lowest order and therefore are
given by their values in the initial equilibrium. Additionally, Bz,\]é, ]J,Tand +

are all undisturbed to lowest order in the variation as previously discussed.



The only place that a variation in the ballooning coefficients occurs is in

the local shear and the coefficient of the curvature terms. Namely, the p°

0

explicitly written in (43} is given by p™~" + p(l)’. The local shear in the presence

of the equilibrium variations is given by

-1 &D
s s®, O _ 0, L&%&) NG s
o gg om

where the first two terms are given by the initial equilibrium and +P and
0D/ on describe the effect of changes in the equilibrium with D given in (34). The
marginal stability ballooning equation for this set of equilibrium is given by

o B ok, ) ]
?&E(—gw + gWLZE + 2(p(0) + p(l) )\]g(l ++D(e,, + KgL)g =0, (49)
where
! |
L= @ +ePm-n + Buo=But . (50)

Veg""
with the integration constant of D chosen such that D(n,) = 0, and the value 1 =

1, corresponds to Lin, ) = 0.

One can now map out the regions of stability and instability in a space
parameterized by p” and +” as was done in Figure 1 for Mercier stability by
numerically solving Eq. (49) for a given equilibrium and accounting for the

(1)’, +9 and D. This was done in GC, to derive the s-a

variations through p
stability curves used to interpret tokamak ballooning stability.

As pointed out in GC, the variation in the local shear plays an important
role in determining the stability properties. For analytic insight into the nature of
variations of the local shear in stellarators, we introduce a simple analytic
representation of the field strength variation and the variation in g¥¥. In

particular, it is assumed that the field strength variation is dominated by a single

Fourier harmonic,



Vg = V1 + 8mpcos(mé-ng) + .1, (51)

which produces a Pfirsch-Schliiter coefficient given by

mJ+ 1l Syp

J++4l m+-n

A

Ik

cos(m6 — ni} . (52)

Without loss of generality, 8mp is taken to be positive. Additionally, it is
assumed that the variation in the noncircularity is dominated by two Fourier
harmonics, one of which corresponds to the harmonic of the field strength
variation. Specifically, we write

1

S?V = G - g, cos(mb-nd) - gscos(m@-n'C)y +..1 (53)

where m”/n” # m/n and G(y) > 0. A reasonable assumption is that 1> gy > 0.
This corresponds to a bulging of the flux surfaces into the low field region, for m
= 1, a helical shift of the column to the low field side, for m = 2, an elliptic
surface that bulges into the low field region, etc. The sign of &5 is irrelevant since
a redefinition of the angle coordinates can always be chosen that leaves m0 —n{
unchanged but shifts m"8 —n{ by n.  The variation in the local shear induced by

the equilibrium variations as given in Eq. (48) is given by

D
D = —+"e. cos(md - ng) + gycos(m’8 —n'C)]
on v
.V 'G(m] + nl) o
-p —Smn[Ho(m6-ng) + g5c0s(m 8-n"OHy(m6-nL)] , (54)

m+-—-1n

where Hg and Hj are functions of the dominant magnetic harmonic mé - n{

given by
82 &
Ho(m6 -n&) =(1- —:}) cos(mB-ns) - 2%os(:znma-zng) , (55)
&
Hy(mb -nd) = —Q‘” + cos(mB-nf) . (56)



The limit of a symmetric system can be examined by taking &; = 0.
Additionally, we assume m6 -~ n{ =0 is the local bad curvature region which is
consistent with Eq. (51). Since ballooning mode eigenfunctions tend to peak in
the regions of small local shear, understanding the behavior of D with increasing
pressure gradient can yield insight into the physics of ballooning stability. In this
limit, the pressure modulation of the local shear enhances the local shear, as
described in Eq. (48), in the bad curvature region if mx > n and reduces the local
shear if m+ < n. In the tokamak limit where m+ > n and +” < 0, the pressure
modulation at small enough pressure gradient tends to keep the region of small
local shear in the bad curvature :region.12 As pressure increases further the small
local shear region migrates away from the bad curvature region. As pointed out
in GC, this is the reason for the second ballooning stability region of tokamak
configurations. For a helically symmetric equilibrium with n > ms, the situation
is completely analogous to the tokamak case if +” > 0: at low pressure the region
of local shear is in the bad curvature region and at higher pressure gradient, the
local shear region moves toward the good curvature region. For this reason, we
should expect a second stability ballooning region for helically systems with
favorable Mercier properties and+” > 0. Crudely, the properties of a helically
symmetric system can be related to the analogous tokamak case by replacing the
safety factor q of the tokamak with 1/¢ - n/m) and q"/q with +/(n/m - +). Tt
has been noted that the transport properties of helical systems can be calculated
by the same procedure.27 This safety factor transition factor accounts for the
reduction of the connection length in helical symmetry. The region of ballooning
instability in a perfectly helically symmetric, Mercier stable configuration is in
the +” > 0 region for n+ > m.

From Eqg. (53), the three-dimensional effect is destabilizing. With &5 # 0,

an additional field line dependence is introduced into the ballooning coefficients.



For this reason, the ballooning mode eigenfunction becomes field line dependent
and is afforded a greater range in space to find regions of small local shear. As
discussed previously, the structure of the eigenmode is greatly complicated in

2

three-dimensional configurations ? and a numerical calculation of the ballooning

equation is needed to identify regions of stability.

V. Currentless plasmas
If we limit the class of equilibria under investigation to those without any
net parallel current, the set of equilibria is only parameterized by one function.

To see this, consider the constraint equation (33} in the limit V=0,

D= _Ap®- (57)

where A is a function of the initial equilibrium only

A
A= (]++I)W. (58)

The intersection of Eq. (57) and the stability plots in the ftwo-dimensional
parameter space represents the stability properties of currentless stellarators. For
the case of Mercier stability, there are two classes of stability solutions. These

solutions are characterized by a function of the initial equilibrium G, defined by

4p(0)rV‘H' 41_(0) fV'H 4V*H'2
where A is given by Eq. (58). If G < 0, there is no Mercier unstable region for any
value of pressure gradient at o = 0. This is represented by the top line drawn
in Figure 1. If G > 0, then there exists an unstable region for pressure gradients in

the range

(DF I ©). tt
* pAY t 2V
N —-A2 ~\G< - p(l)’ <-—x _Az ++G. (60)




However as shown by the bottom line in Figure 1, there always exists a second
stability region at sufficiently large pressure gradient.

The sign of A is determined by the flux surface average of the
noncircularity and the Pfirsch-Schliter spectrum. In the particular limit
described by Egs. (51)(53),

O nE

A= —1—2(5 :(% , (61)
where JG > 0 and 8,5, > 0 from the discussion above. In this limit A is
determined by the sign of (& ~n/m). In a tokamak-like region where the toroidal
curvature dominates, n = 0, increasing pressure gradient tends to make the
average shear decrease. This limit corresponds to that considered in Ref. (10),
where it was noted that for sufficiently large pressure gradient, the average shear
changed from “stellarator-like" to "tokamak-like." In a region dominated by the
helical curvature with n > mw, increasing pressure gradient makes the average
shear larger. We note that this qualitative calculation can explain the behavior of
the average shear observed in numerical calculations of high beta equilibria in
the LHD configuration.13’l4 In the core region, the toroidal curvature dominates,
while the helical curvature dominates in the outer parts of the plasma. As such,
the shear is expected to decrease in the core and increase in the edge as the
pressure gradient is built up.

The ballooning stability properties of currentless stellarators can also be
understood by plotting the intersection of Eq. (57) with numerical solutions of
the marginal ballooning equation, Eq. (49).

An alternative way to view the stability space of Mercier and ballooning
modes is to plot them in a space parameterized by p” and . Using (33) to relate
the average shear variation to the p” and o variations, the Mercier stability

diagram of Figure 1 is redrawn in Figure 2. In this plot, we assume A > 0 which



corresponds to a region dominated by a helical magnetic harmonic with n > ms+.
For this case, sufficiently large positive ¢ yields a Mercier stable region. Note,
however, that this is in the opposite direction of the equilibrium bootstrap
current caused by the magnetic field inhomogeneity with n > m.2® For regions
with A < 0, the characteristic plot is inverted with a Mercier stable region for
sufficiently negative equilibrium current which is opposite to the direction of the
equilibrium bootstrap current. Clearly, the ballooning stability properties can be

plotted in a space parameterized by p” and o.

VI. Summary

In this work, the question of Mercier and ballooning stability in helical
configurations is addressed by generalizing the work of Greene and Chance'? to
three-dimensional configurations. In this method, a set of equilibria are
generated by imposing small amplitude variations of the plasma profiles on an
initial arbitrary equilibrium. By demanding that the perturbed state is also an
equilibrium, the profile variations are constrained so that only two free profile
parameters describe the set. By using this method, one is able to characterize the
stability properties of a particular magnetic surface by the use of a two-
dimensional profile plot reminiscent of the s-o diagram used in tokamak stability
studies.¥1?

A particularly interesting limit is the currentless stellarator, where the set
of equilibrium is parameterized by one free function, which can be chosen to be
the pressure gradient. This set of equilibria is parameterized by a straight line in
the more general two-dimensional stability plots. For this case, the Mercier
stability of a magnetic surface is either always stable, or characterized by a first

and second stability region at sufficiently low and high pressure gradient,

respectively. Since the role of parallel currents in stellarators is an important



issue, we suggest an alternative way to view the more general stability space of a
particular configuration is by using a p™-o plot instead of the more commonly
used p”- +" plot.

As originally pointed out in Ref. (22), the eigenmode structure of
ballooning modes in three-dimensional systems is more complicated than in
axisymmetric tokamaks. In particular, due to the three-dimensionality of the
stellarators, the eigenvalues are in general field line dependent. Because of this,
there are two classes of eigenvalue level surfaces in the ballooning (y,6i.a) space,
one describing topological cylinders which correspond to those of tokamak
configurations and one describing topological spheres which are unique to
stellarator configurations. It is suggested that by using the method for
generating equilibria introduced in this work, one will be able to classify where
the "cylindrical” and "spherical” ballooning eigenfunctions lie in the p’-+” (or p’-
) space. It has been speculated that the topologically sphere-shaped eigenvalue
level surfaces are more localized in configurations space and hence more able to

be stabilized by finite Larmor radius effects.*

If the "spherical” ballooning
modes are strongly stabilized by FLR, the stability space of the topologically
cylindrical tokamak-like ballooning modes may provide a more practical beta

limit in stellarators. We leave this topic for future theoretical investigation.
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Appendix: Variations in the magnetic coordinate

Variations in the magnetic coordinates are accounted for in the body of the
paper by deriving relationships between the plasma profile shapes and the
inverse coordinate mapping as described by (17), (27), (28) and (34). In this
appendix we relate these variations to the magnetic coordinates in the varied
equilibrium. As in GC, the changes in the profiles lead to shifting of the angle-
like variables which are first order in p, and shifts in the magnetic surfaces which
are second order in .

The changes in 8 and { at a given point in space will be calculated in terms
of the initial equilibrium's magnetic coordinates. Namely, we write the

perturbed coordinates

8 =004+ 0W (A1)
y = W(O) n !—12 2) ¥ (A3)

in terms of the initial coordinates and their variations, and calculate to first order

the equation

X(\[I,G,Q - X(U)(W(U)’B(U),C(U)) . (A4)
This leads to the condition

{0 O
N, g WX _

pos + £ ” =0 (A5)

3¢

which, using (27) and (28), leads to the conditions



@ _ HdyD-+/dyp"”
gl =
(J++D

, (A6)

@  IldyD-{dyp®
- J++D

G , (A7)

where 1, | and + are expressed in terms of their value in the initial equilibrium
and the profile variations are expressed in terms of the variations [3(1) and D,

given in (25) and (34).

2)

The variation y can be derived from the equation

dy2 ~ de dy dg dy @ dy -

which results from accounting for first order variations in the Jacobian. It's

(A8)

straightforward to show this leads to the condition

d2y® 1.8 8 EDRG
[(J aB—IaC)(D\@) + an(ﬁ Vg)

dy? " gD

++ V1405 -v, (A9)

where J, Tand Vg are given by their value in the initial equilibrium.
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Figure Captions

1. The Mercier stability space with VIt > 0. The Mercier unstable region is
that enclosed by the parabolic boundary described in Eq. (36). The lines
correspond to the characteristic Mercier stability properties of a stellarator
equilibrium with no net plasma current. The solid line that intersects the
unstable region corresponds to G > 0. The dotted line corresponds a currentless

equilibrium with G <0.

2. Regions of Mercier stability plotted in a space parameterized by pressure
gradient and equilibrium current. This plot corresponds to a magnetic surface
where A > 0 or equivilantly a surface dominated by a magnetic harmonic with n
> m+. This surface is stable to Mercier modes for sufficiently large equilibrium
current. Below this characteristic value, Mercier modes are stable at sufficiently

large and small pressure gradient.
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