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Abstract

A new nonlinear electromagnetic gyrokinetic equation is derived for plas-
mas with large flow velocities on the order of the ion thermal speed. The
gvrokinetic equation derived here is given in the form which is valid for gen-
eral magnetic geometries including the slab. cylindrical and toroidal config-
urations. The source term for the anomalous viscosity arising through the
Reynolds stress is identified in the gyrokinetic equation. For the toroidally
rotating plasma., particle, energy and momentum balance equations as well as
the detailed definitions of the anomalous transport fluxes and the anomalous
entropy production are shown. The quasilinear anomalous transport matrix
connecting the conjugate pairs of the anomalous fluxes and the forces satisfies

the Onsager svmmetry.
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I[. INTRODUCTION

Gyrokinetic equations!™

3 give the foundation to investigate microinstabilities which
cause the turbulent or anomalous transport in fusion plasmas. They describe fluctuations
with short perpendicular wavelengths on the order of the ion gyroradius and frequencies
much lower than the ion gyrofrequency. There are two types of methods to derive the gy-
rokinetic equation. The recursive technique'™" was used when the gyrokinetic equation was
first obtained. The recursive method is also used for derivation of the drift kinetic equa-
tion'*1% from which the neoclassical transport®™18 is described. Another modern detivation
is based on the perturbative Hamiltonian formalism.*™'* The gyrokinetic equation obtained
by the Hamiltonian method is written for the total distribution function, which is a contrast
to the recursively derived torm where the distribution function is separated into equilibrium
and perturbed parts. The conservation of the phase space, the energy and the magnetic
moment are systematically treated by the Hamiltonian formulation. However, the Hamilto-
nian method generally considers the collisionless case due to the fact that its treatment of
collisions does not seem to be systematically clear yet.

In the present paper, we follow the recursive formulation with the ballooning representa-
tion to derive the nonlinear electromagnetic gyrokinetic equation for plasmas with large flows
because we also include collisional effects which are necessary for the unified description of
the turbulent and collisional (classical and neoclassical) transport processes.'” ™! It is also
known that the turbulent system with the finite transport fluxes requires finite collisionality
to reach a steady state.?®** The gyrokinetic equation derived here is valid for general mag-
netic geometries with large flows on the order of the ion thermal speed. From this equation,
the reduced forms for the slab, cylindrical and torcidal configurations are easily obtained.
In recent years, effects of large flows have been attracting much attention in relation to
improved confinement such as high-confinement modes (H-modes)*® and internal transport

barriers (ITB) found in reversed shear configurations.’*?* Artun and Tang®’ derived the

gyrokinetic equations for the slab and toroidal system with large equilibrium flows by using



the recursive method for the the ballooning tvpe of flnctuations. Hamiltoman derivation
of the gyvrokinetic equation for the toroidally rotating plasma was shown by Brizard.'? In
the siab and toroidal configurations. our gyvrokinetic equation reduces 1o shightly different

Y It seems to be partly because they did

forms from those obtained by Artun and Tang.
not treat correctly the ballooning representation for the rotating svstem i which the tem-
poral dependence of the radial wavenumber should he considered.”® Instead. by using the
correct ballooning representation, we see that our result for the toroidal case coincides with
Brizard's result.’? We elucidate which term in the gyvrokinetic equation is responsible for
the anomalous viscosity {or Revnolds stress}. This term is important for rigorousiy describ-
ing the interaction between the background flow and the fluctuations with perpendicular
wavelengths on the order of the thermal gyroradius.

Here. we assume that the large flow velocity 1s approximately balanced with the radial
electric field in the same way as in Artun and Tang®’ and Brizard.'? Recently, Hahm'?
presented the gyrokinetic equation which can treat the case where the steep pressure gradient
produces the large radial electric field with relatively small flow velocity.

In the present work, we also show the particle, energy and momenturn balance equations
as well as the detailed definitions of the ancmalous transport fiuxes and the anomalous
entropy production for the toroidally rotating plasma. This work 1s an electromagnetic
extension of our previous work.”!

A hasic kinetic equation for a turbulent plasma is written as

2w {EaR) s vx BB} U = k) W)

ot MMy ¢
where C, = 3, C,s denotes a collision term and the distribution function for species a
(the electromagnetic fields) is divided into the ensemble average part f, (E = —-V® —

c'9A /9t B =V x A) and the fluctuating part f, (E = ~Vo — ¢ 18A/31,B = ¥V x A).

Taking an ensemble average {}ens of Eq. {1) gives the kinetic equation for f, as

o
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where the right-hand side consists of the collision term and the fluctuation-particle interac-

tion term D, defined by

€y ~ 1 - 8fa
D= - ((B+_vxB). - 3

Mg < N cv 8 v >ens ( )
Subtracting Eg. (2) from Eq. (1) gives the equation for the f, as

€a

a 1 a1 .
’:(—9—£+V-v+ma (E+EVXB)%:|fQ

_ g Lo Y Wetf) _
_ (E+CVXB> S 4 0o — (Cu)ens — D (4)

M,
The drift kinetic equation describing the neoclassical transport and the gyrokinetic equation
describing the anomalous transport are derived from Eqgs. (2) and {4), respectively.
We employ the drift ordering parameter § = p,/L [p, = v,/ the thermal gyroradius,
vra = (20,/m)'/?: the thermal velocity. Q, = ¢,8/{m,c): the gyrofrequency, L: the
equiltbrium scale length] to expand the distribution functions and the electromagnetic fields

as

Jo=foot fatfaa+---, fa:fal+fa2+"'
E:E0+E1+E2+“‘, E=E1+E2+"‘

B:BO; B:B1+B2+°" (5)

where the fluctuating quantities are assumed to be O(§) of the ensemble-averaged values.
Note that we can put By = By = --- = 0 since B is used as the basis for defining the
expansion parameter §. For the drift ordering, It is convenient to follow the Littlejokn’s
rule’” and regard the electric charge e, (instead of B) as the parameter of O(671): ¢, = el~1).

Here we allow the large mean flow on the order of the thermal velocity vy, to exist and
the lowest-order flow velocity is denoted by Vy[= O(6%)]. We introduce the phase variables
(x,w, 4,£) in which the particle position x is observed from the laboratory frame while the
particle kinetic energy w, the magnetic moment u, and the gyrophase ¢ are defined in terms

of the velocity v/ = v — Vj in the moving frame as



i . my, (v }° v/,

w = —my (/). p= "l = =e cosf+essiné (6)

2 28 v’
where (e;.e;.b = B/B) are unit vectors which forms a right-handed orthogonal system at
each point. and v’ = vjb + v/ with »; =v'-b.

From the lowest order [= O(67')] of Eq. (2} [or of Eq. (1)], we obtain

1
EO—F*VDXB_—_O (7)
C
and
afaO _
=0 (8)

Thus, the lowest-order distribution function f,o is independent of the gvrophase £. We
also assume that the temporal variation of the ensemble-averaged quantities is so slow that
the transport ordering 8/8t = O(8*} 1s applicable for them. Then, the ensemble-averaged
inductive field K = —cdA /0t is of O(8?) while the ©O(8°) and O(8) electric fields are
electrostatic: Eq = —V®q, E; = —V®;. The lowest-order electrostatic potential is written
as ®_; in the paper by Hinton and Wong?® although it is denoted by @; in the present work
since we regard the electric charge e (instead of @) as the parameter of O(871).

From the next order [= O(&°)] of Eq. (2), we have

(V V= ) fao — afal = Ca(fa0) (9)
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Taking a gyrophase average - = § -d{/2x of Eq. (9). we have

, dwl 0 du\ 0
(Vo+vb) -V + (d—?)oa + (d’(t) } Jao = Cal fao) (10)

where the time derivatives (dw/dt}, and {dp/dt), along the lowest-order guiding center orbit

Zofm =

are given by

du
(d—l;) =-myVy-VVy- bvi’i + e E; - bvh — ma(vl'!)gb -VVy-b

— Lma(v)HV - Vo~ b- Vg b)
du
0



respectively. Taking a gyrophase average of the O(6) part of Eq. (2} gives the linearized
drift kinetic equation, which is solved to derive the neoclassical transport fluxes for rotating
plasmas.2® 30

The rest of this work is organized as follows. In Sec. II, the new nonlinear electro-
magnetic gyrokinetic equation is derived for plasmas with general magnetic geometries and
large flows. The reduced forms of the gyrokinetic equation are given for the cylindrical and
slab configurations in Sec. [ll and for the axisymmetric toroidal configuration in Sec. IV.
Definitions of the anomalous transport fluxes and the anomalous entropy production rate
are given for the toroidally rotating plasma in Sec. IV. Also found are complete balance
equations for particles, energy, and torotdal momentum which include the classical, neoclas-
sical, and anomalous transport processes. In Sec. V, conclusions are given. In Appendix A,
the charge neutrality condition and the Ampere’s law are given as the constraints on the
self-consistent electromagnetic fluctuations, from which the intrinsic ambipolarity for the
anomalous particle fluxes is shown. Appendix B is presented for discussing the derivation of
the flow shear terms in our gyrokinetic equation. Appendix C shows the Onsager symmetry

of the quasilinear anomalous transport matrix which connects the anomalous fluxes to the

conjugate thermodynamic forces.

II. NONLINEAR ELECTROMAGNETIC GYROKINETIC EQUATION FOR

GENERAL GEOMETRY

In the present work, we assume that any fluctuating field Fis written as a superposition
of components in the WKB (or eikonal) form:
Pt x,w, p.6) = > F(t,x,w, 1,6 k) exp[eSi, (x,1)] (12)
ki
where the eikonal Sy (x,?) represents the rapid variztion in the directions perpendicular
to the magnetic field lines. The wavenumber vector is given by k; = VSi,. The eikonal

Sk, (x.t) also contains the rapid Doppler shift frequency due to the large flow, which is given



by =Sk, /ot = ko - V. Then. we should note that. for the ballooning representation for
the svstem with large sheared flows.?® the wavenumber vector depends on the time as seen
from dk, /ot = V{3S, [dt) = —V (k. - Vo). The gyrokinetic ordering employed here for

the turbulent fluctuations is written in terms of é as

~

,fa ea@ ~ eat‘Tﬂ]Al ~ ﬂ ~ (‘-"-’l -k- VO)

—

fo T S 0 ¢ (13)

where {w — k- Vy) denotes the characteristic frequency observed in the moviag frame. The
characteristic parallel and perpendicular wavenumbers are given by & ~ L' and &k ~ p. 7,
respectively.

The lowest-order part of Eq.(4) in é is written for the fluctuations in the WKB form of

Eq.(12) as

€zh'p“fa1(ki )]

. ! a —ky - a
(31@_ Vo= aag) fal ki)=-Q,e p"% [

. . d 0 i
—ieatics 1) | (8 = 2V At (4 ) - il gl o 0)

where p, = (b x v')/Q, represents the gyvroradius. Integrating Eq. {14) in £, we have

) R . a 8 vl . d
fal(ki) = e, [(@(kj_) - %Vo : A(kJ_)) (% + B—a#) — %AH(kL)Ba,u:[ fao

+ galky)e™ P (15)

where §,(k, ) is independent of £.
From the O(¢§) part of Eq.(4}, we have the equation for the second-order fluctuating

function f,» as

_actkair. 2

]

a3 9\ -
= (81‘+V V + QE é"v")faz(kL)

€£k4'p“fa2(kj_)]

€x (= 1 - 3fa  eq <a 1 . ) 8Fao

- (El(k_%_) + v B1(k¢)) v T E k. )+ V% B:{k,) P

€ <N (K)o _
- . +§“k (E1(kL)+ CVXBI(kL)) . + Crifar (k)] (16)
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where Eq(ky) = —ikod(ky), Bi(ky) =tk x A(kL), Ba(k,) = —Vo(k,)—c10A(k, )/ot,
and By(k,) = V x A(k,). Here C L denotes the linearized collision operator [see Eq. (4.24)

in Ref. 17 for its definition]. The solvability condition of Eq. (16) is written as
df ik, -p 2 e
5.¢ =[RHS of Eq. (16)] =0 (17)
T
which leads to the gyrokinetic equation.

From Eq. (17) with Egs. (9), (10), (15) and (16), we obtain the nonlinear electromagnetic

gyrokinetic equation after lengthy calculation as

it

(; + Lo + ik, - Vda) Ba(kl) - 26 Ly CL [fa( )]

X (b x k
:eazba(ki)z(mx—ﬂ- ['\7-|-{mgVO-VVO—l—mavi'{[b-(VVo)—l—(VVo)-b]+eaV¢>} } fan
8 ,« 0fuo _ Aeatulky)) ,
Haﬁﬁ" b“b'v}(e“”“(k”)} e ow P Ve

V- VE d ad
_ v V - — . V., . - R —_—
eaXa(kJ.) ( VG b-V 0 b+ B ) (8% + B@,u) faO
fa(}

- eava(ki ['0 alb

- Jo(%) "U|l AH(ki)_EDfaO

OBk [ O D
Ji(v e £ 2L 4 & 9 g
+i(va)ea kL (aw+Ba) Lofun+

> b (KL x K] da(k ha(K])  (18)

k' +k% =k,

;35
where ?za(ki) is independent of ¢ and is related to f,(k;) by

falks) = e (é(kl) ~ %Vo : A(kL)) %ﬁ‘)
afaU

~ 1 ~ 1 roa —zk g - T
+ €a [(G&(kl) - EVO . A(ki) - Evjf‘il“ll(k—l—)) —¢€ ki pawa(kl)} Ba#

+ holky ek Pa, (19)

In Bgs. (18) and (19), ¢,(k. } is defined by

falls) = ePa(ikes - po) [3(ko) - - (Vo+v) - Alky)]

- (22 (d1ks) = 32 Ak = Liytcn)) + bt — ) 2D )
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where _ElH(kJ_) =b-A(k,) and B“(kj_) =,b-k, x Alk,). Here J, and J, are the zero-th
and first-order Bessel functions of 4, = k1o’ /Q.. In Fq. (18). the first-order guiding center

drift velocity vy, is defined by

d (v’ X b)
Viog = —
dt Q,
CH ¢ [ : 1\2 : _
= B(\_/ x B) - bb + Bb x (uVB+ ma("U“) b-Vb+e¢,Ve;

€q €o

+m,Vo-VVgy+ mavfib V'V +mu V- Vb]. (21)
Representation of the gyrokinetic equation in the real x-space is useful. Following Eq.

(12), multiplying Eq. (19) by exp[tSk, (X, )] and summing up with respect to k,, we have

i) = e (300 = Vo) G

+ €4 [{5(}{) - %(Vo +vb) - A(X)} - ZL'Q(X)]

afaO

Bos + ha(X) (22}

where X = x — p, denotes the position of the guiding center. In deriving Eq. (22). we have

used

Si, (%, 8) > S (Xot) + ik, - py, ha(X) =3 holky) expliSk, (X))
ky

. ] . \ 1 o

0u(X) = Y dulls ) explisi, (X)) = (X = ) = (Vo + V) - AX+p))  (23)
k,

where {-)x represents the gyrophase average with X fixed. Multiplying the gyrokinetic

equation (18) in the k,-space by exp[iSk, (X)] and summing up with respect to k; gives

the gyrokinetic equation for the nonadiabatic fluctuating distribution function ho(X,w, 1)

as

o (v = V) x) V] RuX) (€ (2K + 0.1,

% Ga(X) x b {v {maVo - VVo+muvj[b- (VVe) + (VVo) - bJ+eav¢>} lfao

a (X
_ [( at + Lo — ’U];b V) (X)} Jao — €s L_a( )’uﬁb -V fe0

dw dur

Vo -VB\ /8 8
ey > Ve b VVs,- Yo ey 2 7
6a}xa(X) (v Vi b Vy b+ B ) (aw + Baﬂ) fa()

QJ



7 2 ()fCED (a' ’ " a s
- 6awa(X)ﬁo% 2 <A”(X + ‘0&)>x %f’ofao
€, ad

- a —
_ = <v’l AX + Pa)>x (% + B—&u) Lo fao (24)

C

where the spatial gradient is taken with respect to X as V = 8/3X and we have used

(AKX +p.)), =3 Jo(r) Ay (kL) expliSi, (X))

ki

. Bk, .
<V,J_ . A(X+ pa)>X — »—ZJl(’ya)vlﬂéTlexp[ZSkL(X)]
ki

)Ea(X) = Z Xa(k_l_) exp[iSkL (X)]

ky

= (P V[3X £ p) =L (Vor V) A4 p)]) . (25)

We should note in Eq. (24} that differences of equilibrium quantities’ values at the particle’s
position x from those at the guiding center’s position X are neglected as O(§) smaller
[B{x) ~ B{X), Vo(x) ~ Vy(X}, and foa{x) ~ foo(X)] although that is not the case for the
fluctuating quantities &, A, and h, because of small perpendicular wavelengths of O(p,).
In Appendix A, the charge neutrality condition and the Ampeére’s law are given as the

constraints on the self-consistent electromagnetic fluctuations.

111. CYLINDRICAL AND SLAB CONFIGURATIONS

Let us consider a cylindrical configuration in which the magnetic field and the mean flow

velocity are given by

Vo = Va(r)0 + Vi(r)z (26)

respectively, where the cylindrical coordinates (r,4, z) are used and the unit vectors in the
r, 6. and z directions are denoted by f, 8, and z, respectively. Surfaces defined by r = const
are regarded as magnpetic flux surfaces. In Eq. (26), Bs(r), B.(r), Vs(r), and V.(r) are flux

surface functions independent of # and z. The lowest-order electric field is given from Egs.

10



(T} and (26) as By = —[d®o(r)/drit = ¢ Vair)B.00) — Vo(r)Bs{r)]r. The first-order
electrostatic potential is also assumed to be a surface function as ®; = @¢,(r). From Ly.

{26). we easily find that

Vy- VB=V V,=b-VV, b=V, TVy-b=0

—
-2
-1

p—

from which with Eqs. {(10) and (11} we have

dw du —
— = | — = —(V o v 28
(di)u (dt)o 0, CU ( O+1Hb) ( b)

Assuming the lowest-order distribution function to be homogeneous in the 6 and = directions,

we obtain from Eq. {10} with Eqs. (26)-(28)
Vo -Vfio=b - V/io=C.fn) =0 (29)

which requires fa0 1o be
the Maxwellian distribution function f.,o = m(ma/?,:frTu):”2 exp(—w/T,) with the density
ne = n,{r) and the temperature 7, = T,(r). Thus we have 8f,0/9u = 0.

Using Eqs. (26)-(29). the gyrokinetic equation {18) is simplified for the cylindrical con-

figuration as

3] , : ; df k.. :
[E + (Vo= b}V +ik; 'vda] ha(k.) —f_z—we kP L f, (k)]

- i(b x k €, nt, m, v
- —ea&a(kl)(—m;d;l—) : (\7 F VO Ve YV b (TVo) + (VVo) -b}) fao
2 2] . ! M n I 1 ;s
+ L L4V V) dalkl)| fot = 3 (b (KL x KD du (K, ha(kD) (30)
T, 1\ Jt By ek,
where ho(k,) is related to f (k) by
A €a N 1 - 7 3 .
falki) = 7 (@(k_l,) - EVG . A(ki)) Fao + Rolkp)e K2 Pe (31)

The gyrokinetic equation for the X-space is obtained from Eq. (30) by applying the same

procedure as in deriving Eq. (24) [or directly from Eq. (24) with using Eqgs. (26)-(29)] :

11



a ! c 7 7 2
Y (VO +yb+ Ve — FVH(X) % b) - V} ha(X) = (CF [fu(X + p.))y
c_ - €q M, maUﬁ
= FVOulX) x b |V 22V + 22V, VVo + —-{b - (VV0) + (VV) - b} fug
D vy ) b)) £ (32)
+ Ta Y 0 Fa a(

where fza(X) is related to f,(x = X + p.) by

) = =2 (306 = “Vo A)) fao + halX). (33)

In the similar way to the case of the cylindrical configuration, we can consider a slab

configuration in which the magnetic field and the mean flow velocity are given by

B = B,(z)§ + B,{z)2

Vo=V (2)y + Vi(2)z (34}

respectively, where the Cartesian coordinates (z,y, z) are used and the unit vectors in the
T, ¥, and z directions are denoted by X, ¥, and %, respectively. Planes defined by z =
const are regarded as magnetic flux surfaces. In Eq. (34), By(z). B.(2).V,(z), and V,(z)
are flux surface functions independent of y and z. The lowest-order electric field is given
from Egs. (7) and (34) as Eo = ~[d®{z)/dz]x = —c [V, (2)B,{z) — V.(z)B,(z)]%x. The
first-order electrostatic potential is also assumed to be a surface function as @, = ¢, (z).
Then, for the slab configuration, Eqs. (27)-(29) are still valid and f,; is the Maxwellian
distribution function foo = na(m,/27T,)* 2 exp(—w/T,) with the density n, = n,(z) and
the temperature 7, = T.{z). Thus, we find that the gyrokinetic equation for the slab
configuration is also given by Eq. (30) [or Eq. (32)] with Eq. (31) [or Eq. (33)] and V- V'V, =
b-VVy=0. In Eq. (30), the flow shear term with {VVy) - b survives in the slab limit, in
which dV,(z)/dz and dV,(z)/dz are contained.

We see from Appendix B that, in Eq. (30) [or in Eq. (32)], the term with (8/81+ V- V)b,
also contains the flow shear d(r~=1V;)/dr and dV,/dr for the cylindrical case and dV,/dz and

dV./dz for the slab case [see Eqgs. (B1){B4)]. These flow shear terms were missed by Artun

12
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and Tang® when thev derived the linearized gyrokinetic equation describing elecirostatic
fluctuations in the slab system with sheared equilibrium flows [see Eq. (30) in Ref. 6 and
Appendix B]. Compared to their gyrokinetic equation. our gyrokinetic equation (30) [or (32)]
is not only nonlinear and electromagnetic but also contains even in the linear electrostatic
lirnit these new flow shear terms which are deeply related to the anomalous viscosity (or
Revnolds stress).

It is instructive to derive the Hasegawa-Mima equation® from the gyrokinetic equa-
tion (30) and see how the flow shear effects enter it. Following the same procedure as
in Frieman and Chen®, we consider a collisionless plasma consisting of adiabatic electrons
(e /m. o ec;/Te) with T, = const and a single species of lons with charge ¢, = Z,e and
low temperature 7, < T, (ki p, < 1), and assume that the ion nonadiabatic distribution
function has the form k,(X) = f.of\™¥(X)/n,. Then, from the electrostatic version of the
gvrokinetic equation {30) Jor (32)] for lons with the charge neutrality condition n. = Zin,,

we obtain the generalized Hasegawa-Mima equation in the fluid limit as

[i + Vo -V 4k, - * bx (Z,eBV®; + m, Vg - V’Voj} {(1 + ’T’JLPS) e@ﬁ(ki)]

a D ZIEB Te
T, b\ eglk,)
. — \V -
+ .k, eBl b x inne+BVx(B>] T
}‘ I I7a 603 ( )ecﬁa -
N D DR 0 | CAR A e e (35)
kl‘l'kri:k_]_ € e

where ¢, = (Z.T./m,)"? and p, = ¢,/,. Equation (35) is valid for the both slab and
cylindrical configurations, and reduces to the Hasegawa-Mima equation derived by Frieman

and Chen® in the limit of V4 — 0. The energy balance equation is obtained from Eq.(35) as

o 1 . 5 1 neeg 5 2
(8?50 + Vg - ) g (gnzmi(lvE(kL)l Jens + 5 T, {lo(kL)] )ens>
= > nm V(Ko )VE(KL ) Jens : (VV0) (36)

where vp(k,} = —i(C/B)(I.%(kL)kJ_ x b is the E x B drift velocity due to the electrostatic

fluctuations. Equations (35) and (36} are rewritten in the x-space as

13



C

1] o ed(x
[% + {VO b X (ZeBVO; +m V- vvo)} - VJ [(1 —p2V2) ( ( ))}

4 L {—b X Vinn, + BV x (E)J vl (6‘5("))

eB B T.
—¢,/’bx V (eipé—"l) Rvav] (e‘iﬁj‘)) (37)
and
(57 Vo ©) (Bramd 950 + 35 600
o > 37T,
= =1, (VE(X)VE(X))ens 1 (VV) (38)

respectively, where V, =V —bb -V and vg(x) = ~(C/B)Vq_’r’;(x) x b. The right-hand side
of Eq.(36) [or {38)] represents the energy transfer from the background sheared flow to the
fluctuations through the Reynolds stress multiplied by the flow shear.

The reaction of the divergence of the Reynolds stress on the flow profile Vy is given by
7, ~oa
g (mimiVa) = =V (nimi (Vg p)ens) + . (39)
Thus, the change in the kinetic energy in the flow profile
a ]. 2 3 -~ el 3
-57,:] ;mmﬂfo d°r = /n,—mg(VEVE)ens VVydiz +--- (40)

is equal and opposite to the change in the total energy in the turbulent Huctuations in the
absence of sources and dissipations. The direction of the energy flow between the shear flow
and the turbulent fluctuations depends on the phase relations or equivalently the tilting of
the vortices.® When the turbulence is driven by the ion temperature gradient, the shear flow
1s typically generated. Now we consider how these processes appear in the axisymmetric

torus where the zeroth order flow rmust be toroidal.

IV. AXISYMMETRIC TOROIDAL CONFIGURATION

In this section, we consider an axisymmetric system, for which the magnetic field is given

by

o

14



B=/(V)V+V({xTY (41)

where ¢ 1s the toroidal angle, ¥ represents the poloidal tlux. and 1(¥) = RBg denotes
the covariant toroidal component of the magnetic field. Hinton and Wong?® showed that.
in the axisymmetric systems, the poloidal flow decays in a few transit or collision times
and that the lowest-order flow velocity V is in the toroidal direction and is derived from
E)+VyxB/e=0as

_9%0(¥)

Vo=V, Vo= RVS=_R
g OC, 0 de'

(42)

where the lowest-order electrostatic potential ®;(¥) 1s a flux surface function and Ey =
—V&, = —(00,/I¥)VV. We should note that the toroidal angular velocity V¢ =
—cOP /AT 15 directly given by the radial electric field and is also a flux-surface quantity.
Then. we easily find that Vo- VB =\ -V =b-VVy-b=0and V- Vb =b-VV,. Here
it is convenient to use independent phase space variables {x.z, g, £} instead of (x,w,u, &)

where the new energy variable = is defined by

1 _ - ~ 1 .
£ = §ma(v')2 + —a iy = ea@l — 57’7?1‘/02. (43)

In Eq. (43). &; = &, — (®@1)[= O(6}] is the poloidal angle-dependent part of the electrostatic
potential and —2m,V{? represents the potential for the centrifugal force due to the toroidal

rotation. The magnetic flux surface average is denoted by {-}. It is shown that £ and x are

conserved along the lowest-order guiding center orbit: (de/dt), = (dp/dt), = 0. Thus we
have Lo = (Vo + vyb) - V with the independent variables (x, =, 4, £).

The lowest-order distribution function [, is written in the Maxwellian form

ma N ) (m
fao = s (Qﬂ;) eXp( 27, _‘N“(z;ﬂ;) ekp(f) (44)

which satisfies £of.q = Co(fao) = 0. Here the temperature T, = T,(¥) and N, = N, (T)

are flux-surface functions although generally the density n, depends ou the poloidal angle
¢ through =, and is given by n, = N,exp(—=,/T,). The charge neutrality >, e,n, = 0

imposes the constraints on ®; and ,.



A. Gyrokinetic equation

Using Eqs. (41)-(44) with the independent phase-space variables (x, ¢, i, £), we find that,

for the axisymmetric configuration, the gyrokinetic equation {18) simplifies to

o ) -
i:at (VQ + U”b) AV -+ ZkJ_ . Vdajl ha(kj_)

c N - d .
— LY b (K KD K R - § eRpacE [fifky)

B k':‘_+k’;_=k_1_
. (b x k) eq {9, M, ( N I ave
— e HDXXL) iy dle ¢ty )
€a'l,)u(kj_) maﬂa Ir + {Ta 3\]? + A R V T..H 811’ Vg’ fag
€, 12, .
+ ﬁ [(g + Vg V) d)a(k_f_):l fao
— Fuo [ (k) XA + Bl )X + By (1) XA + (ko) X2 (45)

which is written by the X-space representation as

c 9{®1) | ma ( - I ave
= SV (X)xb- |V M ( gy _'>m v £,
B W ( )X l: +{T I + Ta R -+ 'U” R fo

+e 8+Vo V) (X )]fao

T, |\ ot
= foo [ (X)XA + @ X)X + dhav (X) XS + dur (X)X ] (46)

The nonadiabatic part of the fluctuation distribution function A,(k,) in Eq. (45) [A.(X) in
Eq. (46)] is related to fal(ki) [fal(x)] by Eq. (31) [Eq. (33)].

In the right-hand side of Eqgs.(45) and (46), we have defined the thermodynamic forces
(X4, X35, X3y, Xiy) as

A — _aln(NaTa) B e_a(?(@l) YA = _éﬂnfa
al o 7, &¥ = e
1 @VC - & 32(1)0

A e ——
Koy = T, 00 T, 002’ (47)

and the fluctuating functions (.1, a2, Wav, War) as

W1 (ky ) = deky - (RC) dhy(ky)
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(kL) = icky - (RE) (k) (T _ _:)
ik,

(kmmmc(mwéﬂ RE) Sl + ea (koK) (RE(VW) k)

?‘-‘| e
-t

) _ O . Vo - v|’| .
u'aT(kJ.) = e, Jol7a) 0i + Vg Q(k.L) - —C"" -Afky) - '"C"“AH(kL)

+6aJ1(“fa)% (%-FVO'V) (B”(kl)> (48)

which are written by the X-space representation as

We (X Z (k) expliSy, (X)) = —%Vt?'a(X) xb- V¥
ba(X) = 3¢ ol N £
s (X) = % Baalics) expliSi, (X)] = — £V (X) x b T (Ta 2)
LZ?QV(X) = Z La‘avfkl) exp[iSkl (X)]
ky
_ <m§v (a‘s(x) - %(V0 V) -A(x)j < b -V ma(Vo + V') - (Ré))x
Wor(X) = > war(ky ) expliSi, (X))
ki
3 a\ /. 1 .
= eo{ (37 + Vot 3 (80 - HVe4 ¥ A ) (19)

In deriving Eqs. (48) and (19), we have used Egs. (B1) and (B5) in Appendix B and k, -
(RC) = —B~ (k. x b)- V.

The gyrokinetic equation (45) [or (46)] is slightly different from that derived by Artun
and Tang® for the toroidally rotating piasma. Their equation (51) [or (56)] contains a
different magnetic fluctuation term from ours and they do not seem to treat correctly the
ballooning representation for the rotating system in which the temporal dependence of the
radial wavenumber should be considered.?® Interestingly, by the ballooning representation,
we see that our gyrokinetic equation (45) or (46)] coincides with Brizard’s result'? obtained
by the Hamiltonian method for the collisionless case [see Eq. (C8) in Ref. 12]. The use of
the correct ballooning representation is crucial to obtain the formulae in Appendix B and
the expression for @,y which is deeply related to the definition of the anomalous momentum

transport (or viscosity) as shown later.
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B. Entropy production by anomalous transport

In the same way as in Refs. 20 and 21, the contribution from the turbulent fluctuations

to the entropy balance is represented by

($8) = </d3 (In7, +1)( —CfA)>

= ; aé:p (V') + (o) (50)

where the surface-averaged radial anomalous entropy flux is given by

A Sa A A =
B=(2-g)r+E 51)

and the surface-averaged anomalous entropy production rate is written in the thermody-

namic form as

<U£f> =I9X5+ TQQ. D X5 XY + QX (52)

The anomalous fluxes (I', g2 /T,, 12, Q%) conjugate to the forces (XA, X4, XA, XA are

given by the correlations between ha and (@1, Waz, Wav, Wer) as

o2 ((/d%zfz:(kmﬂ(kl))) ([ # haiX)im(x)) )

‘;—4 = <</d3vzh (k. )i kL)>> <<[d% oo (X ) (X) >>
M = <</d3vzh k. J kl)>> ((]d% ho(X ) (X >>
ot = << / d%géz(kmﬂ(kg)) = ({[ e b)) (53)

where {{-}} denotes a double average over the magnetic surface and the ensemble.

From the gyrokinetic equation {45}, we obtain the balance equation for the fluctuation

amplitude as

%« f ngZ}ao % ha(ko) >> - << ] Lo fio 2 By (ky et PaCt [fza(ki)e“‘”’ﬂ]>>
- %<</d3vz}gofza(}()2>> - <</d3vﬁh (X)CE [ha ]>> {o2Y. (54)
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Thus. in the stationary turbulent states. the anomalous entropy production driven by the
turbufent transport equals the collisional dissipation of the fluctuating distribution func-
tion, which results in the positive definiteness of the total anomalous entropy production:
ST ety = -3, T, <<f d%ﬁfaa(X)C’i‘ [fza(X)]» > 0. The Onsager symmetry for the
quasilinear anomalous transport matrix relating the anomalous fluxes (T2, ¢4/T,, I3, Q1)

to the conjugate forces (XA. X4, XA., X%) is described in Appendix C.

C. Balance equations for particles, energy, and toroidal momentum

Taking the velocity moment and the magnetic surface average of Eq. (2). we obtain the

particle density equation:

the energy balance equation:

30 e 5
2 pa) + e {V’ (qa n ETGPQ)]

2 Bt V' oW 2
ave 8(®,) ” . on,
- ﬁna——d@— — GQFQW + <na€aua] : E > — €, ®1 at
1.0
Ty d 2 3. :
5V (manaR>+</dbu(Ca+Da—l—fa)> (56)

the toroidal momentum balance equation:

9 'UQA 21 1 3 ot B -
(S ()0} - () {2
(57)

where vps = Bp/(47 3, nafrr.zg)l/2 is the poloidal Alfvén velocity. v, = Ré’ v = RVO 4
(1/ B)v“—l—R& v/, is the covariant toroidal component of the particle velocity in the laboratory
frame, V' = 2z § df,/g (8: a poloidal angle} is the specific volume, and /g = (V¥ -V x
V()7! = 1/B% is the Jacobian. In the energy balance equation (36). p. = n,T, is the
pressure, B(Y = —¢"13A [/t is the inductive electric field, and u,; is the first-order flow

velocity [see Eq. (16) in Ref. 21]. Taken in the order of appearance, the right-hand side
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of Eq. (36) describes the viscous heating, the work done by the radial electric field during
the transport I';, the work done by the inductive electric field on the surface flows u,q,
the cooling from a secular rise in the local density, the heating by the secular rise in the
moment of inertia, the collisional and turbulent energy transfers in the plasma frame and
the auxiliary injected power.

In the right-hand side of Eqs. (55)—(57), the terms with Z, are written to represent the
case where the right-hand side of Eq. (2) contains external sources such as neutral beam
injection. Since we assume that Z, = O(é%), the gyrokinetic equation (45), which is of O(§),
1s not affected by Z,.

In Egs. (55)-(57), the surface-averaged radial particle flux T',, heat flux ¢,, and toroidal

momentum flux II, are written as

T, = <fd3v fav-V\IJ>
— le 4 FZC]. 4 I‘f + F((;E) + r:nom
anTa</d3vfg_ (%—%)VV@>
= ¢+ @0+ gl + ¢+ g
I, = </ d°v famavev - V\IJ>

= 105 + I+ T 4 I 4 I, (58)

Here the superscripts ‘cl” and ‘ncl’ represent the classical and neoclassical fluxes. respectively.
The fluxes with the superscripts H and () are the gyroviscosity-driven and inductive-
electric-field-driven parts, respectively [see Eqgs. (20), (22)—(24), {A6), and (A7) in Ref. 21
for definitions of these fluxes]. The anomalous fluxes ([20m ganom [T Tlanom) are rewritten

in terms of the gyrophase-dependent part of the fluctuation-particle interaction operator D,

as
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faem —";—‘ ([, %(Gj)) (59)
where v\ - (RE) = —=B™(v' x b) - V¥ and L(v?) = & [e? - (03)] = RV + (1] BYu)v!,
(RE) + 3(ViVL) : (RE)(RE).

Comparing the anomalous fluxes defined by Eqs. {53) with those defined by Egs. (39),

we find that

A ... Thanom
r4 =72

- (05 v A) )

M4 = oo <</d3 fA - (RE)v - w>> (60)

B

q

We see from Eq. (60) that the anomalous heat flux ¢ and the anomalous toroidal mo-
mentum flux 112 include the fluctuating potential energy transport e,{([ d®v fo(d— ¢ 1Vy -
A)v - VU)) and the toroidal momentum transport due to the fluctuating vector potential
(ea/c){{[ d®v fuA - (RC)V - V), respectively.

In the right-hand sides of Eqgs. {56) and (57), we find the anomalous terms ([ d°v ¢ D,)
and 3, {f &*v myv; D,). The anomalous heat production term {f &®v ¢ D,} in Eq. (56) is

rewritten as

</ d*veD > @ — 17 3?1! V(g — g2 + (2 - 1) ( i—g) (61)

which shows that, in the energy balance equation (56) with (58}, ¢* and II* replace ¢***™ and
[12%m and that Q7 appear as the anomalous heat transfer term. Thus the definitions of the
anomalous transport fluxes given by Eq. (33) are reasonable not only from the viewpoint
of the thermodynamic expression for the entropy production in Eq. (52) but also from

that ot the energy balance equation. The anomalous toroidal momentum production term

Y. {f d®v myv, D,) in Eq. (57) is given by

Zﬂ:(/dSvmawDa> << (RC)- /d3 f <E+ va)>> (62)

Using Eq. (60) and the Maxwell equations for the fluctuating electromagnetic fields. Eq.

(62) is rewritten as
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. d . A D Y
§</d v MU Da> = 4;‘/:,@ (p <<E5E + BB >>)
g |V { { 3 ({(stes) - (ROV) (1aGP)))
+ Z (H:l Ha.nom }] (63)

where the ordering ¢ ~ V- A/c is used and terms of O{Vg/c?) are neglected. We see from
Egs.(63) that the anomalous momentum production from D, is due to the Maxwell stress
of the fluctuating electromagnetic fields. When Eq. (63} is substituted into the momen-
tum balance equation (57}, the Maxwell stress gives —(47V")"1(8/09)[V' {2y, ({(ki k) :
(RO(VE)(|A(kL)[?)})] and replaces [[2mom 4o 14,

Using the charge neutrality condition and the Ampeére’s law for the self-consistent fluc-
tuations (see Appendix A), we have the ambipolarity of the anomalous particle fluxes
Yoo €al'4 = 0 and the cancelation of the total anomalous heat sransfer 37, Q* = 0, which
shows that the self-consistent fluctuations cause no net heating of the total particles but

result in the anomalous heat exchange between different species of particles.

V. CONCLUSIONS

In this work, we have presented the nonlinear electromagnetic gyrokinetic equation for
plasmas with general magnetic geometries and large flow velocities on the order of the ion
thermal speed. In the derivation, we have used the recursive formulation to give the relation
of the perturbed distribution function to the equilibrium distribution and the electromag-
netic fluctuations since it is useful to retain collisional effects and synthetically formulate
the turbulent and collisional (classical and neoclassical) transport processes. The reduced
forms of the gyrokinetic equation for the slab, cylindrical, and toroidal configurations were
obtained from the general one [see Eqs. (18), (24), (30), (32}, (45}, and (46)].

We specified the source terms in the gyrokinetic equation which is related to the anoma-

lous momentum transport [see Eqs.(B3)-(B5) and @,v in Eqs.(48) and (49)]. We also
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derived the generalized Hasegawa-Aima equation (35) [or (37)] which correctly deseribes
the energy transfer between the background sheared How and the turbulent energy through
the Reynolds stress tensor contracted into the flow shear tensor [see Egs. (36} and (38))].
Based on the gyrokinetic equation for the toroidally rotating svstem. we have defined the
conjugate pairs of the anomalous transport fluxes i Eq. (53) and the thermodynamic forces
in BEq. (47), the inner product of which gives the anomalous entropy production rate in Eq.
(52). The Ounsager symmetry of the quasilinear matrix relating the anomalous fluxes to the
conjugate forces is shown. Also given are complete balance equations for particles, energy

and toroidal momentum including the classical. neoclassical. and anomalous transport fluxes

fsee Eqs. (55)-(57)]
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APPENDIX A: SELF-CONSISTENT ELECTROMAGNETIC FIELDS AND

AMBIPOLARITY CONDITION

Here we show the self-consistent constraints on the turbulent fields, which are given by

the charge neutrality condition:

}\52 ( (ki) - & A(kl)) - 47‘_Zea/d3v JO('T&)‘E'!a(k.L) (Al)

and, the parallel and perpendicular components of the Ampeére’s law:

4.’(
12 Ay(k,) = T ]d ¢ Jol(ve)halles Yo (A2)

— ki Byk,) = —-zeg ] Ee Iy (ya)halk, )0l (A3)
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where Eq. (31) and the Debye length Ap = (475, n,e2/T,)" /2 are used. The use of the
Ampere’s law is justified since the displacement current is neglected due to the gyrokinetic

ordering. Equations (A1)-(A3)} are rewritten in the x-space as

[

A (q%(x) _ Ve, A(x)) =4z e, / Pv ha(x— p,) (A4)

- 4 A
-V = T e [ halx - p,)u (A5)
c @
VBi(x)xb =T e, [0 hatx = poyvi. (A6)
c a

Substituting Eqs.(A1)-(A3) into the definition of the anomalous fluxes in Eq. (53), we

find that the anomalous particle fluxes are intrinsically ambipolar:

Yoe i =0. (AT)

From Egs. (20), (48), (53}, and {A1)-(A3) with the quasisteady state ordering 9(-)ens/ I =

O(6%), it is shown that the species summation of the anomalous heating Q7 vanishes:

> Qs=0. (AS)

The self-consistent fluctuations cause no net heating of the total particles since the source of
the anomalous heating is the energy of the fluctuating electromagnetic fields, which cannot

be a stationary energy supplier unless the fluctuations are externally driven.

APPENDIX B: ON THE SOURCE TERMS IN THE GYROKINETIC EQUATION

RELATING TO THE ANOMALOUS MOMENTUM TRANSPORT

In the right-hand side of the gyrokinetic equation (30) or {32)], we easily find the shear
flow term which is proportional to vj{b - (VVg) +(VV,)-b} . We also see that the term
with (8/8t + Vo - V)i, contains other contributions from the flow shear by noticing the

following formula:
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(B1)

where the first group of terms in the right-hand side represents the increase of the fluctuation

potential energy and P, is given by
R . 1 o
P — e, <(V0 Vp,—p,-VVo} -V (¢(x) S (Vo) A(x))>x (B2)

In deriving Egs. {B1) and (B2}, we have used the ballooning representation (12) for the
system with the large flow.

For the slab and cylindrical cases considered in Sec. III, P, is rewritten as

Po= ~ T (mav 3 (= 5) 9 (800~ Z(Vo 4 v)-AGx)) x b %)

St (5 G- bove ) o),
and
Py U (1) (<£) ¥ (300 = LV v A b)Y
- %" (mav 2 () V (360 = Z(Vo+v)- A x b- f-)x (B4)

respectively. Thus, P, is given by the product of the flow shear and the perpendicular
momentum transport due to the fluctuations.

FEquation (B1} is still valid for the axisymmetric case considered in Sec. IV if we note
that the spatial gradient 8/0X should be taken with the energy variable e fixed (not with
the kinetic energy w fixed as in the stab and cylindrical cases). Then, the first group of terms
in the right-hand side of Eq. (B1) is written as w,7(X} in Eq. (49) and P, is given by the
product of the toroidal flow shear and the anomalous transport of the toroidal component

of the perpendicular mormentum as

P, = A?’é <mavi - (RE) (—;) v (&(x) - %(VD vl A(x)) <b- vq;)x (B5)

which is used to obtain the expression for @,y in Eq. {49).
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If we use the same fluid approximation as made to derive the generalized Hasegawa-
Mima equation (35) [or (37)], the velocity-space integral of the nonadiabatic ion distribution

function Ay, multiplied by P; gives
[ EE K PAK s = el V(X)X (VV) (BS)

where V) = V — bb - V and v5(X) = —(¢/B)V${X) x b. Equation {B6) represents the
energy transfer from the background sheared flow to the fluctuations through the Reynolds
stress multiplied by the flow shear, which coincides with the right-hand side of Eq. (38)1.
Thus, P, is deeply related to the anomalous momentum transport -(or viscosity), which
reduces to the Reynolds stress in the fluid limit.

Artun and Tang derived the linearized gyrokinetic equation describing electrostatic fluc-
tuations in the slab system with sheared equilibrium flows.® However, their gyrokinetic
equation misses the contribution from P, in Eq. {B3), which is included in our gyrokinetic

equation (32) and is written as
P, (B7)
T afal- {
Now, we will see that these terms can be derived from the last term in Eq. (27) of their

paper (Ref. 6), which is written in our notation as

L™

1
2,7,

[%- (VVo) - (b x %)] [{(bx %) - v/ [{b x %) fuo (B8)

where Vg is given by Eq. (34). It scems that Artun and Tang did not retain this term’s
contribution to their resulting gyrokinetic equation [see Eq. {30} in Ref. 6]. Following the
procedure in Egs. (24)-(28) of Ref. 6 and retaining the term in Eq. (B8), we find that the
following additional term should appear in the right-hand side of the gyrokinetic equation

% <V§z‘(x =X +p,)-[Eq (BS)DX

= ETC[X (Vo) - (b x )] ([(b x %) - v I(b x %) - Vo(x))_ fuo (B9)

which is found to be the same as Eq. {B7) by using Fq. (B3) for the electrostatic slab case
and (b x X){(b x X) =1~ bb — x%.



Artun and Tang also derived the nonlincar electiomagnetic gvrokinetic equation for
the toroidally rotating axisymmetric svstem.” lu fact. (/9f + V- V}zj*g appears in their
gvrokinetic equation (56) in Ref. 7. However. the term 1n the form of Eq. {B7) is still missed
in their gyrokinetic equation because thev did not use the ballooning formalism taking
account of the temporal dependence of the radial wavenumber. Actually, our gyrokinetic
equation {45) for the toroidally rotating svstem is found to coincide with Brizard’s result!?
by the correct ballooning representation. Here. we will see again that the term in Eq. (B7)
can be derived also from their procedure in Ref. 7. To show this briefly, we only explain
how to derive the electrostatic part of Eq. (B7). Artun and Tang seem to have missed the
contributions of the third group of terms in the right-hand of Eq. (B1) in Ref. 7, which are

written 1n our notation as

7 (b X VVo vl =V, -VVox b4 v xb-VV+VV, V) xb)

1 ave
0, 0

vl-(R&)(%1b4-vmcxb) (B10)

where Fgs. (41) and (42) are used. Then. we find from Egs. (44) and (30} in Ref. 7 that
the terms in Eq. {B10) lead to the following additional term in the right-hand side of the

gyrokinetic equation

€y s 1
— fo(Vadlx =X+ p.) - [Eq. (B1O))),

_ mge BVC<
~ BT, 87

Vi (REIVo(x) x b= V) fog (B11)

which is found to be the same as the electrostatic part of Eq. (B7) by recalling Eq. (B3).

APPENDIX C: ONSAGER SYMMETRY OF QUASILINEAR ANOMALOUS

TRANSPORT EQUATIONS

Here we assume that the spectra of the electrostatic fluctuations gs(kL) are given g priorvi

and that the nonlinear term in the gyrokinetic equation (45) [or (46)] is negligible. Then,



using the definitions in Eq.(53) with the solution of the linearized gyrokinetic equation, we

obtain the quasilinear anomalous transport equations:

1 g g ahg o | xa ]
T | | 0 (L) (s | | x4 o
mo| T A ENg TR I | | x4
@ || s LA (L | | X |

Here the anomalous transport coefficients {L4)% {r,s = 1,2,V,T) are functionals of the

Ts

fluctuation spectra, and they also contains the equilibrium fields B and Vy as parameters:
(L4 = (LB, Vo, {8, Ay, By}, (C2)

In the same way as in Refs. 20 and 21, we can show that the quasilinear aromalous transport

coeflicients satisfy the following Onsager symmetry:

To(L*)2 B, Vo, {3(1), Ay(t), By(t)}]

= T{L*)5. =B~ Vo, {o(~1), 4)(=1), By(—1)}]  (m.n=1,2)
Tu(L*)52w1Bs Vo, {a(t), Ay(2), By(1)}]

= T(LYRu[-B, —Vo. {o(~ 1), (1), Bi(=)}] (M, N =V,T)
T (L4)20, B, Vo {S(t). A4 (1), By()}]

= ~T (L) =B, = Vo, {o(—1}, A=), By(-t)}]  (m=1,22M =V.T)  (C3)

where {$(—1), ‘41 (—t).B|](—t)} represents the fuctuation spectra obtained by the time re-

versal of the original spectra {o(t) A”( ) BH(L‘)}.
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