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Abstract
The solitary structure solution of the radial electric field E, in the tokamak
plasmas is obtained. It is shown to be stable under the external power supply like a
biased electrode. The radial gradient is governed by the ion viscosity and the
nonlinearlity of the perpendicular conductivity. The radial structure of E, and reduction
of turbulent transport are self-consistently determined. A bifurcation from a radially-
uniform one to solitary one occurs at a certain applied voltage, and a hysteresis is

associated.
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The finding of the H-mode in tokamak plasmas [1] is one of the first
experimental demonstration of the structural transition in confined plasmas, which are
in the far-nonequilibrium state. The electric field bifurcation has been proposed for the
mechanism of the H-mode transition [2], and the important role of the structure of the
radial electric field £, on the plasma confinement is now widely recognized (see review,
e.g., [3,4].) Related with the electric field, the impact on the micro turbulence has been
investigated most intensively. In this process, the radial inhomogeneity of E, is
considered to play a crucial role [5-7]. The interface between the plasmas with different
electric polarity was discussed [8, 91. Motivated by the H-mode physics, the
experiment has been done by use of the biased electrode near the plasma periphery
[10], to study the nonlinear dependence between the radial current and E, and to control
them. The data provides a basic information to understand the plasma nonlinearlity that
induces the electric field bifurcation. Several attempts of analysis have been done [11],
but the spatial structure of F, is not fully understood. In particular, the physics
mechanism that determines the gradient of E, is left unresolved.

In this article, we study the spatial structure of the radial electric ficld in the
presence of the radial current across the magnetic field. It is found that there exists a
solution of solitary structure of E,. The gradient and its impacts on the turbulence
suppression are self-consistently determined. The ion viscosity, coupled with the
nonlinearlity in the perpendicular conductivity, governs the gradient of the radial electric
field. It is shown that the bifurcation of E, takes place from a radially-homogencous
distribution to the solitary structure at a threshold voltage imposed on the electrode.
Stability of this solitary structure is also discussed.

The radial electric ficld £, is governed by the charge conservation relation

combined with the Poisson's relation as %E, =5 OIEL(J YET — J ) where JVET is the

net radial current in the plasma which flows across the magnetic surface, J,,, is the
current which is driven into the electrode by the external circuit, ¢, is the vacuum
susceptibility, and ¢ is a dielectric constant of the magnetized plasma. The radial

current is composed of two components, JVET — j _ £58,V - u; V E,. The first term



J, is the “local current”, which is determined by the radial electric field at the same
radial location. The second is caused by the shear viscosity of ions, it,, and includes
the diffusion operator [3]. The equation of E, is a nonlinear diffuston equation as

OF =V -wVE, -

or-r Eﬁ("rr_‘]ex!) . (1)

The local current J, and E, is related through the perpendicular conductivity

J, = oE)E, @

Many physics mechanisms influence on J,, and the conductivity o(E,) includes the
nonlinear dependence on E,. In this article, we study the case that the neoclassical
current {11] is dominant in J,. We are interested in the very steep gradient of E,.
Compared to the structure of E,, the other plasma parameters are slowly varying in
space, so that the other plasma parameters are treated constant for the simplicity. The
pressure-driven radial current in the limit of E, = 0 is neglected. However, this does
not change the result qualitatively.

First, we study the case that the ion viscosity p, is constant. Effect of the
electric field shear on w,; is discussed later. The dependence of the conductivity on E, is
symbolically written as o(E,) = o{0)f(X), where E, is normalized as X = ep £,/ T {(p
ion poloidal gyroradius, 7 ion temperature), and f{X) satisfies the relations f(0) = I
and f{X) — 0 as|X|— o. For the analytic treatment, we consider the radially-thin
shell structure, and introduce the normalization in space and time as x = (r — 7,)/¢ and
t=1/1y, where ¢ = /u/o{0) and 1,y = g4& | / o(0). (The radius 7, is chosen at the
middle between two electrodes.) The current density is normalized as

I=(ep,/ To{0)/x, Then the basic equation for E, is rewnitten as

dx_ ¥y fXX+1 3)
Jt ax2



The solitary solution of electric field, which has cylindrical symmetry, is searched for.
The solution is much localized than the distance between the two magnetic surfaces, on
which the electrodes are located. The boundary condition is chosen as dX/x — 0 at
[x[— . We choose x = 0 at the surface of the symmetry.

The perpendicular conductivity is calculated in the neoclassical theory [11]. In
the collisionless limit, approximate form is given as f{X) ~ exp (— X?). In a collisional
case, the conductivity is modelled by the Lorentzian form as f(X) =~ 1/{vZ + X?2).

The stationary solution is obtained. Schematic form of the local current Xf(X) is
illustrated in Fig.1. Equation (3) with 8/t = 0 has a trivial solution, which is constant

in space, as

where X] is the solution of the equation f{X;}X; = I (see Fig.1). Besides this trivial
solution, there is a nontrivial solution with the solitary radial electric field. Equation (3)

(with d/0t = 0) is multiplied by 0X/dx and is integrated as

%(%)2 = f ) Xf(X)dX —IX + const= F(X) . (5)

Xy

Quualitative feature of F(X) is known from Fig.1. F(X) takes the minirnum at X = X,
and the maximum at X = X, respectively. (X, and X, are the solutions of Xf{X) = I as
is shown in Fig.1) F(X) is a decreasing function of X in the region of X > X,. The
constant of the integral is chosen as #(X;) = 0. By this choice, the boundary condition

at|x|— « ig satisfied. The solution X(x) is given as

x= f ' (2F(X)y "dx (6)

This solution gives the solitary structure of the radial electric field.



The solution is studied near the critical current, I =~ [, where the local current
Xf(X) takes the maximum with respect to X as is shown in Fig.1. Expanding F(X)in
Eq.(5) in the vicinity of I = I, and keeping terms up to (X — X, in F(X), we have
FIX) = C{(Xe - XXX - X, - (X - X,;Y/3} + - -, and the solution is obtained as

(7)

Cx 2
X(x) = Xy + 302 - 3(12(&—_—!-)

eCx 4 ]

where a = C~ (I, - 1) and C = (- 1/2Y3%/0X?{Xf(X)]y - x.- The peak height
scales as (1, — I)H 2 and the width scales like (1. - I)’m.

To study the voltage-current relation quantitatively, let us take a model form
f(X) = 1 - x%3x2 (X|< ¥3X,) and f(X) = 0 (X|>¥3X,). This model keeps an
essential feature of the conductivity, i.e., f gradually becomes smaller if | X ]is small
and f << I holds in the large | X | limit. This form of f provides an exact analytic
solution for the solitary radial electric field structure. For the parameter range of

XNWN3 <X ; < Xe, we have the solution as

2/6y? 22X,

exp (y;x) + exp (- y;x) + -———
V1 -X23X2 ! Y 3x2_x?

—1
X(x) =X, + )X* (8)

where y; =/ 1 - X?X;Z . In the weak current case, X; < X/V3, we have

X2z I
X(x):CmT+»f3_X*—-2~x2 |x| < x,

¢}
43 Coexp(y (x - x.)) X«

{Coemply fx—x) + 2X Xz 'yPW3)Y + 257

X(x)

+X;,x>x

where x_ = 2C,, X/~ and numerical constants C,, and C are defined as
C, = (VX - X, P(X2 X3 (1 + X, W3XNI - V3X,IX)4,
Cy= (e + yGNI - XWX, cy= 20 + X WEXN1 - 2X,W3XN1 - X257,

;= 2(1 + X,WIXNI - V3X /X Y1 - X3x5 2. Figure 2 illustrates the solitary



solution in the case of X;/X. = 0.6. In the small 7 limit, it is shown from Eq.(9) that
the peak height and the width scales as X277 and X4, respectively.
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By performing the integral V = f X(x)dx, the voltage difference between the
-d2

electrodes is calculated. (d is a distance between the electrode.) In the asymptotic limit

¥;4 >> 1, one has explicit relations
V =406\ % ~ arctan (y; (/1 - X313X7 + ZX XK+ Xd (10)

for the case of X /W3 < X 1 < X, and

V = (#/2/3)C)2 X172 + 2J2C, (V3 Xs - X )X\I
+ 4@% —arctan (C,y,/2 + X, /ﬁx*yf)]x* +X,d (11)

for the small current case, X; < X/¥3. Figure 3 illustrates the V - I curve in the case
of d = 20. Wehave V « X7/~ in the small I limit. The voltage difference V is
rewritien as V = V. + X,d, where V ear is oWing to the deviation of the solitary
solution form the constant one. For the trivial solution Eq.(4), the voltage difference is
given by V = X,d.

The solitary structure is characterized by the peak value of the radial electric
field X(0) and the radial width A, The condition F{X{0)) = 0 determines the peak value,
and the peak value of 4/ F(X) gives the steepest gradient | dX/dx | The results in the
small radial current limit, X(0) XZI-7 and V « X312, are shown to hold generally.
In the smalt 7 limit, an approximate relation F{X) ~ F(X,) - IX holds for a large value of
X. The maximum of the function F, F(X,), scales as X2. The solution of the equation
F(X(0)) = 0 is approximately given as X(0) =~ F(X,)I7 1 ~ X2I-!. The peak value of
ﬁm is evaluated as \/TXZ) ~ X.. That is, the gradient is estimated as

|dX/dx|~ X, (12)



apart from numerical factors of the order unity. The layer thickness is given by
A = (X(0)-X,)71X| In this case, we have A ~X./I. We have an estimate

V peax = (X(0) - X )A, and obrain a dependence as V,,, ~ X7I? in the small / limit. In

the case of I = 1., it 1s explicitly calculated as Voear = ]2C‘5/4(I* - I)M +0e

The bifurcation is described by the voltage-current relation. The V-Icurve is a
multi-valued function as is shown in Fig.3. For a fixed value of current, two solutions
of V are given. For a fixed value of V, one, or three solutions of / are available.

We next discuss about the stability of the solution. Writing X = X, + 8X,
where X, is the stationary solution, one obtains that the perturbed voltage 8V = f oX

a2
for the fixed value of 7 satisfies the relation -(%GV = — f dx [d{Xf(X)}/dX]y 8X. For
—d2

the homogeneous solution Eq.(4), one has 8(dV)Ydt = — [d{Xf(X)}dX]x dV. The
coefficient of 3V in the right hand side is negative, i.e., the solution is stable. For the

nontrivial solution, Eq.(6), the solution could be unstable. If X(x) is chosen such that

dX(x) = 0 holds in the region X{x} < X4, the coefficient
1

a2 -
Cy=-— f ) dx [Z%,—Xf(X)]XOBX( f i dx 5)() is positive. The perturbed voltage
satisfies the relation ddV/dt = €0V and is unstable for a fixed current. In
experimental condition, the external circuits are often composed of the power supply of
V... and the internal resistance. Then the applied voltage between the electrode V and
the current density ! is constrained as V =V, — 71 (coefficient 7; is proportional to the
internal resistance), as is shown by the solid (or dashed) lines in Fig.3. The cross-
points of the V-{ curve and the constraints V =V, — 7] give the solutions. In the
cases of high and low V,, (thin solid lines), solutions are given by A or C and are
stable. Bifurcation from the constant one to the solitary structure takes place at A', and
the back transition occurs at C'. When three roots are given (thin dashed-dotted line),
the second solution B is unstable. We see a hysteresis of the electric field structure as a
function of the voltage in the power supply. Depending on the characteristics of the
external circuit, this system also shows the limit cycle oscillation. The details will be

reported in a separate article.



Finally, the influence of the radial electric field inhomogeneity on the ion
viscosity is investigated. The shear viscosity of ions has two origins, one is the
collisional transport, i, and the other is the turbulent transport, py. The turbulent
transport could depend on the electric field gradient, and the ratio | gy 4. | is the key
parameter, where w, = (dE/dr)B~ ! and v, is the nonlinear decorrelation rate of the
fluctuations that cause the turbulent transport [5-7]. Analytic formulac have been
derived as py, = pp{OXI + wd,/y3,.) ! (when |@g/y 4, |is small) and
Wy & U0 g/ Y gee | (When |@g,/y 4| is large, v < I). We chose, as an

interpolation formula, as

—vi2

sy = {01 + 2 op Mt gef) (13)

The explicit form of the coefficient v 4. is given in, e.g., [3]. Introducing normalized

coefficients as, H; = (eT A 4,Blp )%, thip = W{X — 0) = ppfX — 0) + 1, and
N = pp{X — 0)u 5, we rewrite as w; = u,—o{l —m +n(I + (2W)H (dX/dx?) VIZ}.
Length £ is defined as ¢ = v/ p,/0(0). Equation (5) is replaced as

v i I—v ( ZHIIQ Z)I—VIZ_Z( 2H1 d—Xz)—vlz
4H1{1—v/2+1_v/2 I+ \dx) I+ = (dx)

oGS - a

Equation (14) provides a self-consistent solution for E, and turbulence
suppression. The peak value of X, X(0), is not modified, because it is determined by
the relation F{X(0)) = 0. The solution | x| > A has also the same asymptotic form. The
coupling with the suppression of the turbulent transport makes the solitary structure of
E, more peaked, but does not change the qualitative nature. If the coefficient H, is
small, (2/v)H ,X? << 1, the solution X(x) is unaltered from Eq.(6), and the maximum
suppression factor is given as wy/ux(0) ~ (I + H,XZ)"". In an intermediate range,

1 << (2W)H X% << (I =vY{I —v12)" 02 —q)* 2", the left hand side of Eq.(14) is
approximated as qv¥/2(] —v)(I - w2} 'H,~ 22" 1~ (dX/dx)? ~". Equating it with



the maximum of 5, the maximum of the gradient is estimated as

X'= (X217 - vi2)(1 - v))U(Z 'V}(,?H Ilv)w(4 ~2¥) and the maximum suppression factor is
given as py/upl0) = (2H, XH1 —vi2)~(1 - V)2~ In a case of large coefficient
Hy, (1 =1 =v2) 021 -m) " << (2)H, X2, the left hand side of Eq.(14) is
approximated as 2~ /(7 — nXdX/x)*: The maximum of the gradient is approximately
given as X '~(I-m) "X.. The maximum suppression factor is given as

un/unl0) = (1 —my " *2H,X 22, satisfying the relation py < (7 —v/2YI —v) 'u..
The anomalous transport coefficient is reduced to the level of collisional one and the
momentum transport barrier is locally formed.

In summary, the solitary-ring structure of the radial electric field in the tokamak
plasmas is obtained. The stable solitary structure is sustained by the external steady
power supply. The radial gradient is governed by the ion viscosity and the
nonlinearlity of the perpendicular conductivity. The radial structure and the
suppression of the turbulent transport are self-consistently obtained. This solitary
structure is a typical example of the structural formation associated with the electric field
bifurcation and the reduction of the turbulent transport. The solution Eq.(6) includes
the one in which multiple solitary structures are confined between the electrodes. Such
solutions will be discussed in a separate article. In this article we neglected. for the
analytic transparency, the neutral particle which causes a radial current J, , = G .E,.
The coefficient G, is proportional to the neutral particle density #, and is independent of
E,. If nyis so high that the condition 6,/0{0) << I/X,,,,, ~ I?/X% is not satisfied, the
influence of neutral particies must be kept. Such a correction will be reported in a
separate article.
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Figure Captions

Fig.1 Schematic drawing of the local current f{X)X as a function of the electric field X.

SIX)X takes maximum /« at X = X..

Fig.2 Solitary structure of the radial electric field. Model form f{X) is taken as
F(X) =1~ X%3X2 (X< ¥Y3X.) and f(X) = 0 (X |> V3 X.) Parameter is X,/Xx = 0.6

({11« = 0.792). Dotted line shows the trivial solution Eq.(4).

Fig.3 Relation between the voltage V and the current I for the solitary structure of £,
(thick solid line) and that of the constant solution of E, (thick dashed line). (The
distance is chosen as d = 20.) External circuit provides a constraint, V =V, , — 7/, as
is schematically shown by the thin lines. Bifurcation to the solitary structure takes

place at A, and the back transition occurs at C'.
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