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Abstract

The outgassing equation based on the Temkin isotherm is presented to
consider the outgassing behaviour in the pump-down of an unbaked vacuum
system. A method to solve approximately the equation is discussed first and
then solutions of outgassing rates are derived. Discussion is made how to
derive appropriate solutions from the equation which are possible to predict
the dependence of outgassing rate on pumping time and pumping speed.
Solutions obtained finally are possible to explain consistently the outgassing
behaviour observed experimentally for 304 stainless steel chamber after
exposure to moist air concerning the dependence of outgassing rate on time
and pumping speed.
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1. Introduction

Recently, I and my colleagues [1] mecasured the outgassing rate of an
unbaked stainless steel chamber after exposure to moist air using pumping
orifices of various sizes in the pumping speed range 0.35 1/s - 182 1/s, and
found that the measured outgassing rate q obeys a power law g = const.t *(S/A)”
where t is the pumping time, S/A is the pumping parameter defined as the
ratio of pumping speed S to the surface area A of chamber, and exponents of
¢ , m are given as |¢—1/>0 (i.e. ¢ isabout 1) and0<m <1 . The time dependence
of outgassing rate can be explained with the pumping-down models [2,3] based
on the Temkin isotherm and the extended Temkin isotherm but the dependence
of outgassing rate on pumping speed cannot be explained by such pumping-
down models. Then, in order to explain theoretically the experimental result
on the dependence for pumping speed, an outgassing model to describe the
outgassing rate of a vacuum system in a reversible-adsorbed phase was
constructed and an outgassing equation was derived. The detailed derivation
procedure of the outgassing equation has been reported elsewhere [4].

In this paper, it is discussed how to solve the outgassing equation and how
to extract fine outgassing behaviour from the obtained solution.

2. Outgassing equation

In order to consider the change of outgassing rate with time during the
pump-down of an unbaked vacuum system, we have first assumed that the
initial surface coverage in the pump-down changes by less than one monolayer
and adsorption 1s fully reversible. Then we have derived the outgassing
equation for the vacuum system by considering mass conservation of equations
for the total number of gas molecules in the system and the number of
adsorbed gas molecules on the wall surface of the vacuum system as follows
[1.4]:
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where q is the outgassing rate, 0 is the surface coverage defined as fraction of
occupied sites with adsorbed molecules on a solid surface, ¢, 1s the number of
adsorbed molecules per unit area in monolayer coverage, a/A 1s the pumping
parameter, s is the effective sticking probability and t is the mean residence
time. Eq.(2) describes the outgassing rate at a quasi-steady state when the
pressure of the vacuum system changes very slowly with pumping time. In
addition the parameters s, Tand a/A in Eq.(2) are defined as

5= S(,(l—e), (3)
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where s, is the sticking probability on empty sites, 1, is the nominal period of

and

vibration of an adsorbed molecule on a solid surface, E is the heat of
adsorption, R is the gas constant ,T is the absolute temperature, a is the
equivalent surface area for pumping speed of S, v is the average velocity of
gas molecule in gas phase and A is the surface area of the wall surface. Here if
we consider the Temkin isotherm in which the heat fall of E is linear with
increasing 0, E in Eq.(4) may be expressed as

E=E +AE(1-6), (62)
AE=E —FE (6b)

where AE is the magnitude of variation of heat of adsorption, E_ is the
minimum heat of adsorption at 6 = 1 and £, is the maximum heat of
adsorption at 0 = 0. Using Eqs.(6a,b), Eq.(4) is expressed as
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By substituting Egs.(3) and (7a) into Eq.(2), we have the following form of
variable separation:

__ v
F(G)( dt ) ot exp(h) )
where
F(6) = exp(-—be)( 1= z+ i ) (8b)
and
y=— 8c)

What we can have such a form of variable separation as Eq.(8a) for Eq.(2)
means that the differential equation for coverage is mathematically solved.
However, we must depend on numerical analysis for obtaining a solution,
because the integration of left-hand side ot Eq.(8a) is analytically difficuit.

3. Approximation method to solve the outgassing equation
3.1 Approximate expression of F(0)

Here we try to solve Eq.(8a) by approximating F(€) with a simple function
so that we can integrate F(0) analytically. Since the main term in F(0) is
exp(-b08)/6, 1f we express it by letting x=b6 as exp(—56)/0 = bexp(-x)/x=G , the
total differential of InG is given by

dG{G = —dx—dx/x.
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From this relation we can say that if 1 < x (i.e. 1/b < 0), the change of G with
x is dominated by the function exp(-x) and it x <l(i.e. 6 < 1/b), it is In turn
dominated by the function 1/x. Thus we may express approximately the
function F(8) with an exponential function or a fractional function according
to the range of coverage. Before determining approximated functions, we here
assume reasonable numerical values for the specific parameters of b and v as
follows: b=20 (i.e. AE =12 kcal/mol for £,=23 kcal/mol and £, = 11lkcal/mol)
and 7 is variable between 10-5 to 10 for s3=0.1 Then, using two constants of k
and f we may express F(0) with the following exponential function for the
range of /p(=0.05)<6<1,

FO)=rep-2]. O

We can determine the average value of constant 1/k by comparing derivatives
dF(8)/d6 between Eqs.(8b) and (9) as

2 1
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and using Eq.(10a) the average value of f 1s given as

1
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(1) Approximation with power function for the range of 0.8<6<1

In the calculation of the average value of I/k by Eq.(10a), we face a peaking
that the integration of 1/{1+y —8) gives extreamely a large number for small vy
at 6=1. However, we can avoid the peaking, since it is possible within the
error of 10% to teplace the term (1-0) with In(1/0) in Eq.(6a) for the range
of 0.8<6<1. Then the mean residence time for£ = £ + AEIn(1/8) is rewritten
as



T=18". (11)
By combining Eqgs.(2),(8a) and (11), we have

F@)=0"""[(1+v)-6] for 0.8<6<1. (12)

(2) Constants k , f for the middle range of 0.2<6<0.38

Since the range of high coverage near 1 is treated separately, we here try to
estimate the constants 1/k and f using Eqs.(10a) and (10b) for the remaining
range of 1/b(=0.05)<6<0.8. An interest is to estimate the values of 1/k and
when the change of coverage remains in the middle range of coverage near
6 =1/2, which 1s the assumption in the Temkin isotherm that 6 — 1/2 so that
0/(1-9) —> 1. We may expect such situation for the pumpdown of the chamber
by small pumping speed. If we can apply the assumption of 6/(1-8)=1 for the
middle range, Eq.(8b) is expressed as

F(O)= exp(—be)[ 1 J%] . (13)

Then we can estimate average values of 1/k and f for 02<6<08 and
107" £ v <10 using Eqgs. (9) and (13). The results are shown in Table 1.

(3) Constants k , f for the range of 0.2<6<0.8 and 1/p(=0.05) <0 <0.8
Table-2 shows average values of 1/k and f calculated using Eqs.(8b) and (9)
for 02<6<08 and 107 <y<10. Table-3 shows the average values of
constants when the lower Integral limit of 0 is extended further from 6=0.2 to
0=1/b=0.05.

(4) Approximation with a fractional function for the range of
0<6<1/b(=0.05)

When the coverage becomes less than 1/b, we can put that exp(—58) in the
function F(0) is nearly equal to 1. Then Eq.(8b) is expressed as

F(6) = ”T”" P



3.2 Approximate solution of 6(t)

We try to derive solution of 6(t) as a function of time from Eq.(8a) using
the approximated forms for F(9).
(1) For 0.8 <6 <1,by combining Eqgs.{8a),(11) and (12) we have

e—ah-l}[(l_‘_,}’ 8]( d@] % (15)

The integration of

L] Y !
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gives for the approximation of 1= b the following relation:

—

[(1+7)-6]6" = di (f +Fj . (16)

T\

By substituting again Eq.(16) into Eq.(15) the integration gives

T
9(1):[_@_} for :l,=%. (17

[+t
(2) For 0.2<6<0.8, from Table-1 if v is less than 10-2, we can set that kb=1
and 1=0.6. Then by letting

F(8) = fexp(-08}) (18)

the integration of Eq.(8a),

—Texp(—b@)d@ =

el!

1t expl b)J r

gives
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where 0,(=0.8) is the initial coverage at t=0.
(3) For 0.2<0<0.8, from Table-2 we can set that kb <1 and f =3 ~ 32 . Then
using Eq.(9), the integration of Eq.(8a) is given as

eexp(—«}d WJCH (20)

and it gives

’Y (1

= —klp| ——. __8 .

9(1‘) n[ﬂ “ex ( | t+exp( . )J 1)

(4) For OSGSI/b (—— 0.05),by substituting Eq.(13) into Eq(8a) we have the

integration of

J.dt
0 i+'y T, exp(b)
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and 1t gives

t
0(1) = 8, exp[— 1 EY = exp(b)] . @3
4. Outgassing rate as time derivative of 6(t)

Now we can express the outgassing rate q(t) using the solution 6(t) derived
in Section 3.2. As defined in Eq.(1), it is given by differentiating 6(t) as
follows:

(1) for 0.8<8<1,

I+—
(e t b T
fy=—=}-2 , for t,=—, (24a
9) T‘[H—toj' b (242)



(2) for 0.2<6<08 and kb= 1,

G
f=—2_  for 1, =<exp/b(1-8), (24b)
0=y for o explb(1-6,)]
(3) for02<6<08 and kb« 1,
kG AfT ( 9”)
f)=——2_  for 1, == b-—t |, (24c
g(t) ((5t) or » exp b-- (24c)

(4) for 0<8<1/b(=0.05) ,

Y Gmeﬂ 'Y t
f)= : - : . (24d
9() 1+7 T exp(b) eXp[ I+y T exp(b):| (24d)

Eq.(24a) shows that the outgassing rate obeys the power law g(t) = consts™
where ¢ is slightly greater than 1. This time dependence is acceptable, since
we can express the variation of heat of adsorption in the Temkin isotherm in
the range of high coverage near 6=1 with that in the Freundlich isotherm
under the approximation of (1-0)=In(l/6). The outgassing rate is not
dependent on the pumping speed, since no pumping parameter appears in the
expression of q(t). Egs.(24b) and (24¢) show that the outgassing rate obeys the
power law g(#) = consts™* where ¢ is just equal to 1 and the outgassing rate is
not dependent on pumping speed, since pumping parameter does not appear
explicitly in the expression of q(t) except that the constant k in Eq.(24¢) has
weak dependence on Y. The constant 7, which appears in Eqs.(24a),(24b) and
(24¢) can be explained as delay time or transit time until the outgassing rate
builds up from O to a steady state value when the pump-down of vacuum
system is started. This time becomes longer when the pump-down i1s started at
a smaller initial coverage and with a smaller pumping parameter. Eq.(24d)
shows that the outgassing rate decreases exponentially with pumping time and
depends on the pumping speed, because the curvature of q is expressed by
Y/(14+7).

5. Outgassing rate of higher order approximation

_g_ﬁ



According to recent results [1,5,6] of outgassing measurements for 304
stainless steel chambers after exposure to moist air, it has been suggested that
the outgassing rate obeys a power law g(¢) = consts™ where ¢ varies from 0.83
to 1.3. For such experimental results, it is possible to explain only the power
law g(7) = const:™® where 1 < ¢ and ¢ = 1 using the results of Eqs.(24a),(24b)
and (24c) but is difficult to explain the power law of ¢ < 1. The reason why
the power law of ¢ < 1 cannot be explained theoretically should be asked for
that we express the outgassing rate by differentiating the solution 9(t). We can
have another expression for the outgassing rate by substituting directly the
solution 6{t) into Eq.(2). Since the time dependent term in Eq.(2) is mainly
represented with 6/t(8), for example it is shown for the solution Eq.(21) as

ko t, “" fexplb){ 1
90! t(exp[b(l—e,})][f+f‘] h|: Y (H—IUH'

We can see from this expression that the outgassing rate vs. time curve has the

behaviour of ¢(¢) = consts* where ¢ = kb < 1. Then let us consider how a
consistent expression of outgassing rate with experimental results should be
derived from Eq.(2), when the approximated solution of O(t) is given by
Eq.(19) or Eq.(21). If we derive a second order differential equation for
coverage from Eq.(2), it is expressed by combining with Eq.(1) as follows:

i_di_—_ Ldt 1 d_S_iie_ s (253)
qde |tdi _,4di ©dr
A

and since the third term of the right-hand side can be rewritten again using
Eq.(2) as [(a/A)/(s+a/A)}/t, we at last have

_l__c_ig_ l dt I ds a 1 1

+
q di tdr L Gd A

The right-hand side of Eq.(25b) shows that  is described with three terms. In



particular the third term as a total differential ot & appears due to the pump-
down of the vacuum system (1.e. a/A = ()). The integration of Eq.(25b) for the
integration limits from t=0 to t 1s given by

s(O)+a
a0y _ €04 | et @
PR PP 2| o
A A

In order to obtain the expression of outgassing rate from Eq.(26), it 1s
necessary to calculate the time integration of the exponential term. Using

Eq.(21), we can transform s(6) and 1(6) to time functions respectively as

7(8) = T, exp[b(1-0)] = T, exp(b)[ﬁ(t + t“)]“' =1(t). (27a)

and
5(6) =5,(1-6) =5, + s k[B(r +1,)] = s(),  (27b)
where
_ Y
b= kft_exp(b) - 279
and

B, = exp(—%j . (27d)
Then, using Egs.{27a) and (27b) the integration is expressed as

!
a

i I I
I= _(—f{)’[ a s“k[ln [3(1 + z(,) + }L] T _exp(b) i:ﬁ(t + f“)} , (282)




where

A=— (28b)
By letting x=p(¢z+1,) andu = xexp(A), I is expressed as

d
I =—f-exp[-A(1- b)) | ﬁ , (29a)

and we have for kb=1

(29b)

and for kb < 1, since the integral of Eq.(29a) becomes logintegral which is

expressed as

[ () = 0.57721 + Tnftna 7] + iw

u Inu pyry rer

where the number 0.57721 is Euler’s constant. Then we have

i 6 193 anl-kh)
[=Inj—2t V| L . (29%)
[-8+y | | t+t,

where
. H
o=f- exp[—k(l - kb)] =f exp[—( 1+ “{)(I - b]] ,  (29d)

and
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2
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Thus Eq.(26) gives the following expressions tor ¢(t) :
(1) for kb=1 by combining Egs(26) and (2Yb)

1+ 4
q(r)=ﬁ[ . }[1_6"”} , (30a)

T |t+e, | 1-8+7

9

(2) for kb<1 by combining Eqs(26) and (29¢)

; Ab+(1-4h) —6 + 1+
q(!)=%{—”} [m——-——w q . (30b)

T {141, 1-8+y
Now if we approximate in Eq.(30a) that s(0)=s,(1-6,)=0for6, =1 at t=0 and

s(1) = 5,[1-8(1)] = 5, for 6(1) = 0 after long pump-down, the last brackets term of

the right-hand side is expressed as
1— 6(; +7¥ _ ¥
[-0+y 1+y

and the time ratio 7,/t, s replaced as

t() f
—= Eexp[b(! - 9”)],

‘CL

then Eq.(30a) 1s given as

o 1 +f
q() = o, exp[6(1-6,)] 1;(f{+ I )L—;J . ()

Similarly we can simplify Eq.(30b). Let us first examine the magnitude of
parameters @ and 11. By using parameter values of k and f as a function of vy
shown in Table 1 and 2, we can calculate o and 1 with Eq.(29d). The
following conditions are used for the calculation of «, and u:

8(0)=0,=08at t=0and6(r)=0.2 atr =1 tor Table 1 and Table 2 .



The calculated values of « and 1) for variation of y are shown in Tables 4 and
5. For the condition of kb < 1, as shown in Tables 4 and 5, « is regarded to
be very small number compared with 1. Then we can treat the last brackets
term of the right-hand side in Eq.(30b) as

1_90’*'7’ Ha,__, 7
1-8+7 T 14y

and further we may regard the coefficient 1| as a constant value for the

variation of 7y. In addition the term ¢,/t, is expressed using Egs.(27¢) and
(27d) by letting ¢ = kb+an(1-kb) as

2] Tomi 2]

3

and by putting that 6=0, =1 in the equality between Eqgs.(8b) and (9), since
the expression can be rewritten as

b

0
expl ———+b | =
o =5+0)

|2

then we have the following relation :

Thus we have the simplified expression of Eq.(30b) as

g(t) E(Fm(i) (——k—_J (M-L] , 0 =kb+an(l-kb). (33)
l+y)

T r+1,

Eq.(32) shows that the outgassing rate in the middle range of coverage is
proportional to y/r' where {=0.6 <1 and kb=1. Eq.(33) shows that the
outgassing rate in the middle range of coverage is proportional to



[¥/(1+7)]t © where ¢ < 1.

6. Discussion and summary
(1) Solution of outgassing equation

In order to solve analytically the outgassing equation of Eq.(2), 1t is
essential to find out reasonable approximated expressions for the function
F(8) which is given as the product of two functions, exp(—58) and (1-6+v)/6.
By taking into account that the dominant contribution of each function to the
change of F(0) with decrease of © appears separately in different ranges of
coverage, F(0) can be approximated with an exponential function or a
fractional function. However, only for the high coverage range near 0 =1,
F(6) should be rather replaced from the exponential function to a power
function to avoid the peaking of constant k at 8=1. Using three expressions for
F(0), the solutions 6(t) of Eq.(2) can be derived. Then, the outgassing rates
can be also determined with the solution 6(t).
(2) Expression of outgassing rate

There are two methods to express the outgassing rate ¢(t) with the solution
B(t). One is to express q(t) using Eq.(1) by differentiating directly 6(t). The
other is to express q(t) by substituting 6(t) into the right-hand side of Eq.(2).
In either way, same expressions for outgassing rate are drawn for the high
range of 0.8<6<1 and the low range of 0<6<1/b, but only for the middle
range of I/b<6<0.8 the expression of outgassing rate differs with the
approach. Although Egs.(24a),(24b) and(24c) are derived by the differential
method, these predict the obedience of outgassing rate to the power law
g(1) = t*. In particular, in the comparison with the experimental results[1,5,6]
on the power law dependence of outgassing rate, Eq.(24a) predicts the power
law that the exponent 0 becomes slightly greater than 1, and Eqgs.(24b) and
(24¢) predict the power law that ¢ becomes just 1. However, the power law
that 6 becomes smaller than 1 can not be explained by any of the above
expressions. On the other hand, when the outgassing rate is expressed by the
substitution of 6(t) into Eq.(2), since the outgassing rate is characterized
mainly with the reciprocal of mean residence time, the time dependence of
outgassing rate is described as 1/1(8) = 1/z(z) = 1 ¥ where ¢ =kb. As shown in



Table 1 and 2, the constant k is variable depending on the value of ¥ and the
value of lower limit of 8 which is permissible for the middle range. If the
lower limit value 1s 6 =0.2, kb is nearly equal to 1 ( i.e. kb=1) for y< 0.1 but
becomes slightly less than 1 (i.e. kb < 1) for y > 0.1. Thus, in order to explain
theoretically the power law of ¢ <1 for outgassing rate observed
experimentally, the term t©(6) must appear explicitly in the expression of
outgassing rate q(t). From this reason a more accurate expression for
outgassing rate should be derived from Eq.(2). In the meaning that the
differential method for 6(t) does not show the exponent value smaller than 1,
one can regard that Egs.(19) and (21) are solutions of zero order
approximation for the outgassing equation. In addition, as seen in Table 2,
when coverage O becomes smaller than 6=1/2 , kb becomes less than 1 (i.e. kb
< 1) for almost all y values. Such situation as that the lower limit of coverage
shifts to a very small value, may be expected practically in the pump-down of
a vacuum system after mild baking or discharge cleaning for the vacuum
system. In Tables 1 and 2, it is noticed that the maximum limit of y is 10, since
Y =10 is equivalent to a/A =1 for the assumed value of s; = 0.1. Thus the
variable range of Y for the pump-down of uvsual vacuum system may be
considered to be as ¥y < 10.
(3) Outgassing rate of higher order approximation

It is very important to discuss the outgassing behaviour in the middie range
of coverage, since the coverage of adsorbed molecules on the wall of a
vacuum chamber in a reversible-adsorbed phase will almost remain in the
muddle range. The outgassing rate in this range can be derived by solving
Eq.(25b). To solve it results in calculating the solution of higher order
approximation for coverage, which appears as the time integral of the
exponent in Eq.(26). However, since it is ditficult to integrate analytically the
exponent, numerical treatment is necessary. So that parameters of ¢ and 1 are
introduced to evaluate the integration for the case of kb < 1 and are calculated
for various ¥ value. As a result of the numerical evaluation as shown in Tables
4 and 3, the following conclusions are drawn:
(1) when F(9) is expressed by Eq.(13) in the middle range of 0.2<8<0238, the
outgassing rate obeys the power law ¢(r) = constt™y/ where ¢=kb=1 and {=0.6



for y<o.1,and ¢ <1 and vy’ changesto[v/(1+7)] for y>o0.1,

(it) when F(0) is expressed by Eq.(8b) in the middle range of 0.2 <6 <03, the
outgassing rate obeys the power law (1) = consts*[y/(1 +v)] where ¢<I. There
have been proposed for some pumping-down models[2,3] for a vacuum system
in a reversible-adsorbed phase based on the Temkin isotherm. These models
suggest that the outgassing rate obeys the power law t'! and not depends on
pumping speed. This suggestion differs from the resuits of this outgassing
model. The difference occurs probably by the reason that as discussed above,
since only solution of zero order approximation for coverage 1s derived in the
pumping-down models, as a result such a power law of ¢ < 1 cannot be
drawn. Redhead{3] has shown numerically using the pumping-down model
based on the extended Temkin 1sotherm that the exponent ¢ of t% behaviour in
the pressure vs. time curve is able to become less than 1, if the minimum heat
of adsorption starts to increase from an initial value with decrease of
coverage. However, in this study it may be rather explained as a result that the
function F(8) changes from the exponential function to the fractional function
with decrease of 0, i.e. the value of 1/k starts to increase rapidly for coverage
below 6=1/2. In addition, it may be an important prediction of the outgassing
model that the outgassing rate in a reversible-adsorbed phase is dependent on
pumping speed, since any pumping-down model has not so far remarked on
such dependence.
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Table captions
Table 1 : Constants 1/k and f calculated for the approximation
[1+(y/6)]e™ = fe=** in the ranges of 0.2<6<0.8 and 10" <y <10.

Table 2 : Constants 1/k and f calculated for the approximation
(1+y—08)e ™ /8 = fe in the ranges of 0.2<0<0.8 and 10 <y <10.

Table 3 : Constants 1/k and { calculated for the approximation
(1+y—8)e *° [0 = fe ¥ in the ranges of 0.05<6<0.8 and 10” <y <10.

Table 4 : Constants ¢, and 7, calculated using parameter values of k, f and vy
given in Table-1 for the condition of kb<l.

Table 5 : Constants o and 7, calculated using parameter values of k, f and vy
given in Table-2.



Table-1

10

y 10 1 10° 10° 107

1

i b 1.33 0.98 0.29 0.04 0 0

-]1; 21.33 20.98 20.29 20.04 20.0 20.0
kb 0.937 0.953 0.985 ~1 ] 1

f 26.0 3.17 0.85 0.62 0.60 0.60
Table-2

¥ 10 1 10" 10~ 10~ 10*
% -b 1.78 2.24 2.93 3.19 3.22 3.67
-i- 21.78 22.24 22.93 23.19 23.22 23.67
kb 0.918 0.899 0.872 0.862 0.861 0.845
f 31.6 5.91 3.24 3.08 3.07 3.79
Table-3

¥ 10 1 107 10 10~ 10* 107
% 2284 2326  24.03 24.29 24.33 24.33 24.33
f 770 1296 7.65 7.16 7.21 7.22 7.22




Table-4

4 10 1 0.1

a 1.1735x10°  0.4465 0.6178

Mg 4.6072x10° 13705 1.0217

Ty 9.0779x10°  1.6870 1.0691

Table-5

y 10 1 10" 10° 107 10

a 9.912x10° 6.6980x107 1.2907x10" 1.2283x10" 1.2227x10" 9.6301x107
s 2.476x10° 2.3883 1.2709 1.1959 1.1882 1.2181
N> 6.396x10° 4.4894 2.359 2.3092 2.3048 2.6771
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