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Abstract

The stability of Alfven-type waves in a Field-Reversed Configura-
tion was studied and preliminary results are presented. Predicted
frequency range is found to be in a good agreement with the exper-
imental data. Saturation mode! has been developed in the frame-
work of nonlinear wave-particle resonant model. The comparison of
calculated saturation time and fluctuation level with experiment is

presented. The model of anomalous transport is discussed.
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L INTRODUGCTION

For the long time the problem of transport processes in a Field Reversed Con-
figuration exist. Experimental data give reasons to consider particle transport in
FRC as anomalous [1]. As one of the reasonable source microinstabilities can be
considered. So it is necessary to find out, what instability really exist in FRC
plasma.

Previously the main attention has been paid to drift-dissipative instabilities
[2], [3] . But the experiments on TRX installation have shown no presence of
LHD activity [4]. In later experiments on FIX installation on the measurement
of magnetic field fluctuation spectra have been obtained that are also unidentified
[5].

The following properties of FRC are most important for the stability analy-
sis:high plasma beta, nonuniform pressure and nonuniform magnetic field. The
previous analysis consider mainly potential microinstabilities caused by pressure
gradient. Effects of high beta have been taken into account, but the final result
has not depended on magnetic field nonuniforrity.

Here we consider electromagnetic instability of Alfven-type wave in plasma with
all nonuniformities taken into account, and the fact that local 3 — oo together
with FLR effects is described correctly.

In section II we briefly describe the assumptions and the mathematical model
of FRC plasma. In section IH results on linear stage of instability are presented.
Section IV describes the nonlinear saturation model. In section V we discuss the

results on nonlinear model and compare them with the experiments.



II. MATHEMATICAL MODEL

We consider FRC in the slab geometry approximation, Magnetic field is taken

in the form of Hill’s vortex configuration

2 T'2 Z2
v =20 (1-2-2) (1)

Here a-separatrix radius, a/b = ¢ - elongation of magnetic field. In our analysis
we neglect z-dependencies, so cousidering only middle-section. This assumption
well describes the highly elongated FRC, which is of interest for reactor prospects
[6]. So below we will replace r by z dependence. Magnetic field profile is shown
in Fig.1.

Pressure profile was taken in the form (Fig.2):

p(a) = mean (1% )

which coincides well with the experimental data [5], if the shape factor K, =~ 3.
Then the local 3 value is 3(z) = 87p(z)/B*(z)} and is shown on Fig.3.

In a high beta plasma the perturbations with long wavelength’s are described
by the following dispersion relation {in a zero gyroradius approximation} {7] in the
local approximation, so with all paramters depend on z coordinate, and assuming

that distribution function is Maxwellian:
c 2 22
Q={= ) (& — % — nwp — k) =0 (3)

where ¢, - Alfven velocity, ¢ - speed of light, w- mode frequency,k, - parallel wave

vector, {2, - drift frequency on magnetic field gradient:

. tpk T,

&, (4)

m,We;

where wg, = (eB}/(m;c) - ion gyrofrequency, T}, m, - ion temperature and mass,

and &, (relative gradient) is defined as follows:



dinB 1dAB
4 " Bdz (5)

K

together with the relative density gradient

dinN
fagy, = dr (6)

This dispersion equation has the analog in the case of spatially uniform plasma,
which describes Alfven waves. In the nonuniform plasma it is impossible to select
different waves in the same manner, so we will simply call the waves, described by
(3) as the Alfven-type waves.

Eq.(3) has two solutions:
W = Qz‘ (7)

k2c5

z

£

(8)

We = —Np; —

To study the process of wave growth it is necessary to add to (3) FLR term
@1 [7]-

¢t 9 5 (1+ wy/ w)2
ImQ; = = ——(k, p:)? |k, [opime—einl 2]
where w,, == nwp, and w is to be replaced by the solutions of (3) from (7),(8).
The dimensionless wave energy is given by
1dQ
W=-——
o (10)

and the dissipation is = = wilm)

Energy of Alfven-type waves from (3) is W ~ (2 — Q;/w) and it is negative if
% > 2w. This condition is fulfilled with the root ws. Such perturbations will be
unstable in the case of positive dissipation = > 0. The last condition is fulfilled
for ws, so the waves with negative energy will be unstable. Energy of Alfven-type

waves is negative in the case, when



fin = — <0 (11)
Fin
and this means the region, where VB and VN have different signs. According to
Fig.1,2 one can see that condition (11) is fulfilled in the outer region of FRC.

For such unstable waves the growth rate is given by

_ Im@
And for the case (8) the growth rate is
9 1 —wp,/lw 2 1
(kJ_Pi):zlkzlsz( /l 21) (13)

LN

Growth rate {13) reaches its maximal value at

k, = \/1§bn|-“(j—j (14)

1 - wm/i’Jwg[ Qz -+ 2&)71,1 + 2]&7262‘4/0.;

where wn; = nwg;.

I1i. RESULTS

Below we present the results of calculation of frequency, wavelengths and
growth rates for the FRC plasma. In order to compare these results with the
experiment, we choose all plasma parameters as in the FIX experiment [3].

Separatrix radius, a = 40cm; plasma density ng = 5 - 10**¢m™2; and plasma
temperature T; = T, = 150eV. The results are as follows.

Wavelengths slightly vary with radius, from 0.42 em™" to 0.33 em ™.

Normalized growth rate of Alfven-type instability is presented in Fig.4. The
region left to ~ 0.87a is out of analysis, because there v > w. In the outer region
of FRC typical growth rates vary from ~ wg, to 0.05wp, at the separatrix. Such
large values gives us the reason to consider Alfven-type waves instability as a real

candidate on the role of the source of anomalous losses.



Wave frequency is presented in Fig.5 and Fig.6. In Fig.5 frequency is normal-
ized to ion gyrofrequency, and in Fig.6 to the low-hybrid frequency. In the region
of unstable waves (Fig.4} Alfven-type waves have frequency from 1.1wp; to 1.1 5
at the separatrix.

In the experiments on the measurement of magnetic field Aluctuations in a field
reversed configuration plasma, fluctuations were observed at the frequency range
3wp; — 0.4Qx. Relative amplitudes were about B/B ~ 1 — 1-10~% We shall
compare the last result with theory in section IV. And here in conclusion we want
to mention the fact, that Alfven type instability has the frequencies which lay in the
observed region. The fact, that predicted frequency near the separatrix is slightly
higher than the observed one 1.1€; 5 instead of 0.4€;; can not be considered as
an argument against Alfven waves. In FIX machine elongation ¢ ~ 5, so this can
be explained by

1}slab model is not enough near the sepratrix, where the effects caused by the
curvature of a magnetic field force line may play the significant role;

2} the plasma profiles used in calculation save the qualitative features of realistic
data, but exact results may differ (in any case in less than an order).

So we see that the analysis of Alfven-type waves in FRC leads to the results
which coincide well with the known experimental data. High growth rates allows
to consider Alfven type instability as a serious fact in the picture of anomalous

transport.

IV. NONLINEAR SATURATION MODEL

We proceed with one particle Hamiltonian

1 e N\NZ e_ -
H= s— 24— Cq
o (p CA) Sz (15)

where zfl - perturbed part of vector-potential B=Vx ff, which appears due to

the Alfven-type wave. Assuming the action variables as
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™ "‘
J, L

2up,
Pyy=|me,+24A (16)
Pz muv;

and determining conjugate angles as 8, - gyrophase, Y- y-coordinate of guiding
center,z -coordinate of the particle, and noting that F, - is the constant of motion

we rewrite Hamiltonian in the form:

2
H= QP; + wp,Jg — E”ZAl sin{k,z + ki y — wi) =

= Ep;‘% + wpidy — -szAl sin(k,z + k psin(o) — wt) = (17}
p e -
=5 =+ wpdy — Eval > Si(kLp)sin(k.z + o — wt)
m

I
Here we expand the assumed form of the perturbation into the series in ordinal
Bessel functions 3 (k. p) of order L.
Redefining J = (J, Jy) = (p,, J,) and 6 = (61,05) = (2,¢) we rewrite(17) in

the more convenient form:

1
Ho(J) = 5—Ji +waul (18)

V(J,6,t) = —WAlJl Z (ki p)sin(k, 0, + 182 — wt)

This is the non-canonical case in the framework of nonlinear physics. It is very
interesting, that in the well known studying of wave-particle interaction in the
case of electrostatic instabilities perturbation in (18 ) does not depend on action
variables, which fact, in turn, allows to reduce the whole problem to standard -
mapping technigue and obtain diffusion coefficients in easy way. Here the pertur-

bation depends on action variable. So strictly Spedking, it 1s necessary to use Li
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transforms, going to the action variables of the next order [8]. Below we will stay
in the local approximation.
So using standard methods we eliminate all harmonics except [ and enter new

phase § = k.0, + (0, —wt. Then V = Vy,J; sin(€), where amplitude
Vo = —(e/me) A1 (k) (19)

S0 the local Hamiltonian is H = Hy(J) + Vi Jp sin(€).

The resonant condition is as usual:
kv, +lwg; —w =0 (20)

And it depends on radial coordinate. Then. choosing any set of resonant values

k9,1 we write equations of motion:

P

J1 = —%lJlkg(‘,OS(f)

4 Jo = =V Jilcos(€) @)

6, = L 4 Vysin(¢)

( 02 = wp;
Then we take the values at the resonance J; = Jiyp, Jo = Jy, expand H (J) in

series on (J, — Jip) and take V at the point J;g, thus obtain:

[ AJ; = —ViyJipkSeos(£)

) AJy = —VaorJuplcos(€)

: (22)
61 = 2 + Vysin(€)

\ 92 = Whi
From resonance condition v® = %‘il and Jig = (m/kQ) (w — lwg,). So phase

dynamics from (18) is:
£+ K2V (w — lwps) cos (£) = 0 (23)
which is simply the equation of nonlinear pendulum with the frequency:
e P
Sﬁzk%;@wﬁ—@AﬁNMM) (24)
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Then fixing any two neighboring resonances [ and [ 4+ 1 the distance between

them will be wg,. And the overlapping criteria is

2
K:(Qs) >1 (25)

Whs

We suppose that the amplitude of the unstable wave will grow until the satura-
tion. Under the saturation here we mean the fulfillment of the condition K = 4.5
which corresponds to the global stochastisation and destruction of resonant struc-

ture. Substituting expression for €1, to (23) we have

K(z,t) = kg(ﬂ?)igz (kip(x)} lwp,(2 2) w(z)

mec wh, ()

Ajger @t (26)

where the Ao - thermal fluctuation level.

So the condition (25) will be realized in time from the central region to sepa-
ratrix, and this can be considered as the movement of the front of saturation to
the plasma border.

Inverting (26) it is easy to obtain expression for the saturation time, which will

define the level of amplitudes of the perturbation.

4.5

1
Te(z,l) = (—) In S
Y oz, )-8k p(x Awﬁlﬂ%u—a

(27)

V. RESULTS ON NONLINEAR SATURATION MODEL

In Fig.7 the results are presented on the calculation of overlapping time for FIX
case. The front of saturation (or global stochastisation) moves outwards, to the
separatrix. In Fig.8. the results are presented on the calculated relative amplitudes
of magnetic field Auctuations, caused by Alfven instability. The calculated level
has been defined as

By = BY” exp (v7.) (28)

where 7, is defined in (27 ).



If we will take into account the Cherenkov damping of Alfven waves in this
frequency region this will slightly change the growth rates near the separatrix,
and will not cause sufficient changes in saturation time and in fluctuation level,
because original growth rates are very large.

This calculated fluctuation level coincides in the order of magnitude with the
experimental upper boundary of the amplitudes of oscillations of magnetic field.
This fact could be explained by the disadvantages of the slab model together
with the crudeness of nonlinear analysis which is to play more qualitative than
quantitative role.

In conclusion we want again to mark especially the fact, that such type of
instability is a kind of inherent property of an inhomogeneous plasma with high 3.
Another arguments for this instability as a realistic source of anomalous transport
are that the correct analysis of drift waves of electrostatic nature shows, that the
conditions of instability change significantly [9] and so such instabilities may not

occur. Some results on such analysis in FRC case will be published elsewhere.
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