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Abstract

In order to check the validity of the self-similar solutions and the existence of weak and strong
collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton
instabilitv 15 performed. Simulation is based on the Zakharov model of strong Langmuir turbulence
in a weakly magnetized plasma accounting for the fuil ion dvnamics For parameters considered,
agreement with self-similar dynamics of the weak collapse tvpe is found with no evidence of the

strong Langmurr collapse .
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Introduction

Both for laboratory and space plasmas with a large energy content, it is typical that a
state 1s reached where nonlinear wave effects compete with the dispersion [1-3] In
such a physical environment spatially localized, soliton like waveforms are readily
formed. These structures evolve rapidly from an arbitrary initial plasma state to
determine basic features of an emerging strong plasma turbulence [2-41 In one-
dimensiona! systems solitons are mostly stable . but in real plasmas, as a rule. sofitary
structures often appear to be unstable with respect to perturbations in a transverse
direction [4-5]. In its nonlinear stage, this instability often leads to a soliton collapse, a
unique nonlinear wave phenomenon of the formation of a singularity in a finite time. In
the physical sense, wave collapse corresponds to wave breaking and particle
acceleration, thus playing a role of an effective heating process in a strongly turbulent
plasma [3-6] Recent studies of the wave collapse, based on self-similar analysis, have
revealed the hierarchy of collapse regimes. The basic distinction is between the weak
collapse which formally brings the zero wave energy to the final collapse stage, and
strong collapse where the initially trapped energy remains finite during the collapse [7].

In this paper, we present a numerical study in two spatial dimensions in order to check
the existence of weak and strong Langmuir wave collapse and validity of self-similar
solutions [7]. Our simulations are based on the Zakharov model of strong Langmuir

turbulence for a plasma in a weak magnetic field including the full ion dynamics [3 — 7].
Nonlinear equations

The simplest example of strong plasma turbulence, thoroughly studied by a theory,
simulation and experiments, is the phenomenon of strong Langmuir turbulence (SLT),
where the interacting modes are of the high-frequency Langmuir and low-frequency
ton sound wave. Zakharov’s model of SLT in a weakly magnetized plasma is given by
two time-averaged dynamical equations [3-7], which describe a nonlinear coupling
between the Langmuir wave potential amplitude (¢ ) and the ion density variation (n)
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the system reads

V:(I@,-—V:@)—O‘\—i@‘V(HV_CJ): d.
n, - V'm = T:iV@::, (2)

where ©.. and ©, are the electron cyclotron and the electron plasma frequency,
respectively, U is the ion to electron mass ratio, 1o, 18 the Debye radius and T is the
eleciron temperature in energetic units. The system (1) is derived under an assumption
that o <<p , correspending tc the physical condition of a weak magnetic field (in
x-direction) @, >>®,  We note that for 6=0 . the system reduces 10 the original set
of curl-free Zakharov equations [4] The vectorial form of (1) readily simplifies to a
scalar model by replacing ( -grade ) by a scalar electric field E(r} . In the small
amplitude (static 1ons) limit, the set(2) further reduces to a single equation of the
nonlinear Schroedinger type (NLS) However, for large Langmuir fields the inclusion of
the full ion inertia is essential [3-8]

A stationary, spatially localized solution of the system{2)in a form of a “standing”

planar (1D) soliton, for the external magnetic field in x-direction, i1s given by

P, = /2 arctan [sinh(Ax)] exp(ii” 1),
i (3)

A problem of the stability, nonlinear dynamics and collapse of Langmuir solitons was
studied in great detail [4-7]. In a linear regime, agreement between direct simulation and
eigenvalue problem results was recently obtained by some of these authors [5]. In the
nonlinear regime, linearly unstable solitons exhibit the wave collapse. In its developed
stage, Langmuir collapse is expected to follow the self-similar evolution [4,7-8]. We
note that  earlier works on the Langmuir collapse scaling, were restricted to a simpler,
static limit of (2). In distinction, this study treats the full set of (1) accounting for the ion
dynamics, that is important for [arge amplitude Langmuir solitons.

General self-similar solution for the Langmuir potential was proposed in a form [7]

. (
o> —— f o } )
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Where t, is the collapse time and  a, b, cand p are real constants
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Starting from (4), we find that the electric field components and maximum field energy

density scale according to

l
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The characteristic dimensions of the collapsing soliton (caviton) contract like

1(6)— (1, -1)",
[ ()=, -0

while the caviton plasmon number (vide infra) scales as
cav 2, 2,5 ~Za~p-2z
N =[Ve'dr~ [Eldr >, -1) _ (8)

In an 1solated cavity, the plasmon number is conserved or decreases in time, so the
following inequality must hold

2a-b+2c >0
which for the two-dimensional case becomes

—2a-b+c=0 >0 .
Generally taken, the equality sign corresponds to a strong, while ineqality stands for a
weak collapse regime . For more details on the collapse hiearchy and the scaling

analysis we refer to earlier papers [7,8].

Simulation resuits and discussions
We have performed direct numerical simulation of nonlinear equations( 2 Ybased on the
spectral Fourier method with respect to two spatial dimensions with an explicit time

integration scheme. Initial conditions are chosen in a form of a standing planar soliton
(3), perturbed in a transverse, y- direction, as given by

0,(1=0)=g_(t=0) (1 +25c0sky),



where the imitial 10n density is taken to satisfy the adiabauc matching, m order to
shorten plasma transients We have used periodic boundary conditions (L., L)) . a
numerical grnid 64 x 64 points (checked upon 128 x 128) and the perturbation level
£=0.01, performing regular numerical check of conserved integrals of motion in (1) :

the plasmon number (N)

N = I}V@]:d; . (9)
and the Hamiltonian (H)
: A
- - h - -~ v 2 -
H :JI ’V‘@! TG}V_gai’ +n|V¢9;' +ui‘-:_n_ dr
S 2 2
with, n.=V"¢ 10y

To study the space-time dynamics of the soliton instability we have performed runs with
different values of k A and ¢ The simulations have confirmed that all linearly
unstable solitons [5-6] in the nonlinear stage enter the collapse phase. We illustrate the
typical space-time evolution of the soliton collapse in figure 1 Further, we show
temporal evolution of the soliton amplitude in figure 2. Initial, linearly unstable phase 1s
followed by an explosive growth; entering a self-similar stage of a Langmuir collapse.
Further in order to check if the self-similar character of the collapse is consistent with
(4), we vary t, to find the best fit with simulation data for the maximum electric field
and corresponding soliton dimensions 1, and I, (figure 3) We measure the values of
the scaling parameters a, b and ¢ to find p We show the calculated parameters a,
b, c and B, for different values of the soliton strength A and magnetic field ¢ in
Table 1 In all considered cases we have found good agreement with the self-similar
solution {4). as indicated by the power law dependence in figure 3 In our simulations of
the inertial phase of the Langmuir collapse, for various values of k, A and o, weak
collapse (B >0) is regularly observed. with no evidence of the strong Langmuir collapse
Increase of the magnetic field speeds up the amplitude growth and the transverse
contraction rate; however these effects are suppressed for a larger soliton strength

Apart from contributing to a general theory of Langmuir turbulence, above results can

be applied to recent studies of SLT in ionospheric, auroral and solar plasmas [9-10].
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Figure 1

Figure 2

Figure 3

Tabie 1

Figure captions
Space-time evolution of the amplitude of the electric field (E(x,v))during the
Langmuir collapse The soliton strength 1s 2= 3 and magnetic field c=10

The maximum of the soiiton amplitude in time for different transverse

perturbation wavenumbers. The soliton strength 1s A =5 and =3

Characteristic scliton spatial scales (1, 1) and maximum energy as a

function of time (t,-t) Numerical fits (lines) of simulation data (points)

Scaling parameters 2, b, ¢ and B calculated for different values of

the soliton strength A  and magnetic field o.
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| A= = A2=5 Al= 22=25

| 6=0 | 0=10 | o=0 | 6=10 | =0 | 6=10 | =0 | o=10 | om0 | =10
. 142 | 150 | 139 146 | 138 | 145 | 138 | 145 | 138 | 143
065 : 067 | 070 : 070 | 0.69 | 0.69 | 065 | 065 | 063 | 063
| 09 09 080 | 090 ! 0.84 | 087 088 | 090 | 090 & 091
;; | 013 1 016 0 015 ' 014 © 015 ¢ 011 | 015 | 012 | 015 0.1

Table 4
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