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Electron Heat Transport in
a Self-Similar Structure of Magnetic Islands

Ryutaro Kanno. Noriyoshi Nakajima, and Masao Okamoto
National Institute for Fusion Science. Toki 509-5292. Japan

A formula for the electron thermal conductivity in a self-similar structure of magnetic is-
lands. e.g. in the edge region of a stellarator equilibrium. has been derived for the collisionless
limit. It is described by using the non-Gaussian process with fractal nature. We have shown
that the electron thermal conductivity in the edge region is reduced, if magnetic islands are

large enough.
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1. Introduction

The subject in this article is to consider
the electron heat transport in a self-similar
structure of magnetic islands for the col-
lisionless limnit. In general, when an equi-
librium magnetic field has a symmetry, the
equations for a magnetic field line can be
written as Hamilton's equations with an in-
tegrable Hamiltonian. [1] If the magnetic
field is perturbed by a three-dimensional
fluctuating magnetic field, then magnetic
islands appear in the equilibrium. And
in the statistical meaning, the structure
with islands has a self-similarity. which is
a generic feature in the structure described
by a Hamiltonian with relatively large per-
turbation [2]. For example. the island
structure can be found in the edge region of
a stellarator equilibrium. While, recently
the high temperature divertor plasma op-
eration is considered to improve the en-
ergy confinement of helical devices. [3] In
the operation, the edge temperature is kept
high by the pumping in the divertor cham-
ber. The divertor temperature is estimated
by a power balance in the divertor channel.
and is expected to become as high as sev-
eral keV. [3] In the edge region of a heli-
cal system, the collisionless-plasma can be
realized by this operation. Therefore, the
heat transport in a self-similar structure of
islands for the collisionless limit will be the

realistic issue.

The electron heat transport in the
only stochastic magnetic field has been
studied by Rechester and Rosenbluth [4].
In the study of Ref.4, the random motion of
electrons is described as the Brownian pro-
cess and the diffusion coefficient is given by
the quasilinear formula [5, 6]. While, the
random motion in the structure of islands
and stochastic sea with fractal nature can-
not be described by using the usual Brow-
nian process. The behavior of this motion
belongs to the non-Gaussian process, which
is represented by

the mean square displacement;

MSD = ((Az)2> —const. t##, (1)

and the non-Gaussian parameter;

———5 - 1#0, (2)
3 <(A:z:)2>

where {---) means the statistical average
and g is a real-number. Here, if the ran-
dom motion is the Brownian, then 4 =1 in
MSD and NGP = 0. Behaviors of Eqgs.(1)
and (2) were seen numerically in the field-
line transport for the case of stochastic
static magnetic fields with islands [7]. The
motion in a fractal structure seems to be
very anomalous, but we can analytically
understand these properties by using the
representation of random walk in fractal

NGP =



space-time [8]. This analytical method is
based on the idea that from the particle’s
viewpoint, space-time seems to have non-
integral dimensions, because the random
particles are restricted to move on only
fractal medium except for islands.

2. Derivation of the elec-
tron thermal conductiv-
ity

In this article, according to Ref.8, the
electron heat transport theory of Rechester
and Rosenbluth {4] is developed to the sit-
uation with a self-similar structure of is-
lands for the collisionless limit. We use as
an example, which is same as one in Ref.4,

a magnetic configuration in cylindrical ge-

ometry;

B =B, + By(r) + 6B(r.0.2). (3)

Note that most concepts in this model can
be easily generalized to toroidal configura-
tions. We assume that the system is pe-

riodic in the z direction with period 27R
in order {0 model toroidal periodicity and
both of the rotational transform .(r)/2x
and the shear d(¢/27)/dr are small. Then
the Huctuating magnetic field 6B can be
written as

§B=> 6Bua(r)exp|i(md—-nl) | +ec,

(4)
where ( = z/R. Here, ( means ‘time’. be-
cause of B, # 0 and |B.| > {¢éB.| in this
model. According to Ref.8, the random
motion in a fractal structure except for is-
lands can be understood as the Brownian
motion in fractal space-time (7,(), where
(7,¢) are defined by the Hausdorff length;

7 = lim Hj(fractal-space).  (5)
p—0

¢ = lim H}{fractal-time).  (6)
p—0

Here, o and § are the fractal dimensions
of space and time, respectively. which are
defined later.

Hﬁ(X ) is the length of the set X divided by N parts {X;} and is given by

HY(X) = inf {Z di

2

0<d<pXCUX} (7)

=1

where £ is the Hausdorff dimension of X, and d; is a diameter of the i-th part X; and is
measured in real space-time (r, (). The diffusion coefficient Dy in fractal space-time is given

— <(6T) ) — ((ST)QQ — (2"'7)2&-[3 R m7n(’r) 26 - (8)
0 2(5< 2 (6()3 9 ng(r)—m 3
where a step size §r can be described as
8Bmn(r)|”
(6r)? ~ (27)2R? Z —B—Z(Q Brg(ry—m>» (9)

m.n

time step 8¢ is 2w, and ¢(r) = 2x/i(r) is the safety factor, (see Ref.1). The distribution
function in fractal space-time is given by using the path integral method; |8, 9, 10, 11]

oo I*—1
O R

nOkO
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where Cy = {47DpC}'7? is the normalizing factor: 72 diAr) fIAF.C} = 1. and any is
a coefficient of the Haar expausion [11. 12} (sec Appendix A). Note that equation (10) is
cquivalent to Eq.(9) in Ref.8. {10] and the part A defined i Eq.(10) is not dependent on the
coordinates in fractal nor real space-time. Under the expectation that iinportant contributions
to the integral of f will occur only for small Ar and (: |AF| = |Ar|* and { = ¢?, we derive
the distribution function in real space-time:

1 (Ar)2e
f(AT?C):ECXP{—W}- (11}

1/2a
where C = {T'(1/2a}/a} (4Dg(3) / is the normalizing factor; {70 d(Ar) f(Ar.¢) = 1. and
[ is the gamma function. Thus, the mean square displacement MSD in rcal space-time is

given by

((Ar)?) = /m d(Ar) (Ar)2f (Ar,( = ,"\) —2DiB/e, (12)

—0C

where A = A/R and X is the collisional mean free path in the z direction. and the diffusion

coefficient in real space-time. D, is described as

D=

(4D)/°T(3/20)  2U+e*=A)/ep?=3lar(3/20) ,

6B n(r)|?

2T(1/20)

T(1/2)

R

m,n

6nq(r)—m' (13)

B;

When a = § = 1, the diffusion coefficient
D becomes one given by the quasilinear for-
mula in Ref.4. Since the radial spreading of
test electrons is the non-Gaussian process,
the radial thermal conductivity for the col-
lisionless limit will be given by

M = Dssre.
T

27 (14)

Xr =
where 7 = Afw, 18 the time interval and v
is the electron thermal velocity.
Dimensions of fractal space-time, «
and 3, are defined from the self-similar
structure of islands. We can consider that
because of the self-similarity of islands. the
cross section of the cylinder is a kind of
the Sierpinski gasket (SG) or carpet (5C)
[13]. Thus, dimensions of space and time
are defined as

_ InN (15)
T s

_ aln(§®-1)
b= —pp -

where N = Ny/b; Ny is the increase-rate of
the number of areas except for islands, e.g.

Ny = 6% ~ 1 for the SG/SC. and § = dop/d.
Here, dp and d are widths of the whole frac-
tal structure and the largest island, respec-
tively.

As shown in Eq.(14), we have the new
formula for the electron thermal conductiv-
ity in a self-similar structure of islands for
the collisionless limit. If the size of islands
issmall (6§ > 1), thena ~1and 5~ 1, i.e.
the diffusion becomes the Brownian given
in Ref.4. While, if the size is large enough
(+oc 3> & > 1). the thermal conductiv-
ity is reduced as compared with one in the
only stochastic field. because x, « M and
p=PBla=mn(%-1)/Iné < 1. We can
interpret this result as follows. Since the
random motion of electrons is suppressed
by fractal islands and an electron has to
take a detour around islands. the diffusion
becomes slow effectively. While, if islands
are not large and do not make the fractal
structure, the effect of islands on the diffu-
sion is negligible, because the dimension of
the structure with islands projected onto
the r or the # axis is equal to unity, i.e.
a=p0p=1.



3. Application to the real-
istic example

Using Eq.(14), we estimate the radial
thermal conductivity of electrons, x.. Con-
sidering the thermal conductivity in the
Large Helical Device (LHD) {14] with the
major radius B = 3.9 m, and assuming that
1) the island structure in the edge region of
LHD is represented by Sierpinski’s model
and 2) the edge temperature 7248 = 1
keV and the edge density ndge = 10!% or
10" m~2 are realized by the high temper-
ature divertor plasma operation, we obtain
M2m = M2rR = 5 x 102 or 5 x 103, and
the radial thermal conductivity x, shown
in Fig.1. In Fig.1l, the conductivity y, is
normalized by the Rechester and Rosen-
bluth conductivity x5, which is defined as

]

‘ R2
=122y

T
m.n

6B n(r)
B,

2
éng(f‘)—ﬂ”t'

(17)
Thus, we can see that X, is reduced for the
case of § < 10. Note that in the Sierpinski
model, § is bounded larger than two. [13]

4, Conclusions and discus-
sions

We have discussed the electron heat
transport in a self-similar structure of mag-

netic islands and derived the formula for
the thermal conductivity under the colli-
sionless limit condition. Applying the for-
mula to the realistic example (the edge
region of LHD}, we have shown that the
electron thermal conductivity is reduced
as compared with one of Rechester and
Rosenbluth [4].

We should notice the following fact.
Under the condition that the step size
of random particles, ér, is constant as
in Eq.(9), the random walk on a fractal
medium is analytically solved (see Ref.8),
and the distribution function (11) is de-
rived. Therefore, the problem treated n
this article is different from the problem of
the Levy random walk discussed in Ref.15.
The Levy random walk is discussed un-
der the assumption that random parti-
cles have the set of the step size {fr} =
{o, oo slnyee | Ly = TN A 2 1},
where A; is the scaling parameter for the
length of flights. [15]

To check the validity of our analytic
results in detail, we are planning to do a
simulation of the heat transport in an equi-
librium with magnetic islands, and make a
comparison each other.

Appendix A. Derivation of the distribution function

We show here the derivation of the distribution function in fractal space-time, f(A7,(),
using the Haar expansion. Considering the random motion in a fractal structure except for
islands as the Brownian process in fractal space-time (7, (), we can introduce the distribution
function in fractal space-time by using the path integral method; [8, 9, 11]

. _ ¢
f(AF,g):/Di:(t) exp{—ﬁfo di [ﬁ(t}]z}. (A1)

By using the Haar expansion [11, 12|, the velocity of a random particle in fractal space-time,

#(f), can be defined as

3 = % + {4@0

¢

1/2 oo o7

2D nk Yanlr), (A2)

n=0 k=0



where 7 = #/C is the uorwalized time; 7 €

orthonormal function;

'l,[),,.k(‘f') = 2n_n/2

[0.1]. @, 1s a coefficient. and 1,4 (7) is the

Yi(277), (A3)

+1 for2"r € (k. hk+1/2)
Yi(2"ry={ -1 for2"r e (k+1/2,k+1) (A4)
0 for the others.

Note that the orthonormnal functions {¥n +(7)} satisfy the following two conditions;

] 47 pna()

and f dr ’lﬁn I ’!,bmd(

Using Eqs. (A5) and (A6}, we have

0. (AS)
1 forn=mand k=
{ 0 for the others. (A6)
(ani)’ ¢ - (A7)
4DUC 20 kz%]

According to Davison's treatment [10], we derive the distribution function f(Af, () as shown

in Eq.(10).
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Figure caption

FIG.1. The radial thermal conductivity of electrons.
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