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Identification and Analysis of Vortical Structures

S. Kipa and H. MIURA ™

ABSTRACT. Various identification and visualization methods of vortical structure,
especially of slender vortices, are critically reviewed with a special attention to their
objectivity. The sectional-swirl-and-pressure-minimum scheme is presented as a new
identification method and applied to homogeneous turbulence. Since the physical
quantities associated with an individual vortex can be analyzed separately, this
new scheme enables us to investigate quantitatively various physical characteristics
related to vortices, such as the variations of the core shape, the circulation and the
vorticity vector along a vortex and the temporal evolution of arbitrarily selected

vortices.
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1 Introduction

Most flows of practical importance are rotational. Among various kinds of vortical mo-
tions, the existence of swirling slender vortices with relatively large vorticity is ubiquitous.
The torpadoes in nature, the streamwise vortices in the turbulent shear flow with or without
boundary, the Kelvin-Helmholtz vortex rolls and braids in the mixing layer and the tubular
regions (so-called “worms” ) of high vorticity in isotropic turbulence are only some of typical
examples {[Kim et al., 1971}, [Siggia, 1981], [Bernal & Roshko, 1986], [Yamamoto & Hosokawa,
1990], [Lesieur and Métais, 1996] , [Kida & Tanaka 1994]). These structures are considered
to be generated by various flow instabilities including the Kelvin-Helmholtz instability and
intensified by vortex stretching ([Porter et. al., 1994], [Kida & Tanaka, 1994]).

The vortical motions make the fluid flow fully three dimensional and complicated in general,
and play dynamically important roles in kinetic energy production and dissipation, mixing,
diffusion and transport of mass, heat and momentum, enhancement of frictional drag in turbu-
lent boundary layer, fluid instability, and so on. Understanding of the dynamies of the vortical
structure, such as their generation, interaction and evolution mechanisms, is prerequisite for

flow prediction and control.
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Although such typical vortices mentioned above are relatively easily recognized, it is sur-
prisingly difficult to define the general vortical structure objectively and unambiguously. There
have been proposed so far a lot of methods of identification and visualization of swirling slender
vortices with resort to various flow quantities such as streamlines, pathlines, vorticity, pressure,
the Laplacian of pressure, the rate-of-strain temsor, etc. (see [Lugt, 1979], [Jeong & Hussain,
1995]). We must admit, however, that there is still no objective criterion found with which
the vortical structure can be clearly educed and analyzed. Needless to say, it is helpful in the
study of fluid dynamics to share a common idea or a consensus on the fundamental processes
of fluid motions, e.g. on vortices and waves. In view of the universality of the existence of
slender vortices the precise definition of them, if possible, is highly desirable.

In Sec. 2, various identification methods of vortical structures are discussed in the point
of view of their objectivity. A new vortex eduction scheme is proposed in which the axis and
the core of a vortex are determined by tracing the pressure-minimum line under the swirl
condition. The advantage of vortex skeleton representation is presented. Then, this scheme
is applied to homogeneous turbulence in Sec. 3. Section 4 is devoted to summary and further

discussions.

2 Visualization of vortices

We survey here various methods of visualization of vortical structures with a special atten-

tion to the slender swirling vortices.

2.1. VELOCITY AND VORTICITY REPRESENTATIONS

A precise definition of the vortical structure, if any, may be helpful not only for the de-
scription of fluid motions but also for the discussions on the vortex dynamics. The difficulty
of the objective definition, however, has long been recognized among fluid dynamicists (see
[Lugt, 1979]). For example, the streamlines or the pathlines are seen as spiral curves around
a vortex by an observer who moves with that vortex. But we do not know a priori where the
vortex in question is. This leads to a serious problem because the pattern of streamlines can be
different among inertial systems with different velocity. Moreover, even if proper streamlines
were obtained, it would not be easy to define the vortical domains from their three-dimensional
pattern. In a special case that the direction of vortices is known a priori, however, the stream-
lines may be useful for identification at least approximately. In fact, the position and the core
size of streamwise vortices in a wall turbulence were detected by analyzing the pattern of the
streamlines projected on cross-stream planes [Bernard et al. 1993]. Since, however, the stream-
wise vortices are inclined quite a bit from the streamwise direction both to the wall-normal
and the spanwise directions [see Jeong et. al. 1997], this method may suffer from ambiguity.

The vorticity, which is equal to a haif of angular velocity of the rotation of fluid elements,

is one of the most natural candidates for characterization of the vortical motions. A bundie
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of vorticity lines were used for visualization of the vortical structure of tubular vortices in
isotropic turbulence {She et al., 1991]. A hairpin vortex in wall turbulence was depicted in
terms of vorticity lines [Moin & Kim 1982}. In spite of these suggestive studies, however, we
must be careful in the vorticity-line representation. The vorticity lines are generally chaotic
in fully-three-dimensional flows and the topology is structurally unstable. That is, the spatial
structure of a vorticity line can change drastically by only a slight shift of it. Furthermore,
the strength of vorticity is not represented by vorticity lines.

Instead of lines, the isosurfaces of vorticity magnitude have been used frequently to visualize
the vorticity-concentrated regions in various turbulence partly because of its easy use. In
fact, it was by this representation that tubular vortices in isotropic turbulence have called
people’s attention (see [Siggia, 1981], [Yamamoto & Hosckawa, 1988]). The formation of
tubular vortices from flat vortical structures through the Kelvin-Helmholtz instability was
observed in decaying isotropic turbulence [Porter et al., 1994]. The use of vorticity magnitude
as representation of swirling tubular vortices, however, is problematic in at least the following
two respects. First, soley the vorticity cannot distinguish the swirling motions from shearing.
Recall that the Couette flow is rotational but all the streamlines are parallel. In fact the swirling
tubular vortices and the shearing flat vortices are characterized by the use of relative magnitude
of vorticity to the rate-of-strain [Tanaka & Kida, 1993]. Secondly, the geometrical structure
of isosurface varies depending on the threshold, i.e. the value of the vorticity magnitude.
Lower thresholds may provide flatter structures. Hence, this representation must be said to
be subjective if the choice of the threshold is arbitrary.

A more elaborate characterization of the structure of the velocity field is given by the use
of the velocity gradient (or the rate-of-deformation) tensor

Ou,

W, = Bz, (1)

A classification of the flow topology is made in terms of three invariants of W as follows
([Dallmann, 1983], [Chong et al., 1990}).
Consider a topological structure of velocity field around an arbitrary point in a coordinate

system moving with it. In the vicinity of this point the velocity field is approximated by
us = Wyzj, (2)

the repeated suffices being summed up over 1-—3. The eigenvalues A of W are calculated, for

an incompressible flow, from
X+QA+R=0, (3)
where

Q = IWijo.z' - —% (Sz‘_?SJZ + ‘QUQ.?Z) = -
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and
R= —;WyWiWii = 5 (SiSiaSki + 3025215 (5)

are the second and the third invariants of W, respectively, and S;; = %(W}J + Wj;) and 25 =
%(W}j - W) = —%e@kwk, (w; being the vorticity and ;5 the Eddington alternating tensor)
are the symmetric and the anti-symmetric parts of the velocity gradient tensor, respectively.
The last equality in (4) is derived by taking a divergence of the Navier-Stokes equation for an
incompressible fluid of unit density.

Equation (3) can have either only real roots, or the one real root and a conjugate pair of
complex roots according to whether the discriminant

3 2
2=(59) +(37) ®

is non-positive or not. If the eigenvalue is complex at some point, the streamlines around this
point form in general spiral curves on a plane spanned by the real and the imaginary parts of
the eigenvector associated with this complex eigenvalue. The regions in which the eigenvalues
of the velocity gradient tensor are complex may be regarded as “vortex” ([Dallmann, 1983],
[Chong et al., 1990]). This definition (A > 0) of vortical regions will be applied to homogeneous
turbulence in the next section. Note that the discriminant is non-positive (A < 0) for an
irrotational flow (22 = o) (the equality holds for any two of the eigenvalues are equal), and
that if @) > 0, then A > 0.

2.2 PRESSURE REPRESENTATION

Around the center of a swirling vortex the pressure is likely to be reduced to counterbalance
the centrifugal force. This fact suggests a possible use of low-pressure regions for eduction of
vortices. In fact, the pressure has been used by many researchers for characterization of flow
structures, such as a classification of the flow structure [Wray & Hunt, 1990] and a better
identification of vortical regions in a two-dimensional flow [Twayama & Okamoto, 1996]. The
superiority of the vortex visualization by pressure over tke vorticity magnitude in mixing
layer turbulence is noticed by Métais & Lesieur (1992). The low-pressure regions are easily
visnalized by bubbles in laboratory experiments. The existence of low-pressure slender vortices
in rotating turbulence was reported by Douady et al. (1991).

One important thing to be noticed in the pressure representation is that the lowness of the
pressure inside a swirling vortex is relative to the surroundings and that the absolute value
of the pressure depends on the surrounding pressure distribution. This may bring a serious
difficulty in visualizing many vortices at a single level of pressure. The visualization of vortices
by pressure therefore may not be appropriate for such a system in that many vortices coexist,
though it can work as a good indicator for detection of a few strong vortices. Since the choice

of the threshold is arbitrary, this method is not objective.
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Another fundamental question is that the low pressure does not necessarily imply the
existence of swirling motion, and vice versa. There is an unsteady flow in which the pressure
is lower even if there is no swirling motion. On the other hand, the pressure does not take a
minimum across a stationary Kdrmdn swirling vortex [Jeong & Hussain 1995]. Our new swirl
condition will be discussed in §2.4.

As mentioned above, the pressure level inside of vortices depends on the surrounding flow
field and it is not appropriate to visualize many vortices simultaneously. One of the quan-
tities which are free from this drawback but still capable of representing the lower pressure
is the Laplacian of pressure V2p. As shown in (4), this expresses the difference in magni-
tude between the anti-symmetric and the symmetric parts of the velocity gradient tensor, or
the relative magnitude of the vorticity and the strain rate. It was observed in homogeneous
shear turbulence that tubular vortices and flat vortical regions appear in the vorticity- and the
strain-dominant regions, respectively [Tanaka & Kida, 1993]. Since, however, the threshold is
set arbitrarily, this method cannot escape from subjectivity.

The above argument on the low pressure inside a vortex is applied across the vortex but
not along it. That is, the pressure does not necessarily take a minimum along a vortex.
This condition is expressed mathematically as that at least two eigen-values of the pressure
hessian (8%/8z;0z;)p are positive. A consideration of extracting the effects of pressure on
swirling motion has recently been made by Jeong & Hussain (1995). By removing the effects
of unsteadiness and viscosity, which have no direct connection with swirling motions, from
the Navier-Stokes equation, they took — (S;Sk, + 2:xf2%;) in place of the pressure hessian
and defined a vortex core as such regions in that two eigenvalues of — (SuSk; + 2i52%;) are
positive. Note that a set of the eigenvalues of — (SiSk; + 2% 2;) does not, in general, coincide
with that of the pressure hessian though the sum of the three eigenvalues does. Therefore the
pressure does not always take a minimum across the regions extracted by this method. They
applied this definition {called Ao-definition by them) to several typical lows with clear vortical
structures and showed that it is superior to other methods in many respects. This is an
objective definition of vortical structure. If this method is applied to homogeneous turbulence,
however, the isosurfaces cover too much amount of the space to visualize the vortex structure
neatly [Miura & Kida, 1997]. Note also that contrary to the A, definition, a non-zero threshold
for A is employed in the eduction of the longitudinal vortices in wall-turbulence [Jeong et al.,
1997].

2.3. VORTEX SKELETON

In all the visualization methods of vortical regions discussed in the preceding subsections a
finite volume of vortical regions are dealt with. The size, shape and position of vortical regions
not only change in time but also vary from vortex to vortex. Enormous amount of memory and

computation time are necessary to represent the whole structure and their temporal evolution



of such vortex regions.

On the other hand, it is now commonly believed that tubular vortices are dominant in most
turbulent flows. The core radius, which is several times of the Kolmogorov length (see §3),
decreases with Reynolds number. If a vortex is sufficiently thin, we may represent it by the
central axis with disregarding the core. This is called the vortex skeleton. (The representation
of core will be considered in §2.4.)

The skeleton representation has the following merits. First, the amount of data size neces-
sary to represent a vortex and the computation load can be drastically reduced. This makes
it possible to describe, for example, the temporal evolution of a vortex. Secondly, each vortex
can be marked independently. This enables us to visualize only a few of arbitrarily chosen
vortices. (It is impossible for isosurface representation of a scalar variable to distinguish the
individual vortical structure.) Then, we can investigate the temporal evolution of chosen vor-
tices from their birth to the death, and mutual interactions, collision, breakdown, instability,
etc. Thirdly, by constructing the core around the axis (e.g. by the use of the swirl condition
described in §2.4), we may analyze the temporal evolution of the core deformation. A quan-
titative analysis of various physical quantities related to vortices is also possible, such as the
contributions from vortices to the enstrophy and energy-dissipation rate.

The vortex skeleton is constructed for example by tracing the lines of sectional pressure
minimum introduced in the preceding subsection. The pressure mirimum was searched in
planes normal either to the vorticity [Banks & Singer 1995] or to the third eigenvector, which
is the one associated with the smallest eigenvalue, of the pressure hessian [Miura & Kida 1997].
Existence of the swirling motions around these skeletons has been demonstrated in Fig. 2 in
Miura & Kida (1997). These two methods are expected to give comparable results for strong
slender vortices for which the above two planes are more or less parallel (see Fig. 5(a)). The
vortex core is determined by setting an appropriate threshold of the pressure in the former
and by the swirl condition (§2.4) in the latter. Note that the latter scheme is objective, but
the former is not. The vortex identified by these schemes may conveniently be called the
low-pressure vortex. An application of the latter scheme to homogeneous turbulence will be
presented in §3. Other methods of skeleton construction have been proposed by Villasenor
& Vincent (1992) and by Jiménez et al. (1993), in which the regions of strong vorticity are

searched for.

2.4 SWIRL CONDITION

As mentioned in §2.2, a swirling motion is not always associated with a sectional pressure
minimum. In order to educe only swirling vortex we impose it a swirl condition.

Let us take an arbitrary point in a flow and consider the topological structure of the velocity
field in a plane passing it. Let us choose a Cartesian coordinate system {z1, T2, x3) which moves

with the fluid velocity at the above point and whose z; and z, axes lie on the above plane. In



the vicinity of this point, the velocity projected on the (i, z2) plane is written as

Uy = Wll:nl—i-W'mxg. (7)
uy = War +War (8)

(see (2)). The topological structure of the streamlines is characterized by the sign of the
discriminant of the (2,2)-matrix {W;,} (i,7 = 1,2),

D = LW — Wa)® + Wiy Way. (9)

The streamlines spiral around the origin or not according to whether IJ is negative or not. (If
an axi-symmetric source or sink flow centered at the origin (u, = (W1 + Wa)z,, 1 = 1,2) is
subtracted, the streamlines of the remaining solenoidal flow field form ellipses or hyperbolas
according as D < 0 or D > 0.) The elliptical regions may be regarded as vortex ([Weiss,
1991], [McWilliams, 1984], [Brachet et al., 1988]). Note that D = —Q = —1V?p in the two-
dimensional incompressible flow (W, + Wy = 0), and therefore the definition (@ > 0) of
vortical region is equivalent to the above definition.

In order to check the rationality of the above definitions of vortical structures we apply it
to a Burgers vortex tube, the velocity field of which is written in a cylindrical polar coordinate

system (r,#,z) as

u, = —zar, (10)
r o

Ug = ‘2;{1—8}{}) |:—4—VT}}, (11)

u, = oz, (12)

where a (> 0) and I are constants.
The vorticity is pointed to the z-direction and is written as

al’ o
W, = M—yexp [_ET ] ; (13)

The 1/e (= 0.37) radius of the vorticity core is 2y/v/a. The pressure is given by
2 2

P_ 1,22 1.22 r > 1 o o

o= —s0°2" — o — (5) /T 3 1 —exp i, dr; + const. (14)
The azimuthal velocity ug has a peak at r. ~ 2.24,/v/«, at which the vorticity is smaller than
that at the center by a factor of 0.18. The circulation and the enstrophy included in & circular
cylinder of radius r, are about 82% of the total. The discriminant D takes negative values at
r < T, 50 that the present definition of vortex specifies the core region of a Burgers vortex tube
unambiguously. On the contrary, the pressure depends on the strength « of the converging

flow. The definition of vortical structure by the use of pressure, such as 8%p/8r?, therefore

cannot be universal.



Next we extend the above swirl condition to a plane of arbitrary orientation. To do it
we introduce a rotation of the coordinate system in which the original Cartesian coordinate
system (z1, s, z3) is rotated around the zz-axis by angle ¢ (0 < ¢ < 27) and around a new
T-axis by angle f (0 < # < w). The velocity field (v}, u3, u3) in the new coordinate system

(z3, x5, x3) is then expressed as

up = M Wa Mzt (= Wizs,say), (15)

iy
where

cosf cosg cosf sing —siné
M= —sing cos¢ 0 (16)

sinf cos¢ sinfl sing cosf

is a rotation matrix and M is its inverse. The swirl condition in the (z, z3) plane is written

as

D(9,¢) = (Wi —W5)' +WhLW;
%[(cos%coszqﬁ — sin’¢) W11 + (cos?8sin?p — cos?¢)Way + sin?6Wi,
+(cos’d + 1)singcosg( Wiy + War) — sinfeosfsing(Was + Wag)
—sinfcosfcosd(Ws; + Wm)] ’
+[cosﬂcos¢sin¢(W22 — W)+ %cosﬂ(cosqu — sin?¢)(Wig + Way)
—3sinfcosg(Was + Wiz + Lsinfsing(Ws; + W13)]2
-3 [cosG(ng — Wa1) + sinfeosd(Was — Wag) + sinfsing(Wa; — ng)r. (17)

It is obvious that D(#, ¢) > 0 for an irrotational flow in which the anti-symmetric part of
the velocity gradient tensor vanishes. Moreover, it is easily shown that there exists a direction
(6,¢) for which D(,¢) = 0 in any points of an irrotational flow. This means that at any
point in rotational regions (where the vorticity is not zero) there is a plane on which the
instantaneous streamlines relative to the velocity at this point are elliptical. In other words, if
we define the vortical regions as those at which the minimum {over all the orientations) of D
Is negative, then it covers the whole space. Incidentally, the sectional swirl of streamlines in a
plane does not necessarily mean the spiral form of the streamlines viewed from the direction
normal to the plane.

The swirl condition (D(f, ¢) < 0) is used to supplement the sectional-pressure-minimum
scheme for the purpose of picking up swirling vortices. Here, the angles {#, ) are given by

the direction of the third eigenvector of the pressure hessian. ! The vortex core is defined as

LAbout 20% of the candidates of the skeletons are discarded by this condition in homogeneous turbulence

discussed in §3.



the regions of D(8. ¢) < 0 surrounding the vortex axis. This definition (called the sectional-
swirl-and-pressure-minimum scheme) of the axis and the core of vortices will be applied to

Lhomogeneous turbulence in the next section.

3 Vortical structures in homogeneous turbulence

In this section the low-pressure vortices in freely decaying homogeneocus turbulence are
visualized by making use of the sectional-swirl-and-pressure-minimum scheme described in the

preceding section.

3.1. IsoTROPIC TURBULENCE

The vortical structure in an isotropic turbulence is analyzed by the use of the data obtained
by a direct numerical simulation of the Navier-Stokes equation in a periodic cube of side 27.
The initial velocity field is given in the spectrum representation with a prescribed energy
spectrum E(k) = (k/ko)*exp [—2(k/ko)?] (ko = 4) with randomized phases. The dealiased (by
the shifted-grid technique) spectral method is used for the spatial integro-differential operations
with resolution N® = 128%. The temporal marching is performed by the fourth-order Runge-
Kutta scheme with time step At = 0.5. The viscosity is set at v = 5 x 107°.

The enstrophy increases at first, takes a maximum and then decreases in time. Here, we
take a flow field at a time after the enstrophy maximum by which the smallest scales of motion
are fuily excited and the tubular vortices are well developed. The Taylor micro-scale length
A and the Kolmogorov length I, = e 3y? at this time are 0.31 and 0.028, respectively, which
may be compared with the effective mesh-size of the simulation Az = 27 /128 = 0.049. The
micro-scale Reynolds number R, is 46.

In Figs. 1, we plot the isosurfaces of (a) the vorticity magnitude and (b} the Laplacian of
pressure. The thresholds of these surfaces are chosen in such a way that they cover the 5% of
the total volume. In the both figures tubular vortical structures are prominent. They look quite
similar as a whole, but the layer structures are also conspicuous in the vorticity magnitude. It
should be remembered here that the appearance of the vortical structures displayed by these
traditional visualizations does change substantially depending upon the value of the arbitrarily
chosen threshold. That is, they are not objective visualizations.

The central axes of swirling vortices constructed by the sectional-swirl-and-pressure-minimum
scheme are drawn with a series of segments of length of order Arx in Fig. 2. There are 13302
vortices and the total length of them is 1660 (= 33810Az). The mean length of the vortices
is 0.12 (= 2.5Az), the maximum is 4.1, and the majority (50%) is concentrated in range be-
tween 0.1 and 0.5. Note, however, that since each vortex is easily torn apart by the mutual
interactions, it is not so meaningful to speak about their mean length. As discussed in Miura
& Kida (1997), all the skeltons of low-pressure vortices are not included in the isosurfaces of

the vorticity magnitude nor the Laplacian of pressure.
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In order to see the characteristic features of the vortices in more detail we plot in Fig. 3{a)
the variations of D (solid line}, 3|w|* (thick broken line), p (dotted line) and V?p (thin broken
line) along the axis of an arbitrarily chosen vortex (the light-blue one in Fig. 7). The abscissa is
the arc-length s (measured from the right-end of the above vortex in Fig. 7) scaled by mesh-size
Ag. The axial length of this vortex is 50Az. It is remarkable that there is a strong correlation
among the variations of three physical quantities, namely, 1|w|?, V?p and —D change in the
same sense, and also a weak correlation with —p. A similar behavior is observed in other
vortices as well. This favors that either high |wl?, high V?p, low p or low D has often been
used for the visualization of vortices.

The cross-sections of the core (defined as the region where D < 0) of this vortex, are
depicted over the whole vortex in Fig. 3(b). The ordinate is normalized by the Kolmogorov
length. It is seen that the shape of the cross-section varies substantially from place to place,
which is commonly observed in other vortices as well. The variation of the cross-section in
range 25 < s/Az < 35 (around the lowest D) is focused in Fig. 3(c). The shape is roundish
and stable in this range.

The radius from the center to the periphery of the core varies in general with the direction
(see Figs. 3(b) and (c)). The mean (thick line) and the standard deviation (broken line) along
the vortex axis are shown in Fig. 4(a). The mean value is more or less stable especially where
the core is round (see Fig. 3(c)).

It is not easy to estimate the mean core radius of vortices because both the shape and the
area change a lot from vortex to vortex. But since the core of long vortices is relatively round,
we may define reasonably well the mean radius of relatively long vortices. The mean radius
averaged over the whole vortices is 3.2/, while it is 3.8l for vortices whose length is larger
than the mean. The mean value increases with the threshold of the length and approaches
around 4.5/,. Here, the average has been taken over relatively round cores whose radius does
not exceed £30% of the mean in all directions. Comparable values were obtained before by
Jiménez et al. (1993) and Tanahashi et al. (1997). In the latter the azimuthal velocity is
shown to be well approximated by that of the Burgers vortex (11).

The distribution of the circulation I" along the vortex axis is shown in Fig. 4(b). Here, the
circulation is calculated by a direct numerical integration of the velocity around the periphery
of the core. It varies gradually except for a rather rapid change around s/Ar = 20. It
takes about 0.011 and 0.005 in the right and left parts, respectively. The vortex Reynolds
number R; = I'/v is 220 and 100 in the respective parts. These values may be compared with
Rp =~ 126 at R =~ 36 and Rr ~ 135 at R, = 63 which are reported by Jiménez et al. {1993).
The reduction of the circulation in the left may be attributed to a tear-off of the vortex core
by a nearest vortex tube {see Fig. 6(b) below).

The variations of the directions of the third eigenvector of the pressure hessian (solid line)

10



and the vorticity (broken line) along the above vortex are shown in Fig. 5(a), in which the
angles of these vectors from the skeleton are plotted. The angles between the two vectors as
well as between consecutive segments are shown in Figs. 5(b) and (c), respectively. It is seen
that both of the angles shown in Fig. 5(a) are relatively small (about 10° or less) over the
whole range except at the very right end. This suggests that the two skeleton construction
schemes by the use of either vorticity or the pressure hessian (see §2.3) give comparable results
though the latter seems slightly better. This angle in the latter should tend to zero in the
limit of infinite resolution (Az — 0). The large values at the end indicate that the vortex is
kinked strongly there (see Fig. 5(c)).

The vortical regions surrounding vortex skeletons are educed by the sectional-swirl-and-
pressure-minimum scheme described at the end of the preceding subsection. They occupy 33%
of the total volume which is so large that the core structure can hardly be seen by plotting the
core boundary (figures omitted). The enstrophy included in these vortical regions is 48% of the
total. Incidentally, the vortical regions defined by A > 0 and V2p > 0 occupy 65% and 43%
of the total volume, respectively. These are again too much for the isosurfaces to visualize the
structure well. In our method, however, a seeable visualization of vortices is possible because
any vortex skeletons can be chosen and marked arbitrarily. In Fig. 6(a), we select 13 vortices
whose core regions are drawn with colored surfaces. The vortex presented in Figs. 3-5 is the
light-blue one. Figure 6(b) is a close-up of this vortex. It is clearly seen that the core is gouged

out by a nearest vortex (green).

3.2. HOMOGENEOUS SHEAR TURBULENCE

The data of homogeneous shear turbulence which is analyzed here is the one that was
simulated by Kida & Tanaka (1992, 1994). The simulation was started with a random velocity
field superimposed to a uniform mean shear flow #; = Sz, where S (= 10) is the shear rate.
The subscripts 1, 2 and 3 denote the streamwise, the vertical and the spanwise directions,
respectively. The fluctuating field is periodic with periods 47, 27 and 27 in the z;-, the zo-
and the z3-directions, respectively. The spatial integro-differential operations were made by the
spectral method with resolution of N* = 128%. Then the effective mesh-sizes are Az; = 0.098
and Az = Azz = 0.049. The Runge-Kutta-Gill scheme with time step At = 0.002 was
employed for temporal marching.

In Figs. 7, we plot the isosurfaces of {(a) the vorticity magnitude and the Laplacian of
pressure and (c) their union at St = 8 by which turbulence has been well developed. Here,
a quarter of the fundamental periodic box (0 < z; < 47, 0 < x3,z3 < 7) are shown. The
levels of the isosurfaces are chosen ir such a way that they include the 5% of the total volume.
The oblique vortical structure inclined vertically from the streamwise direction is common
in the both fields. However, the shape of the structure is much different from each other.

It is flat in the vorticity magnitude, whereas tubulous in the Laplacian of pressure. Most
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tubular structures of vorticity magnitude are included in the isosurfaces of V?p, while the flat

structures are outside. (see Tanaka & Kida, 1993). Incidentally, the root-mean-square of the

vorticity magnitude is m_) = 11 which is comparable with the mean shear vorticity § = 10,

and the three components of vorticity are of comparable orders, \/{w_%; =11, @ =10 and
(w?) = 15.

The vortex skeletons constructed by the sectional-swirl-and-pressure-minimum scheme are
drawn in Fig. 8 There are 2775 vortices and the total length is 311 (= 6328Ax,). The
mean length of the vortices is then 0.11 (= 2.3Az,). The Kolmogorov length at this time is
I = 0.023. All the skeltons are again not included in the isosurfaces of vorticity magnitude
nor the Laplacian of pressure (figures omitted).

The variations of D, 1|w|?, p and V?p along the axis of a vortex (the lower-right one in
Fig. 10) are plotted in Fig. 9(a). The meaning of the lines is the same as Figs. 3(a). The
arc-length is measured from the right end of the above vortex in Fig. 10. The axial length of
this vortex is 87Az,;. There is again a strong correlation in the variations of $|w|?, V?p and
—D (cf. Fig. 3(a)).

The cross-section of the core of this vortex is shown in Figs. 9(b) and (c) over the whole
vortex and over 35 < s/Axz < 50 (around the lowest D), respectively. The change of shape
is substantial. The mean radius averaged over the whole vortices is 4.91,, and it is 5.8I; for
vortices longer than the mean length. The mean value for longer vortices seems to approach
around 6.1l,. These values are greater by about 50% than those for the isotropic turbulence
(§3.1).

The vortical regions defined by D < 0 occupy 14% of the total volume which is again too
much to visualize their entire boundary. The 16% of the enstrophy is included in these vortical
regions. The vortical regions defined by A > 0 and V?p > 0 occupy 70% and 44% volume,
respectively.

Four vortices are picked up and shown in Fig. 10, where the color denotes the sum of tke
two largest eigenvalues of the pressure hessian. The green is the largest and the yellow is the

lowest. The structure of individual vortices is now clearly visualized.

4 Concluding remarks

We have considered in this paper how to educe and visualize the swirling slender vortices
from complicated turbulent motions. The sectional-swirl-and-pressure-minimum scheme is
proposed as one of the objective eduction methods of low-pressure vortices. This scheme is
composed of two steps; the trace of the vortex axes and the construction of the core. It is
one of serious common probIéms that the amount of memory and computation load are too
enormous to analyze the spatial structure and the temporal evolution of the three-dimensional

vortical structures. Fortunately, we can relax this problem by the use of the above scheme in
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the following two ways. First, by representing a vortex only by the central axes (the skeleton
representation), we can save the data size drastically. Secondly. since the individual vertices
can be marked and analyzed independently, it is possible to pick up only a few vortices to be
investigated.

Finally, we would like to mention the coherent structures, among which may be counted the
swirling slender vortex. Although the coherent or organized structures which keep their iden-
tity in turbulent flows over relatively long times and over wide space have attracted people’s
attention over these three decades, it does not seem to be unique but, on the contrary, rather
arbitrary, to find and define some long-lived structures in continuous fluid motions. Many dif-
ferent kinds of coherent structures can be observed in principle depending upon which physical
quantity we are focusing to (see [Hussain, 1986], [Robinson, 1991]). The way of understanding
of turbulence may be influenced by the definition of coherent structure. Therefore, it is quite

important to find and study such coherent structures that play dymanically essential roles.
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Figure captions

Figure 1. Isosurfaces of (a) the vorticity magnitude and (b) the Laplacian of pressure in
isotropic turbulence. The thresholds are set so that each of them covers the 5% of the

total volume.
Figure 2. The vortex skeletons in isotropic turbulence.

Figure 3. (2) The variations of D (solid line), 3|w|? (thick broken line), p (dotted line)
and VZp (thin broken line) along the axis of a vortex. Here, p is multiplied by 100. The

cross-section of the core (b) in the whole vortex and (c) in range 25 < s/Az < 35.

Figure 4. The axial distributions of (a) The mean (solid line) and the standard deviation

{broken line) of the core radius and (b} the circulation of a vortex.

Figure 5. The variations along a vortex of (a) the angles of the third eigenvector of the
pressure hessian (solid line) and of the vorticity (broken line) from the skeleton, (b)
the angles between the eigenvector of the pressure hessian and the vorticity, and (c)

the angles of consecutive segments of the skeleton.

15



Figure 6. (a) The vortex skeletons (white lines) and 13 vortex cores {colored} in isotropic
turbulence. (b) Close-up of (a). A part of core of the light-blue vortex is being gouged
out by another vortex {(green).

Figure 7. Isosurfaces of (a) the vorticity magnitude and (b) the Laplacian of pressure and
(c) their union in homogeneous shear turbulence. The thresholds are set so that each

of them covers the 5% of the total volume.
Figure 8. Vortex skeleton in homogeneous shear turbulence.

Figure 9. (a) The variations of D (solid line), }|w|? (thick broken line), p (dotted line)
and V?2p (thin broken line) along the axis of a vortex. Here, p is multiplied by 100. The

cross-section of the core (b) in the whole vortex and (c) in range 35 < s/Az < 50.

Figure 10. The vortex skeletons (white lines) and 4 vortex cores (colored) in homogeneous

shear turbuleace.
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