- ISSN.0015-633X

-

_ NATIONAL INSTITUTE FOR FUSION SCIENCE -

Passive Scalar Spectrum in Isotropic Turbulence: .
Prediction by the Lagrangian Direct- mteractlon e
'~ Approximation ;

“S. Goto and S. Kida

(Received - June 1, 1998 ‘)

NIFS-550 - .7 June 1998

o This report was prepared as a preprint of work performed as a collaboration
i| reserch of the National Institute for Fusion Science (NIFS) of Japan. This document is |
intended for infomation only.and for future publlcatlon in a journal after some rearrange-

il ments of its contents.

Inquiries about copyright and reproduction should be addressed to the Research
| Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi,
Gifu-ken 509-02 Japan.

RESEARCH REPORT
NIFS Series .

},.

. NAGOYA, JAPAN



Passive scalar spectrum in isotropic turbulence:
Prediction by the Lagrangian direct-interaction approximation
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A closed set of equations for the passive scalar correlation function in
isotropic turbulence is formulated by the Lagrangian direct-interaction ap-
proximation developed previously by the present authors | Kida and Goto,
J. Fluid Mech. 345, 307 (1997) ]. We examine the behavior of solutions to
the resultant equations for arbitrary values of the Schmidt number, and show
systematically that this closure theory is completely consistent with the phe-
nomenological theories on the scalar spectrum function by Obukhov (1949),
Corrsin (1951), Batchelor et al. (1959) and Batchelor (1959). The universal
form of the function in the statistically stationary state is obtained by solving
the closure equations numerically in the whole wavenumber range for each case

of moderate, extremely large and small values of the Schmidt number.
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L INTRODUCTION

One of the fundamental challenges in turbulence research is the prediction of the statistical properties of field
quantities on the bases of the first principle, i.e. the equations of fluid motion. The so-called closure theories oi:
turbulence, which concern the lower-order statistics such as the first and second order moments of velocity, have been
developed under various approximations by many authors over fifty years, which includes the EDQNM {eddy damped
guasi-normal Markovian) by Orszag (1], a series of DIA (direct-interaction approximation) by Kraichnan {2,3], the LET
(local-energy-transfer) theory by McComb et al. [4], the LRA (Lagrangian renormalized approximation) by Kaneda
{5} as well as the Lagrangian DIA by ourselves [6]. (The last two theories yield an identical set of equations though
their working assumptions are different in an impoértant respect [7].} All of these theories are successful to describe
the energy spectrum function reasonably well; they are consistent with the —5/3 power law in the inertial range. It
turned out that the Lagrangian DIA (and LRA) in particular yields an excellent prediction of the energy spectrum
function in the whole universal range of wavenumber for stationary isotropic turbulence as well as for decaying one,
while it has no adjustable free parameters and it is much simpler than Kraichnan’s LHDIA (Lagrangian history DIA)
both in the procedure and in the final form.

It should be interesting therefore to apply this Lagrangian DIA to a passive scalar field, such as temperature,
contaminant, particle concentration, dye, smoke, etc, which is advected and mixed in isotropic turbulence. The
statistics of a scalar field is quite different depending upon the ratio s of the kinematic viscosity v of a fluid and the
diffusion coefficient & of a passive scalar. Here, we name s the Schmidt number {(or the Prandtl number on speaking of
temperature}). The behavior of the scalar power spectrum &{k), where k stands for the wavenumber, has been derived
by phencmenological arguments (see Tennekes & Lumley [8], Lesieur [9]). It depends upon the relative magnitude of
several characteristic wavenumbers, which include the peak wavenumbers, kv and kg, of the energy and scalar power

spectra, the Kolmogorov wavenumber,
ke = (e/v*)!1*, (1.1)

at which the inertial-range turbulent diffusion time (k%/3¢!/3)~! and the viscous dissipation time (k2)"! are compa-

rable, the Obukhov-Corrsin wavenumber,
ko = (6/x%)1/4 (= 65/ ky), (1)

at which the inertial-range turbulent diffusion time and the scalar dissipation time {xk?)~! are comparable {(meaningful

only for s < 1 when k. lies in the inertial range), and the Batchelor wavenumber,
ks = (/s (= 612 by = s7HA L), (1.3)

at which the scalar dissipation time and the shearing time (v/€)'/? of vortices of the Kolmogorov scale are comparable

(meaningful only for s >> 1 when k5 lies in the viscous dissipative range). Here, ¢ is the energy dissipation rate.



Three kinds of power laws are known: (i) the inertial-advective {inertial-convective) range, in which
O(k) = C; xe V3 k™% (max{ky, ks} < k < min{k, kc}), (1.4)

and neither the molecular viscosity nor the scalar dissipation is effective [10,11], {ii) the viscous-advective (viscous-

convective) range, in which
Ok)=Cox e 2k (ki €k < ks s> 1), (1.5)

and the scalar field is deformed by the shearing motion induced by vortices of the Kolmogorov scale [12], and {iii) the

inertial-diffusive (inertial-conductive) range, in which
Ok) = Cs x k3P k1R (ke € k€ ke, s <), (1.6)

and the passive scalar is rapidly diffusing while being mixed by turbulence [13]. Here, x denotes the scalar dissipation
rates. These three power laws have been observed either in the real turbulence [14-16] or in the numerically simulated
turbulence [17]. They are also consistent with the abridged LHDIA [18].

In this paper we formulate the Lagrangian DIA for a passive scalar field advected in isotropic turbulence, and solve
the resultant equations analytically (in asymptotic limits) and numerically. We will not only confirm all of the above
phenomenological results but also present the following three new findings. First, we derive all of the three power
laws systematically, and determine the boundaries of the respective power regions by an asymptotic analysis at large
or small values of the wavenumber and of the Schmidt number. Second, we determine the universal functional forms
of the scalar power spectrum with high accuracy by solving the stationary equations. (An estimation of the functional
form from a late state in a decaying numerical simulation of the closure equations, as was done in refs. [19,20], should
not be so accurate. It is not easy to know the time when it has approached the universal state and there is no
guarantee that the functional forms of the spectrum in the decaying and stationary turbulence ever coincide with
each other. For example, in Fig.12 of [19] or in Fig.13 of {20] we hardly observe the universality of the constants even
when an identical closure equation is solved.) Third, we describe the behavior of the scalar power spectrum in the
whole universal range of wavenumber and for all ranges of the Schmidt number.

This paper is organized as follows. Based upon the basic equations described in Sec. II, we formulate in Sec. III the
Lagrangian DIA for a passive scalar field to derive an integro-differential equation for the correlation function. We
make in Sec. IV a detailed analysis of the resultant closure equation to find the universal form of the passive scalar
spectrum. Three kinds of scaling laws (1.4)-—(1.5) are shown to be consistent with the closure equation and all the
universal constants are evaluated. In addition, the universal form of the function is determined numerically for several

finite values of s as well as for s 3> 1 and s < 1. Section V is devoted to a summary and concluding remarks.



Ii. BASIC EQUATIONS

We consider the statistical behavior of a passive scalar field #(zx, ¢} which obeys the advection-diffusion equation

2

o H(m £) + ui{z, t) 9 9(:1: t) = L v 88 B, 1), (2.1)

where u; {2, t) is an incompressible turbulent velocity field governed by the Navier-Stokes equation

2

&
3z, 57, wlz,t) (1=1,2,3) (2.2)

1
o o e, t) + (e, 0) o u,(z 0=-2 aip(a: 8ty
and the equation of continuity
a
—U; =0. 2.
Ba:,-u"(w’ t)=0 (2.3)

In the Lagrangian closure formulation, it is convenient to introduce the Lagrangian position function [5] defined by
¢($:t|$’:t’) = §° (:1: - y(tlmlrtl)) ’ (2.4)

where y(t|z’,t') is the position at time ¢ of a fluid element which passed =’ at ¢/ (< ¢). The position function
Pz, t|2’, ') describes the probability density that a fluid element which passed @' at ¢’ will pass x at ¢, and it is

governed by
6 T a 5ot
E ’l,b(ﬂ:,tlﬂ: at) = _ui(mat) 6_1_1¢($:t'$ 1t) (25)
with the initial condition
P, t|z’, 1) =6 (z - ) . (2.6)

The Lagrangian velocity and scalar fields are written in terms of the respective Eulerian counterparts and the position

function, as

st ¢') = / B uilw, ) v(z, e, V) (2.7)
and

65 (t)x, ¥) = / &z’ vz’ e, t) 8z’ 1) . (2.8)

The Lagrangian correlation functions for the velocity and scalar flelds are then defined respectively by

Vii(r, t,8) = vtz + v, ) u, (z, ') (2.9)

Z(r, 4, V) = 0tz + v, ¢) 8(x' ), (2.10)



where the homogeneity of the fields has been assumed, and an overbar denotes an ensemble average.
In order to make the following analysis easier, we assume that the fluid is confined in a periodic cube of side L, and
at the final stage of calculation we will take the limit L - co. We can then decompose the Eulerian velocity field into

the Fourier series as
27
u, (¢, t) = ( ) Zul(k t) exp[lk z] , (2.11)

where k = (27/L) (ny, n2,n3), (M1, n2,n3 = 0,%1,£2,---) is the wavenumber vector. Other Eulerian and Lagrangian

fields are decomposed in the same manner. Then, (2.1}—(2.3), (2.5) and (2.6) are respectively written as

o ~ ) or\?
[E“L’“kz Bk, t) = ~ik, (“ff) ZZ u,(—p,t) 6(—q.t) , (2.12)
(k+p+q— o)

AL ﬂ‘kf)“‘——i- 233 ZZ — 2.13
5}: v 'f.!.-_._( ] - 9 j7 Zj'm u_j‘ p': u’m-( Q1 L] ( . )
(k+p+q— o)

k, 4, (k,t) =0, (2.14)
2 k=it () TX ap0-a1k,0 (215)
at L 5 7 ? bl 2 -
(k+pt+g=0]
and
T ;o L3 3
w(katjlk N1 ) = W 6k+k’ 1 (216)

where Bym(k) = km Byy(k) + k, Bom(k) and B, (k) = 6;, — kk;/k?. The relations (2.8) and (2.7) between the

Lagrangian and Eulerian fields are written as

~ ' (217)6 ~ 3t s ' ’
Ttk ) = 2F5= D (k8 H(—K' ¢k, ) (2.17)
kl
and
8 (tk, t') = ng Y b vk tlk,T) . (2.18)
kf

The time derivatives of (2.17) and (2.18) yield respectively the governing equations for the Fourier transforms of the

Lagrangian fields as

?_ ~ 1o (277)
5 (k') =

va w(p,t) ¥(-p. tk', 1)

(271' nrmrn -

U (P, 1) Tn(g, t) %(r, LK’ ¥) (2.19)

(p+q+r o)



and

[ E‘?E + nk‘—’} 60 (tlk, ') =0 . (2.20}
The evolution equations for the Fourier transform of the Lagrangian scalar correlation function
= t 1 3 3 I} . 2T 3 AL g
Zik,t,t) = (5=) [ &raett) e [— ik- 7| = =) 8Dk, ¢) 8(—k, ¢) (2.21)

are derived, from (2.12) and (2.20), for the single time correlation as

a s | = . am\° = = =
[E + 26k ] Z(k,t,t) = —ik, (T) Zp: ; i, (—p, t) 8(—q,t) 8(—k, 1)
{k+p+g=0)
+(k — —k) (2.22)
and for the two-time correlation as
g 2| ’
5 K | 2k t8)=0. (2.23)
The evolution equations for the Fourier transform of the Lagrangian velocity correlation function
< 1 3 3 . 27" 3 = —~
Wik, t,¢) = ( 5 &7 Vyj(r,,¥) exp [—zk -r] = () 5@k Gk (2.24)

are derived similarly from (2.13) and (2.19) (see egs. (2.26) and (2.27) in ref. [6]).

For a later use, we introduce here the incompressible part of the Lagrangian velocity correlation function
éZJ (k! ts t’) = Ezm(k) f/'mg (k: t7 t,) H (225)

which has already been determined in the Lagrangian DIA for the velocity field [6], and the passive scalar power

spectrum function
Ok, t) = k* }( A2 Z(k,t,8) , (2.26)

which will be considered in detail in the following sections. Here, § d£2 denotes a solid angle integration in the Fourier

space. The scalar transfer function T(k) is defined by a solid angle integration of the right-hand side of (2.22} as

% + 2kk? ] ek, t) = T(k) , (2.27)
and the flux function II(%) is defined by
(k) = [ dE' T{K') . (2.28)
k



ITI. LAGRANGIAN DIA FOR A PASSIVE SCALAR FIELD

In this section, a closed equation for the Lagrangian correlation function of the passive scalar field is derived by

DIA. We define the response functions of 8(k, t) and 85 (¢|k, t') by

89(k, 1)

Gk, tk' ') = —— 2
0k’ , 1)

{3.1)

and

66(0) (K, )

GO(t|k, k' t) = =
§0(k', )

(3.2)

respectively, where & denotes a functional derivative. The evolution equations for these response functions are respec-

tively derived by taking functional derivatives of (2.12) and (2.20) as

3
P g
(k+p+g=0)
and
[%+nﬁ GO bk, K, ¥)=0. (3.4)

The initial conditions are given by

] UT R L)yt o L2 3

Gk, Uk, 1)=GCG (tik,k,t)zwﬁk_'_k. . (3.5)

A. Direct-interaction decomposition

The DIA is based upon the direct-interaction decomposition [2], in which 8 and G are respectively written as
B(k, 1) = 8O, tl[to, ko, Po, €o) + 6 (k, tlto, ko, Po, 2o) (36)
and
Gk, t) = GO (k, t}k', ' {[ko, Dy, 4o) + G (k. t|K', ¢ 1Ko, Py, o) - (3.7)

Here, kg, py and gy (ko + py + gy = 0) are a triplet of wavenumbers, the direct interaction between which has
been removed in the non-direct-interaction (NDI) fields designated by superscript (0. (We call #2) and G the
direct-interaction (DI) fields.) These decompositions for 8 and G are made after ¢, and ¢ , respectively. Hereafter, the
argument #; in 6 and #1) will be omitted for simplicity of notation. The initial conditions for 89, 81}, G(® and

G are given by

g{o)(k’ tU“‘kUspO! qU) = g(katﬂ) 3 g(l)(k,tollkoapm qO) =0, (38)



~ . I3 ~
G(O){k:t ikratrlikmp{)s QO) = (é"}:’_)ﬁ 6I3g+k’ and G(l}(ku t’lkla tfllkOsp[)sQO) =0 ’ (39)

respectively. The decompositions for %, and % are similarly performed (see (3.1)—(3.4), (A2), (A8)—(Al1) and (B2)
in ref. [6]). Since the NDI fields 6 and G(® are fictitious fields in which there is no direct interaction between the

particular modes of wavenumbers ko, p, and g, they are respectively governed by

[g—t+nk2 5(0)(k7t||k0,1?0a%)="ik3 (2%)3 ZZ’ﬁa(_Pvt)5(0}(—‘1,?5”"0,?0,‘10) (3.10)
(k+pp+qq=o}
and
lf’-ﬂng] GOk, )k, ¢k y=—ik; (2—“)3 3N E(—p,t) GO (—g iK' 1|k ) (3.11)
g s ) 0, Pgs 9o P\ = =D gtk , 0:Po: 90/ »
{(k+ptg=0)

where 3° ¥ denotes the summation without the direct interactions between the three modes of wavenumbers kg, po

and gy. The evolution equation for the DI field g1 is then obtained by subiracting (3.10) from (2.12) as

d = . ar\? " ~
[ a + nkz :| 6(1}(ka tlikﬂﬂpU)QG) = - lkJ (T) ; ; ’u:,(—p, t) 8(1)(—(1, t”ko,po, qO)
(k+p+g=0)
- ié?c-ko ko; ﬁj(‘?o, t) 3(0)("%, ti[ko,l’m gs)

- ié}iwko ko; ﬁj('pm t) 5{0)(—qﬂatlgk01p05 o)
+ i6i+ko koj ﬁj (pﬂs t) g(U) (QOa t|iko,po, q{])
+18%, &, ko5 T (g0, £) 8 (py, thko, Po, 90)

+ (ko — po — go — ko) - (3.12)

It is easily shown from (3.8), (3.11) and (3.12) that the DI field §(1) is expressed in terms of G® and 6 as

(2m)®
e

11
8O (&, tko, pg, @o) = —ik; f dt” GOk, t| — k,t"||kq, Po, do)
to

x l:fsi_ko ﬁj(—Pmtﬂ) gm("‘lmtn||koapo#10)
+8%_ g, Ty (—ap, ") 8 (~po, " ko, By, 20)
+83 4 1o Ui (Do, ") 8% (@0, " 1iko, Po, 20)
+83 1. (g, ") 8 (g, " o, P, 90)

+ (ko — Py — g — ko) . (313)

In the same manner, the DI field ﬁil) is also expressed in terms of the NDI fields (see [6]).



B. Closed equation for passive scalar specirum

Here, we will derive an approximate expression of the third order correlation in the evolution equation (2.22) for the
scalar correlation function Z in terms of Z itself and the Lagrangian velocity correlation function by the Lagrangian
DIA. This approximation is based upon the following three assumptions: (I) The DI filed is much smaller in magnitude
than the NDI field as long as ¢ — ty (for 5} ort—t (for () is limited within the order of the correlation time scale
of the velocity field. (II) Any two Fourier components without direct interaction are statistically independent of each
other. For example, any two of 800k, t||ko, Py, @o)» 5(0)(130, t'[|ko, P+ o) and %x(go. t") are statistically independent
(see (3.10)). (III) The NDI field of the position function #(® is statistically independent of those of the Eulerian
quantities such as $(® itself, 89, G(9 and 7). See ref. [7] for detailed discussions on assumptions (I) and (IT}.

First, we consider the one-time scalar correlation function Z({k,t,t) which is governed by (2.22). By substituting
the direct-interaction decompositions into the right-hand side of (2.22) and by neglecting the higher-order terms of

the DI fields (the assumption (I)), we obtain

(Nonlinear term of (2.22))

—-in, (Z) >

(k+p+g=0)

a’go)(_p, t||k,p, q) 5(0)(—(1, t||k,p, q) 5(0)(_k1 tlk,p,q)

+i ) (—p, tk, p. q) 60 (—q,t|k, p, @) 60—k, t||k, p, q)

+70 (—p, t|k, p, ) BV (g, tik, p, ) O (~k, [k, p. @)

+30 (=p, Ik, p, ) 8 (—q, tlk, p, g) B (k. tl|k, p.q) | -

(3.14)

Note that this approximation is valid as long as ¢ — &y is within the order of the time-scale of the velocity correlation
function. The first term of the above equation vanishes under the assumption that E;ﬂ)(p, tik,p,a), g(o}(p, t|k,p,q)
and 619 (q, t||k, p,q)) are statistically independent of each other (the assumption (II)). Since the other three terms
are evaluated similarly, we describe it here only for the third term. Substitution of the solution {3.13) of 6V into the
third term yields

6 t
(Third term of (3.14)) = —ik; (2%) 33 —i(—qﬂ,,)(zjgit.}9 f dt"
P q to

{k+p+g=0}

x | GO){(—g,t|q, "k, p,q) T (p, " |k, D, @) ©.0 (~p. ]Ik, p, ) 8O (k, 1" || K. p, @) 6O (k. t|[k, p, )

+GO(—q, tlg, t" ||k, p, @) T (k. t" ||k, D, @) By (~p, |k, P, @) 6O (p, '| K, p, @) O (K, ¢k, P, @)

(8.15)



The second term of the above equation vanishes, because

8 (k, t" ||k, Py, go) T(—Fk,t) = 0 (3.16)

if the flow field is statistically isotropic.

The first term, on the other hand, is converted, under the assumption (II), into

(First term of (3.15)) = (2“ Zz i / A" GO — 4,0, 8) Opml—p, t,8") Z(—k, 1,8} .
(k+p+q—o)
(3.17)
Here, we have used the relations that
3
W) B k8 = (F) Tolbtt), (318)
= = 2\ % ~
g0k, t) 60 (=K, ) = (T) Z(k,t,t) (3.19)
and
GO (k,#| — k,t') = GLY(tlk, —k, ') . (3.20)

See ref. [6] and Appendix A for the derivations of (3.18) and (3.19)—(3.20), respectively. In a similar manner, we can

calculate the second and fourth terms on the right-hand side of (2.22) to obtain

Bket,8) = by b C0 )Y dt"Qm —p,t,?")

{k+p+q~o)

9 2
a+25k

% l:—é(ﬂ)(t} -q,q,t) f(—k, t,t") + G| — ke, k, ") Z(—q, 1, t")

+ (k- —k), (3.21)

where use has been made of the incompressible condition of the velocity correlation functionm, i.e., kjézj (k) =0.
Turning now to the two-time correlation function Z(k,t,t') and the response function G(Z)(k, ¢, '), we can integrate

the governing equations (2.23) and (3.4) as
Z(k,t,¥') = Z(k,t', ') exp [ —kk3(t— t’)] (3.22)
and
L)
GOk, —k, ') = (2 )6 p[—nk2(t - t’)] (3.23)
under the initial condition (3.5).

10



The combination of (3.21), (3.22} and (3.23) then yields

[562+2Kk2] (ktf)—Qk km (2L7r) g; /;0 dt”é_—,-m(—p,t,t”) exp[—n{kz-i-qz)(t—t”)]

(k+p+q=0}
x| -Z(-k ") + Z(-q,t",¢)] . (324)

By taking the limit L — oo, we may convert (3.24) into

[§+2xk2

Z(k,t,t) = 2k; kin /d3 [dSq 5k+p+q/t dt" Qsm(—p,t,t")
xexp[—n(k2+q2) t”)] [ Z(—k,t" ") + Z(— q,t",t”)] . (3.25)

This gives a closed system of equations for Z(k,t, t) because the function @ has already been known under the
Lagrangian DIA [6]. Let us stress again that the present formulation of the Lagrangian DIA is quite simple and clear.

From now on, we will confine ourselves to a stationary and isotropic field, so that Z and (j may be expressed as
Z(k,t,ty = Z1(k) , (3.26)
Qu(k,t,) = § Py (k) Q' (k,t — ) (3.27)
Equation (3.25) then reduces to
2w ZH (k) = / A apdg T o(k,p.q) [ -2'(k) +27(0)] fo T 4 Qi) exp| — (K + )Y |
(k)k/47rk4 , (3.28)

where

k) km (p) = (k+p+q)k+p—glk—p+g){-k+p+q)
5z Lm(P) = 4p2k2 ’

the second equality is due to (2.26), (2.27) and (3.26). Equation (3.28) describes the balance between the scalar

o(k,p,q) = {3.29)

fluctuation transfer and its dissipation. Recall that (3.28) is valid as long as t — #; does not exceed the order of
the velocity correlation time (see the paragraph below (3.14)). The exponential decay of @QT{k,t) with respect to ¢,
however, permits us to replace ¢t — g by infinity. The resultant closed equation (3.28) for the scalar correlation function
may be derived also by LRA [5], although in ref. [20,21] only the LRA equation for k = 0 is given. Note, however,
that there is an essential difference between LRA and the Lagrangian DIA in the underlying approximations (see ref.

[7]). In the following, we call (3.28) the LRA-DIA equation.

IV. UNIVERSAL FORMS OF PASSIVE SCALAR SPECTRUM

We discuss in this section the functional form of the scalar spectrum @{k) in the universal range for arbitrary values
of the Schmidt number. To make the following analysis clear, we non-dimensionalize the wavenumber and the time

as

11



and
t=re 3R (4.2)
respectively, since the velocity correlation function Q1(k,t) is expressed in terms of these normalized variables as
Q(h o) = 5- KB (kB3 QR,r)  with  QO,0 =1, (4.3)
where K denotes the Kolmogorov constant. We define a non-dimensional scalar spectrum O by
k) =CLx e P kP B(k) . (4.4)

It follows from (2.26), {3.26) and (4.4) that

1

z! (k) = A7 k?

1 _ iy e
Ok) = - C1 e V3 PR 28 () (4.5)
Then, the LRA-DIA equation (3.28) is written as

O(k) = _1228;,5_4/3 f dpdgo(l,p,q) 3¢ [—@(75) + qlg @(Eq)]

Ag
o - o~
x/ dat Q(&p, t*'*) exp[ —s LR (1 +q2)t] (4.6)
0

:T(k)/[Zﬁ,k“’Clxe_l/sk;s/s] ,

where the second equality follows from (2.27) and (4.4).
In the following subsections we will describe the solution for various values of k£ and s: the k~%/3 power spectrum at
k « min{kg,ko} for arbitrary s in Sec. A, numerical solutions for finite s in Sec. B, the asymptotic forms for 5 > 1

in Sec. C, and for s € 1 in Sec. D, and bumps in the spectrum at the end of power law regions in Sec. E.
A, Inertial-advective range

Assuming that both the kinematic viscosity » and the scalar diffusivity x are so small that max{k,,k:} <

min{ky, ko }, we consider the inertial-advective range
max{k,,k,} € k < min{k,,kc} = % < min{l,s¥*}. (4.7)
Then, since s~1%k%/% « 1 and k < 1, (4.6) may be written as
o=/ [A dpdg o(1,p,9) p~ " ¢ {—é(’fé) + @(’Eq)} Wi (¥s, k< ko ko) (4.8)
1
at the leading order, where
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W, =/ dt (0,1} . {4.9)
o

Since no characteristic scales appear in (4.8), it allows a power form of the spectrum function. Substitution of

Bk) xk° (4.10)
into (4.8) leads to
1 1+g o0 g+1
0= [/ dg f dp +f dg f dp] o(l,p,q)p **Pq(g*? - 1), (4.11)
0 1 1 g

—gq -1

which is rewritten as

i 1+¢
0= ] dg f dpo(l, ) p g (¢ %2 — 1) (1 — ¢*~5/°) (4.12)
0 1—g

by changing the integral variables in the second term on the right-hand side of (4.11) as p = p/q’ and ¢ = 1/¢'.
This equation has two apparent scaling laws of a = 5/3 and —2. The former corresponds to the Obukhov-Corrsin
spectrum (1.4) with finite flux II(k) = x(# 0). The latter, on the other hand, represents a state of equipartition
of the fluctuation of the passive scalar field with vanishing flux. Since we are interested in a statistically stationary
state with finite flux through the advective range toward the diffusive range, we will not consider this solution in the
following.

The Obukhov-Corrsin constant C; in (1.4) is shown to be expressed by W, and the Kolmogorov constant K as

910v3

G = e KW,

(4.13)

(see Appendix B for derivation). A similar relation was derived in the LHDIA {18,22]. A numerical integration of
(4.9) gives W, = 1.19 and then C) = 0.34 [21]. This is about a half of the experimental values which scatter around
(5/8) x 0.4 = 0.67 [14]. The reason of this discrepancy is not known. Incidentally, the abridged LHDIA yields
Cy = 0.208 [22).

B. Finite Schmidt number

We describe here numerical solutions of the LRA-DIA equation (4.6} for finite Schmidt numbers. We search for a
solution by an iteration method that approaches the —5/3 power form in the inertial-advective range k < min{k, k.}
discussed in the preceding subsection.

The scalar spectra for s > 1 are shown in Fig.1 together with the asymptotic form in the limit s 3> 1 (see Sec. IVC).
The wavenumber is normalized by kx in {a) and by kg in (b). In these figures we can see that the —5/3 power law
range extends up to k, which is consistent with the argument in the preceding subsection because ky < kc if s > 1,
and that the function obeys the —1 power law in the larger-wavenumber range kx € k < ky. This —1 power law range

widens with the Schmidt number, and is followed by an exponential decay at k >» kg. These behaviors are consistent
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with the phenomenology for large Schmidt numbers by Batchelor [12} (see Sec. IV C for detailed discussions). We also
observe a bump in the spectrum around kg, which will be discussed in Sec. IVE.

In Fig.2, we plot the numerical solutions in the cases of s < 1 together with the asymptotic form in the small
Schmidt number limit (see Sec. IV D). Since the upper limit of the inertial-advective range is k¢ for s < 1 (see 1.4),
the wavenumber is normalized by k. instead of kx in {a). The —5/3 power law is actually established at k& < k..
Moreover we observe that as s decreases the spectrum seems to approach the —17/3 power law at & > k., which was
phenomenclogically predicted by Batchelor et al. [13]. The wavenumber in (b) is normalized by kx in order to focus
the spectrum around k. We can see in (a) and (b) that the —17/3 power law range extends between k. and ky and

widens as s decreases.

C. Large Schmidt number limit

‘We consider here the universal form of the scalar spectrum in the large Schmidt number limit. To do it we introduce

variable normalizations of the wavenumber and the spectrum such that

k =k ky s* (4.14)

O(k) = C1 x e 2 k% 5P O(k) (4.15)

with undetermined parameters o and 3. Note that ¢ indicates the reference wavenumber which we focus on. The
reference wavenumbers for a = 0, 1/2 and 3/4, for example, are kg, ks and k., respectively. It should be mentioned
that in the large (or small) Schmidt number limit the characteristic wavenumbers {kx, kg, ks } are separated infinitely
far from each other on a logarithmic scale.

On substitution of (4.14) and (4.15) into (4.6), we obtain

E(k) = % e fA dpdga(1,p,q) p*° ¢ [ ~E(k) + E(kq) |
x f:o dt Q(s%kp, tp*/) exp [ — g~(1—2/3) FAS3 (1 4 42) t] , (4.16)
where
S(k) = O(k) /&> . (4.17)
Since this equation depends upon the Schmidt number only through s* and s'—%%/%, we consider the cases of a < 0,

a=0and @ > 0 in turn. (It will be shown in subsection {3] below that an apparent critical value & = 3/4 is actually

irrelevant.)
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[1! Inertial-advective range (o < 0}

For & < 0 we are in the wavenumber range below k, because s < 1. Since s* « | and s7{1742/3) & 1, (4.16)

leads to

0= f/ dpdge(l,p,q) p 103 4 [—E(IE:) +é(i}q)] Wy (s>»la<0). (4.18)
481
This is identical to the LRA-DIA equation (4.8) in the inertial-advective range, which yields the spectrum ©(k)
proportional to k=3/3,

[2] Around Kolrmogorov wavenumber (a = 0)

For a = 0 (k = O(kk)), (4.16) is deduced to

0= f dpdgo(l,p,q)p~ %3¢ [ ~Z(k) + E(kq) ] [oo dt Q(kp, t) (s> la=0). (4.19)
Ay 0

This equation has an asymptotic solution proportional to k=%/3 for k£ <« 1 because it coincides with (4.8). In the
opposite limit & 3> 1, on the other hand, we find that the contribution from the region p < 1 is dominant in the
integral, since Q(k,t) decays exponentially with k as Q(k,t) o exp(—ck) (see the paragraph below (4.62}). Thus, by
changing the integral variable as ¢ = 1 + pz, we may rewrite (4.19) as

= ./w dpp3 f dz o(1,p,1 + px) (1 + pzx) [—E(fc) + Z(k(1 + pz)) ] /oo dt Q(kp, t) (4.20)
0 -1 0

Substituting the expansions

o(1,p,14+pz) (1+pz) =1 -2 +2(1 -z pr + O(p*) {4.21)
and
—ER)+EE1 +p2) =k a:sl—%—}- L (kpz)* dz—é +0(*) (4.22)
=+ e ST TR '

into (4.19) and carrying out the integration with respect to z, we obtain

f dpp~! d [ 4‘;;] /:o dt Q(kp, t) (4.23)

at the leading order of p. Hence, the leading order of (4.19) for £ > 1 is

d {.,d= .
| =1=0 >»lLa=0E>1), 4.24
dk[ dk] {s o ) (4.24)

which gives Z(k) o< E=2 (i.e. O(k) x k71).
Thus, a solution of {(4.19) behaves as O(k) oc k=%/° for k « 1 and &k~ for k> 1. We now solve (4.19) numerically
80 that the solution may satisfy these asymptotic forms. The result is drawn in Fig.3(a), in which the transition from

the ~5/3 to the —1 power laws occurs around the Kolmogorov wavenumber (see also Fig.1(a)}.
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[3] Viscous range (@ > 0)

In the cases of @ > 0 (k > kx), the contribution from p <« 1 is dominant in the integral of (4.16) because Q(k,¢)

decays exponentially with & at large k. Therefore, we may carry out the integration with respect to g by putting

g =1+ pz and by expanding the integrand into power series of p up to O(p?) (see (4.21) and (4.22)) to obtain
2(k) =

X[ (k k7/3 —{1—4¢/3) f) d“"

gl—4a/3 [—4/3 / dppl/a /oo di Q(s“fcp, tpz/s) exp[ _9g—(1—4a/3) j4/3 ]
o
., d%E
kz —_—
dk ® dk? j|
at the leading order. By changing the integral variables as (p, t)

(4.25)
(s~2p, s2/3¢), this equation is converted into
(e =]
_.{k) P 2a k—4/3 / dppljaf di Q(]?:p, tp2/3) exp [ _ 23—(1 2ax) k4/3 ]
0
[ 17/3 g—(1-2a) d=
a(ki-F 1) <=

2o d°5
+ k2 s>»l,a>0). 4.26
e ] ( ) (426)
Since this equation depends upon s through only s'~2%, we will examine three cases 0 < @ < 1/2, @ = 1/2 and
1/2 < « separately in the following subsections

[3-1] Viscous-advective range (0 < o < 1/2)
If0<a<1/2 (kk € k < ks), (4.26) reduces to

_ K g v _q d=
0= 15 8 Wg k
where

2%
4=+ ;}i:_ ,
dk dk?

(4.27)
szfo dz /{;mdym_l/3 Qlz,y)

Since all the factors outside the brackets in (4.27) are non-zero, we have

(4.28)
0= 4dh+i~,d22 (3»1,0<a<1/2)
d& dk? ’

(4.29)
which yields a power law solution as Z(k) = k=2 (that is, ©(k) o £~1). This implies that we see only the —1 power
law (1.5) of the spectrum function in the viscous-advective range (kx €< k € kg)
of O(k) as

T(k) = %KVWQH d [

L4 [8)
* dk dt | k®

In order to estimate the universal constant Cs in (1.5) we express the transfer function (2.27) in this range in terms
which follows from (2.27), (4.15), (4.17) and the right-hand side of (4.27). Then, the flux function II{k), defined by

(2.28), is written as

7

(4.30)
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o (k)
k2

2 ar
(k)= —= Kv Wo kK K i ] , (4.31)

since the contribution from the diffusive range to the integration in (2.28) is negligible. By substituting the power

law (1.5) into the above equation, we obtain
2
II(k) = XKW (s (4.32)

which yields

— 5 —
T oKW,

Ce 1.30 (4.33)

because TI(k) = x in the advective range and the numerical value of W3 is 1.11. This value of C; should be compared
with 3.9 £ 1.5 [15}, 3.7 £ 1.5 [16}, which were measured in tidal channel flows, as well as 1.5 ~ 2.5 (LRA-DIA), 1.5
(a modified LRA) (201, 0.6 ~ 1.0 (abridged LHDIA; the deviation is too large) and 1.9 ~ 2.0 (strain-based abridged
LHDIA) [19], which were determined numerically from various Lagrangian closure equations. All estimations by these
closure theories are quite small compared with the experimental data. It should be mentioned here an important
difference in the methods of evaluation of Cs used in the above closure theories and the present one; they estimated
it from a late state of a freely decaying solution whereas we did it from a stationary solution. This is the reason why
the numerical value obtained in ref. [20] is different from ocurs, * though the same LRA-DIA equation is solved. Since
their results themselves show large deviations, such a method may not be appropriate to evaluate the nniversal form.
In the above measurements [15,16] the universal constant Cy in the viscous-advective range is evaluated by fitting
the temperature spectrum function with the Batchelor form ({4.44} below) in the whole viscous range, in which the
Schmidt number is about 10. It should be pointed out here a reservation that the —1 power range is not so wide at
this value of the Schmidt number (see Fig.1{b}).

A comment on Gibson’s bounds [23] may be in order. He derived that V3 < Cz < 24/3 for a homogeneous dissipation
field by making use of the Batchelor form (4.44) of the spectrum function with the relation Cy = —(¢/v) /2 /7y (v is the
least eigenvalue of the rate-of-strain tensor). Since the Batchelor form (and then Gibson’s bounds) is not a solution
to the LRA-DIA equation but a phenomenology, it is not unnatural that the present estimation of C, violates these

bounds.
[3-2) Around Batchelor wavenumber (o = 1/2)

For a« = 1/2 (k = O(ks)), (4.26) reduces to

= 22
2B =4[ ABE - R T ABFP LS > La=1/2), (4.34)

*Factor 2 is missing in Sec.4.4 of [20].
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where

K [* o 4
GRS ]ﬂ appt® jo dt Qkp, tp°/?) exp | — 2k4/% (4.35)

K o x
fak) = ¢ /0 dp pt/3 fo at t Q(kp, tp*'3) exp[—2k4/3t]. (4.36)

It is easy to show that (4.34) has the asymptotic solution of Z(k) o k73 (ie. O) x k1) at E < 1 because (4.34)
coincides with (4.29) in this limit. {Note that fa(k) &< E=2/3 and fo(k) « logk for E<l)

In the opposite limit k£ 3> 1, on the other hand, we have the asymptotic expressions,

) = B8P 4 o kB + O3 and fiB)=ia bk +ek*+0Kk™®) (k- o), (4.37)
where
_K [® . s _ 1
a=g [ @2 Qe =g (4:38)
and
K [®. 8 78
== [ app Lompt)| = —re. 4.39
2= 60 [o PP 7 9P| = 350760 (£.39)

The second equalities of (4.38) and (4.39) are respectively derived from the relation € = 2v I3 dkk*E(E) =
2wK /3 [ dkk/2Q(k/k«,0) and the Lagrangian DIA equation for Q(k,?) together with the expression of the skew-
ness factor S of the velocity derivative (see (4.19) and (4.23) in ref. [6]). Hence, in the limit E — oo, (4.34) reduces

to
B (k) = 2871 E + [cl g kP ] d‘ié (4.40)
dk dk? '
at the leading order, from which the asymptotic form of = is derived to be
E(k) o E® exp [ - B2/(2/eD) ] >1,a=1/2k> 1) (4.41)
or
a+2 _\/66 E 1/2 2
Ok) x k exp[ 5k (e) k (4.42)
with
_ 1 Co _ 7 3 —
““2[(::1)3/2 3]_125 5~ 19, (4.43)

where we used S = —0.66 which had been already determined by the Lagrangian DIA [24]. Thus we have found

asymptotic solutions of (4.34) in both of small and large wavenumber limits. The numerical solution to this equation
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integrated from the large wavenumber limit is shown in Fig.3(b), in which we can clearly see the —1 power law an
the exponential asymptotes at small and large wavenumbers.

The asymptotic form (4.42} is similar to the one derived phenomenologically by Batchelor {12, which is
1/2
Ok) = Cy x /2 e 1/2 1 exp[—Cz . (1:;) k2] : (4.44)

A comparison of the arguments of the exponential function in (4.42) and (4.44) would give C; = v/60/2 = 3.87. This
value is in a quite good agreement with experimental values 3.9 1.5 {15], 3.7 4 1.5 [16]. Recall that C; is determined

experimentally by the use of the Batchelor form (4.44). Another analytical form of the spectrum in the viscous range,

Ok) = Cs x (e/1)*/? k“1[1 + \/ﬁk] exp [ - \/(Ek] , (4.45)

was derived by Mjolsness [25] based upon Kraichnan’s LHDIA equation under the assumption that the transfer
function is proportional to k~1d=/dk + d®Z/dk?. Recently Bogucki et al. [26] have shown that (4.45) agrees with a
direct numerical simulation with a fitting parameter C; = 5.26 + 0.25. However, we would like to note two points
to be considered. First, (4.45) should not be precise at wavenumbers larger than k5 because the above expression of
the transfer function can be applied only at k¥ <« kg under Kraichnan’s formulation of Lagrangian DIA just like the
present one (see the paragraph below (4.36)). Second, the value of C; = 5.26 suggested by Bogucki et al. is much

larger than the experimental data [15,16].
[3-3] Far viscous-diffusive range (a > 1/2)

For a > 1/2 (k > kz), it follows from (4.26) that
Zk)=0 (s>»1,a>1/2). (4.46)
This is consistent with the exponential decay of the spectrum function at wavenumbers larger than k, discussed in
the preceding subsection.

D. Small Schmidt number limit

In order to examine the small Schmidt number limit we write the LRA-DIA equation in terms of the normalized
wavenumber & and the specirum O as

o K e - e 1 .
Ofk) = 5 57 /3 —4/3 fA dpdgo(l,p,q)p 3¢ [~®(k)+q—2@(k®]

oo
x/ dt Q(s%kp, tp*®) exp [ — g (1-1al8) 473 +4¢%) t] . {4.47)
0

This equation, which is equivalent to (4.16), is more convenient in the present subsection because = is not necessary
to be dealt with. Since (4.47) depends upon s only through s* and s'~%*/3, we will examine three cases o > 3/4,

a=3/4,0 < a<3/4, « =0 and a < 0 separately in the following subsections.
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[1] Inertial-advective range (o > 3/4)

For a > 3/4 (k < k¢), since s* < 1 and s~(17%%/3) <« 1, (4.47) reduces to

0= [/ dpdga(l,p,9)p g [—é(fc) + -15 @(EQ)] (s < 1l,a>3/4), (4.48)
A g

which is identical to (4.8). Hence, the spectrum obeys the —5/3 power law. This is consistent with the argument in

Sec. IV A because ke < ky for s < 1.

[2] Around Obukhov-Corrsin wavenumber (o = 3/4)

In the case of a = 3/4 (k = O(kc)), (4.47) leads to

O(k) =§1}—4/3 fA dpdqa(l,p,Q)p‘sfsq[ (k)+-q— (kq)]

x/oodtQ(O,tpzla) exp[ — k43 (1+q2)t] (s € 1l,a=23/4). (4.49)
Q

Since this equation coincides with (4.48) at k < 1, its asymptotic solution is proportional to %£-5/3 in this limit. At
k > 1, on the other hand, the exponential factor in the integrand allows us to replace Q(0,tp*/%) by Q(0,0) = 1.

Then, we obtain

-8/3

(k) = 52{.;;—813 f L dpdga(l,p,q) 1’1 — qf [—E:)(IE) + ;—2 é(fcq)] : (4.50)

In order to estimate the limiting behavior for k > 1 of this integral we divide it into three parts as

1+ p8/3
o(k) k“sﬁjdpfl “dqo(lp.0) & q[ (k)+ql (kq)}

1+42
K t+p —8/3
-5k / dpf dqalp,q)pl+2®()
K k-8/3 d 1+pd 1, p 7 451
? /E Pf ga( Pﬂ])m O(kq) , (4.51)

where £ (< 1) is a constant. The first and second terms are respectively proportional to g4/3 k213 %[l?ad;((:) JE3)]
and e~2/3k~#/3@(k), both of which will be shown to be smaller than the third term (see (4.52) below). The asymptotic
behavior of the third term may be obtained by noting that a dominant contribution to the integral comes from the

vicinity of ¢ & 0 if © is a decreasing function. Thus, we may convert (4.50) into
2K ;s [ 2 & 7
Ok) = -k dg?0(g) (s<l,a=3/4,k>1). (4.52)
0
Hence, the spectrum obeys the —17/3 power law at k > 1. The numerical solution of {4.49) shown in Fig.4(a) actually

exhibits a transition from the —5/3 to the —17/3 power laws around the Obukhov-Corrsin wavenumber K.
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[3] Diffusive range (o < 3/4)

For a < 3/4 (k » kc), since s71+42/% » 1, the exponential factor in (4.47) is a rapidly decreasing function and the
contribution from the vicinity of the origin is dominant in the integral with respect to ¢. It then reduces to

. K -8/3

Ok) =< 52(1=4a/3) [ —8/3 f/A dpdgo(1,p,q) }i T

f {_@(;}) + ql2 G(fcq)] Q(s%kp,0) . (4.53)

This is further simplified by dividing the integral with respect to ¢ into two regions, I, (0 € g < ¢)and L, {g > ¢),

where £ (& 1) is a constant independent of s. Then, (4.53) is written as
&) = % s2(1-4a/3) f-8/3 [11 + 12} . (4.54)

It is easy to show that I3 and the first term of I} are bounded irrespective of the value of s. As for the second term
of I;, we make a change of integral variables as p = 1 + ¢z, expand the integrand around ¢ = ( and carry out the

integral with respect to = to obtain

(Second term of I) = % Qks®,0) k3 {[0 dg ¢® O(q) — f dg ¢ (:)(q)}

= g Qks®,0) k3 [% sTATSadl _ f:o dgq® (i)(q)} , (4.55)
where use has been made of x =2« [, dk k? ©(k). The second term of this equation is also bounded and neglected
compared with the first term in the limit s — O (because (4.57) and a < 3/4). On substitution of the first term of
(4.55) into (4.54), we find

(k) = % §3-1Tal3-8 1713 (5o 0) . (4.56)

In order that (4.56) may have a nontrivial solution, we must set
g=3-Ya (4.57)

to obtain

O(k) = 3—2 ERQ(s%k,0) (s« l,a< 3/4). (4.58)

Since this equation depends upon s through s%, we will examine three cases 0 < & < 3/4, @ = 0 and a < 0 separately

in the following.
[3-1] Inertial-diffusive range (0 < @ < 3/4)

For 0 < @ < 3/4 (ke € k < ky), we find, because of @(0,0) = 1, that

. K .
O(k) = 36, E17s (s<1,0<a<3/d). (4.59)
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The dimensional form of the scalar spectrum corresponding to (4.59) is written, using (4.15) and (4.57), as
Ok) = L K xef 35173 (4.60)
Thus, we have obtained the —17/3 power law in the inertial-diffusive range. By comparing it with (1.6), we get
Cs =3 K=0572. (4.61)

This relation between two universal constants Cs and K was obtained before by Batchelor et al. {13]. Qian [27]
derived s = 1.2 K by a statistical mechanics theory, whereas Canuto et al. [28] proposed a relation Cy = 8/(27 C1)
by a turbulence model. There seems no experimental data available because of difficulty of measurements in the
inertial-diffusive range. The direct and kinematic numerical simulations by Chasnov et al. [17] strongly support the
relation {4.61).

[3-2} Around Kolmogorov wavenumber (a = ()

In the case of @ = 0 (k = O(kx)), (4.58) is written as

O(k) = % EURQUED S (s<l,a=0). (4.62)

Since the function Q(k,0) is known [6], we can draw the scalar spectrum function around kx (Fig.4(b)). The asymp-
totic form of energy spectrum E{(k) = Ke2/3k~3/3Q(k/ky,0) in the large wavenumber limit may be proportional to
k3 exp(—ck), as shown from the Lagrangian DIA equation for the velocity correlation function (eq.(4.20) in ref. [6])
by the procedure described in ref. [29]. Hence, we have

Ok) x k7! exp(—ck) (s<€1,k> k). (4.63)

[3-3] Far viscous-diffusive range (o < 0)
Finally, for a < 0 (k> kg), (4.58) yields
Ok =0 (s<l,a<0), (4.64)
which is consistent with (4.63) that the spectrum function is exponentially small at & 3> kx.

E. Bump in the spectrum

Here, we discuss the bump structure which is observed around the ends of the viscous-advective range for s > 1
(see Fig.1(b) and Fig.3(b)) and of the inertial-advective range for s < 1 (Fig.2(a) and Fig.4(a)}. These may be seen

more clearly in their compensated spectra in Figs.5(a) and (b). Since the end wavenumbers (ks for s > 1 and k. for

22



s < 1) of these advective ranges correspond to the beginning of the scalar dissipation, this may be understood as a
bottleneck phenomenon [30] for the scalar fluctuation transfer. The scalar fluctuation cascades down throughout the
advective range toward smaller scales by the interaction with the turbulent velocity field. The cascade is less effective
at the end of this range because the scalar fluctuation damps in the diffusive range. This results in a pile up of the
scalar fluctuation around the end of the advective range. Actually, such a bump in the scalar spectrum is observed
in measurements of atmospheric boundary layer (s ~ 0.7) by Williams and Paulson {31} and Champagne et al. [32],
and of tidal flow (s ~ 9.2) by Grant et al. [15]; the results of these measurements are collected by Hill [33].

On the other hand, we can hardly observe any bump in the scalar spectrum at the end of the inertial-diffusive range
(Fig.4(b)) nor in the compensated spectrum (Fig.5(c)). Recall that the functional form of the scalar spectrum in this
range is similar to that of the energy spectrum in a logarithmic scale (see Sec.IV D), and that the end wavenumber ky
represents the beginning of the dissipation range of the velocity field but not of the scalar field. Hence, if there is a
bump arcund ky, it should be due to the bottleneck effect of the energy cascade. A bump in the energy spectrum is,
however, not so clearly observed in experiments (see Fig.2 in [6], for example) if it exists. The bottleneck phenomenon
seems to be more effective in the passive scalar fluctuation cascade than in the energy cascade. More detailed
quantitative discussions would demand a scrutiny of the three component transfer functions. Anyway, the present
results on the bump structures of the spectra are qualitatively consistent with experiments.

It may be worth mentioning, in passing, that the energy spectrum of the Burgers equation with a random forcing
over the whole wavenumber range and with a hyperviscosity which enhances the bottleneck effect [30], exhibits a clear
bump structure [34]. The governing equation of a passive scalar and the Burgers equation have a similar property in

the sense that they do not have a pressure term.

V. SUMMARY AND CONCLUDING REMARKS

We have shown that a closed set of equations for the passive scalar correlation function in the Lagrangian DIA
formulation 6] is identical to that by LRA [5,20,21], and that it is completely consistent with the phenomenological
theories in the inertial-advective range by Obukhov-Corrsin {10,11], in the inertial-diffusive range by Batchelor et al.
[13] and in the viscous-ad vective range by Batchelor [12]. This quite simple Lagrangian closure is, therefore, excellently
successful in making a bridge between the phenomenological theories and the basic equations in describing the power
spectra of both the velocity and passive scalar fields in isotropic turbulence. In addition, the universal forms of the
scalar spectrum in the statistically stationary state have been determined numerically for moderate Schmidt numbers
s, and analytically for s <« 1 and s > 1. The appearance of the bump structure in these universal forms of the
spectrum is qualitatively consistent with experimental data. The universal constant (3 in the inertial-diffusive range
is in a good agreement with the numerical simulations by Chasnov et al. {17]. However, the constants in the advective

ranges are only about half the experimental data, although the present predictions are closer to the experiments than
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the ones by the abridged LHDIA.

This failure in the estimation of the universal constants in the advective range of the scalar spectrum, despite of
many successful predictions in other aspects of both the scalar and velocity spectra, should be accepted as a severe
manifestation of the incompleteness of the present Lagrangian closure. A reconsideration of the structure of the
theory itself, especially, a systematic check of the underlying assumptions should be necessary. This theory is based
upon several working assumptions which are summarized as (I)—(III) in Sec. III B for the passive scalar field and
in Sec.3.2 of [6] for the velocity field. Some of the assumptions, which correspond to (I) and (II) in Sec. III B, have
been checked positively for a model equation [7]. Needless to say, however, it is necessary to check them for the
Navier-Stokes system itself. By taking account of this partial support of the assumptions {I) and (II), we currently
speculate the propriety of the third assumption of the independency between the NDI fields of the position function
and of the Euler fields.

A thorough examination of all the assumptions employed in the present Lagrangian DIA for the Navier-Stokes
system and a reformulation with a possible correlation between the position function and the Eulerian quantities still

remain as important future works.
APPENDIX A

Derivations of (3.19} and (3.20) are described here. First, by substituting (2.18) into (2.21), we obtain

Z(k,t,t') =

(2_;:3)9 Z g(kft t) {pu(_k’s t]kv t’) 5(_,‘:, t’) ) (Al)
4

which is further converted, by substitutions of the direct-interaction decompositions, into

~ 2 = ~ -
Bk, 1,1y = B 5 T ko, 2o 20) PO 1k, Ellkor Por 25) O (—F, ko, por ) (42)
kf

(see assumption (III) in Sec.III B). Then, a combination of this equation and

YOk, k', 1) = @ne 5 s (A3)

(see (3.6} in [6] and discussions in §2 of ref. [5]) yields (3.19). As for (3.20), we take the functional derivative of (2.18)

to obtain

@)y

é(L)(ﬂk:_k)tr) = I3

> Gkt — ke, ) p(—K 2]k, t) . (A4)
K

By substituting the direct-interaction decompositions into the right-hand side of the above equation and by taking

(A3) into account, we find (3.20).
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APPENDIX B

We prove (4.13) based upon the LRA-DIA equation. The right-hand side of (4.8) gives the transfer function {2.27)

in the inertial-advective range as

2
70k = KWy vk [ [ apdgathpa)po g [«~@(k)+(§-) e(q)] . (B1)

The scalar Aux function (2.28) is then written as

o0 1 2
e = kwvk® [aer [[ dpdqa(k’,p,q)p*“’/aq[—e(k%(%) @(q)]
k Dy
a3 [ kN
—xwink® [Tarr [[ dpagot pa) —@(k’)+(;) o) | . (B2)
k Do
p<k orz<k

where we have used the property of the detailed balance of the nonlinear transfer of the scalar fluctuation, i.e.,

/:o dk'k’ f/A dpdgo(k',p.q) p7'% q [‘@(HH (%)2 O(Q)] - .

p.g>k

Substitution of the inertial-advective power spectrum (1.4) into (B2) gives

oo
M =KW Cix [ [[  apago.pa Ky g [k k2 g |
& A

p<k or g<k
o0
=KW, C1 x ] d&’ /]A dpdgo(k',p,q) k' p %% ¢ [k"sfs i ]
1 +
»<1 or Z<1
=KW, CixI, (B4)

where

oo 1 E+p 2 1 P
= [a [Taa- [far [ o dq]
1 0 '—p 1 12 ' p

x lcr(k’,p,q) Fp g [k"ws —k? q_11/3] + (similar term p « q):,

_T29 [ dr 2187 (1 dz _ 72rx
T010 J, zA(z+1) 910 J, 2+z+1  910v3

(B3)

Since II = x in the advective range, we obtain (4.13).
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