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Topological structure and reconnection of magnetic flux lines are investigated by analyzing the
numerical solution of the Boussinesq magneto-hydrodynamic equations in a rotating spherical
shell. Five pairs of Taylor-Proudman vortex columns are generated and drift westward steadily.
Magnetic field is intensified around the tops of these vortex columns. Magnetic flux lines connect
east-west adjacent domains of intense magnetic field, which migrate eastward relative to the
vortex columns. We describe the variation of topology of magnetic flux lines associated with
this eastward migration.
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¢1. Introeduction

The problem of a magneto-hydrodynamic (MHD) dynamo driven by thermal convection in a
rotating spherical shell has been investigated not only for the physical importance, but aiso for
undersianding the essential mechanisms of the generation of magnetic field in celestial bodies such
as the geodynamo.!) A recent rapid development of computer science has enabled us to solve a set
of MHD equations numerically.2"")

In a previous paper”) we studied an intensification mechanism of magnetic flux density by com-
paring the structures of the velocity and the magnetic fields near an onset of dymamo action,
in which five pairs of cyclonic (i.e. rotating in the same sense as the spherical shell) and anti-
cyclonic vortex columns drift westward steadily. The velocity field is symmetric with respect to the
equatorial plane and is five-fold symmetric around the rotation axis, whereas the magnetic field
is anti-symmetric and is not five-fold symmetric.®? This may be attributed to the fact that the
asymmetric mode is linearly more unstable than the symmetric one.?) The intense magnetic field

is always confined in three distinct domains; namely, around the tops of cyclones and their western

neighbor anti-cyclones, inside the anti-cyclones, and between cyclones and their western neighbor



anti-cyclones. The magnetic field is intensified by concentrate-and-stretch of the magnetic fux
lines around sinks in the outer boundary layer, on the equatorial plane and in the inner boundary
layer. The domains of intense magnetic field migrate eastward relative to the vortex columns at a
speed of much slower than the westward drift of the vortex columns. The magnetic dipole moment
oscillates periodically.

In this paper we investigate the topological structure of the intense magnetic flux lines and its
temporal evolution in the above magnetic field. In §2 we discuss the possible types of connections of
the magnetic flux lines which pass the domains of intense magnetic field. We describe the topology
and the reconnection process of the intense magnetic flux lines in §3, and the temporal evolution
of the magnetic flux lines outside the outer sphere in §4. Section 5 is devoted to our concluding

remarks.

§2. Topology of Magnetic Flux Lines

Before examining the numerical solution of the magnetic field, we consider here the possible
topological structures of the intense magnetic flux lines. As stated in the introduction, the present
magnetic field is anti-symmetric with respect to the equatorial plane. Among the three domains
of intense magnetic field, the magnetic flux density is intensified most strongly around the tops
of cyclones and their western neighbor anti-cyclones. There are five of such domains around the
rotation axis in each hemisphere, which are illustrated by shaded circles in Fig. 1.

There are at least two possible types of connections of the magnetic flux lines which pass adjacent
domains of intense magnetic field, i.e. either the north-south symmetric domains (Fig. 1 (a)) or the
east-west adjacent ones (Fig. 1 (b)). Here, thick lines with arrows represent the magnetic flux lines.
The magnetic field can be intensified around all of the five domains in the former case, whereas it
can not be intensified at least around one of the five in the latter because there is no partner to
be connected with this particular one. This latter topological structure of the magnetic flux lines
results in an asymmetry of the magnetic field around the rotation axis. As will be described in the

next section, the asymmetric case is realized in our numerical magnetic field.

§3. Temporal Evolution of Magnetic Flux Lines

The magnetic field we consider here is driven by the thermal convection of an electrically conduct-
ing fluid and confined between two concentric spheres which are rotating with common constant
angular velocity in the gravity field pointed to the center. The temperature on each sphere is kept
uniform and constant at all the time. It is hotter on the inner sphere than on the outer. The
equations of the velocity, the magnetic and the temperature fields under the Boussinesq and the
MHD approximations are solved numerically by the pseudo-spectral method described in ref. 6.

The periodic variation of the magnetic dipole moment was described in a previous paper.” In

Fig. 2 we plot the time-series of the axial component m, of the magnetic dipole moment over 3,



single period of the oscillation, 481 < ¢ < 513. The temporal evolution of the magnetic field during
this period is drawn in Fig. 3, which is viewed (a) from the North Pole and (b) from a direction
slightly above the equatorial piane. The isosurfaces of the magnitude of magnetic flux density b
and vorticity w are respectively drawn by vellow and gray at times denoted by solid circles in Fig. 2
in a frame rotating with the vortex columns (hereafter called the steady-flow frame). The points of
iocal maxima of {b| in the domains around the tops of the vortex columns are plotted by red and
black. These points are located above the cyclones and are symmetric with respect to the equatorial
plane. The red ones belong to a particular cyclone (located at the top in Fig. 3 (a)). A green line
represents the magnetic flux line drawn from a red point in the Northern Hemisphere, which also
passes the corresponding one in the Southern Hemisphere. Dark (or light) green implies that the
magnetic flux lines are inside (or outside) the outer sphere. An arrow denotes the direction of b.
All the magnetic flux lines are closed and anti-symmetric with respect to the equatorial plane. It is
interesting to observe that the magnetic flux line connects the east-west neighboring local maxima
of |b|, namely, the connection of the magnetic flux lines shown in Fig. 1 (b) is actually realized.
The magnetic field is not five-fold symmetric around the rotation axis.

The structures of the magnetic field at (i), {v) and (vi} are identical but their locations are shifted
in the longitudinal direction by angie %w or %’/T with each other (compare the yellow isosurfaces
in Fig. 3 (a)). Let us assign A, B and C to the corresponding points in the congruent domains
of intense magnetic field at (i), (v) and {vi}, respectively. Then we notice that b at A, B and C
changes the direction in succession. We describe below the variation of the magnetic flux lines
during this magnetic field reversal.

A magnetic flux line which comes out of the red point at (i)-(iii) passes near the western local
maximum, while that at {iv)-{vi) passes near the eastern local maximum. The reconnection of this
magnetic flux line takes place near the poles at some time between (iii) and {iv). The magnetic
flux line gradually bends toward the North Pole before the reconnection {(i)-(iii}}, and leaves away

from the pole after the recornection ({(iv)-(vi)). The same process repeats between (v) and (vi).

§4. Reconnection of Magnetic Flux Lines outside the Sphere

In this section we consider the variation of topological structure of the intense magnetic flux lines
outside the outer sphere. In Fig. 4 we plot |b| on the outer sphere by contour lines in the steady-flow
frame at every four time unit ir the period 481 < ¢ < 497 (cf. Fig. 2). Tke local maxima of [b]
are denoted by red. They are viewed from a direction slightly inclined from the North Pole. The
intense magnetic field is distributed asymmetrically around the rotation axis. The magnetic flux
lires which pass the local maxima are drawn by green lines. where the intensity is represented by
the darkness and the direction by arrows. The magnetic flux lines connect the east-west adjacent
regions of intense magnetic field or the north-south symmetric ones. Their topological structures

at {i) and (v) are identical within a rotation of angle %W in the longitudinal direction, but the



directions of the corresponding magnetic flux lines are reversed. In the following we describe the
reconnection process of the magnetic flux lines during this complete reversal of magnetic fieid.

Let us start with (i), where five local maxima (denoted by integers 1-5) of |b| exist in the higher
latitude. The corresponding points at (v) are assigned by integers 1’-5". The magnetic flux line
of Pt. 1 which connects with the western neighbor Pt. 2 at {i) moves to the north and reconnects
with the eastern neighbor Pt. 5 after (iii) and becomes a line of Pt. 2/ at (v), during which |b] is
decreasing at Pt. 2 and increasing at Pt. 5. The magnetic flux line of Pt. 2 which connects with the
eastern neighbor Pt. 1 at (i} moves to the south, disappears once at (iv), then shows up again as
Pt. 3’ at (v). In this period |b] at Pt. 2 weakens at (i)-(iii), disappears at (iv), but again appears at
(v). The magnetic flux line of Pt. 3 which is pointed to the west at (i) extends further and further
toward the western neighbor Pt. 4 and becomes a line of Pt. 4’ at (v), during which {b| at Pt. 4 is
increasing. The magnetic flux lines of Pts. 4 and 5 do not change the connections with the western
neighbor in this period and become lines of Pts. 5" and 1’, respectively.

In the lower latitude there are three local maxima of |b| on each hemisphere at (i). We assign
letters A, B and C to the magnetic flux lines which come out of them in the Northern Hemisphere.
They are symmetric with respect to the equatorial plane. The corresponding magnetic flux lines at
(v} are denoted by A’, B’ and C’. Lines A and B connect the east-west adjacent regions of intense
magnetic field, whereas line C connects the north-south symmetric ones. Line A just expands out
in this period-and finally becomes line B’. Line B changes from the east-west to the north-south
connections between (ii) and (iii), and becomes line C' at {v), while |b| around the foot of C and
B decreases and increases, respectively. The magnetic field at the foot of C weakens and line C
disappears after (iv). A new magnetic flux line appears at the other side of C after (i), and grows

to line A’ at (v).

§5. Concluding Remarks

We have examined the topological structure of the intense magnetic flux lines generated by
thermal convection of an electrically conducting fluid in a rotating spherical shell. The magnetic
flux lines connect the east-west adjacent domains of intense magnetic field around the tops of vortex
columns, as is shown schematically in Fig. 1 (b). Because there are five of such domains in each
hemisphere, this topology of the magnetic flux lines brings about an asymmetry of the magnetic
field around the rotation axis. The magnetic field is reversed periodically in time. The temporal
variation of the magnetic field during this reversal has been described in detail by the reconnection,
the annihilation and the creation of the magnetic flux lines. Finally, we would like to stress that
the description of the magnetic field in terms of the magnetic flux lines together with the isosurface
representation is indispensable for understanding the complex three dimensional structure and the

temporal evolution.
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Figure Captions

Fig. 1. Two possible topological structures of intense magnetic flux lines (thick lines) which connect (a) the north-
south symmetric domains (shaded circles} of intense magnetic field and (b) the east-west adjacent domains. Arrows

denote the directions of the magnetic field.

Fig. 2. A periodic oscillation of the axdal component m. of the magnetic dipole moment. Solid circles denote the

times of Fig. 3 (i-vi).

Fig. 3. The temporal variation of structures of the magnetic field b and the vorticity field w, which is viewed (a)
from the North Pole and (b) from a direction slightly above the equatorial plane. The isosurfaces of {b] = 2 and
|w| = 52 are respectively drawn by yellow and gray at times denoted by solid circles in Fig. 2 in the steady-flow
frame. The points of local maxima of [b] are plotted by red and black. A green line represents the magnetic flux
line drawn from a red point in the Northern Hemisphere. Dark (or light) green implies that the magnetic flux lines

are inside (or outside) the outer sphere. Arrow denotes the direction of b.

Fig. 4. The temporal variation of structure of the magnetic fieid outside the outer sphere. The magnitude of
magnetic flux density [b] on the outer sphere is represented by contour lines at the levels of 0.2, 0.4,0.6,08, 1in
the steady-flow frame at every four time unit in the period 481 < ¢ < 497. The regions of local maxima of |bf are
denoted by red. They are viewed from a direction slightly inclined from the North Pole. The magnetic flux lines
which pass the intense local maxima of |b| on the sphere are drawn by green lines where the intensity is represented

by the darkness and the direction by arrows.
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