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Initial Value Problem of the Toroidal Ion Temperature Gradient Mode

T Kuropa . H Sucamal' | R. Kanno' | M. OkaMoTo! | and W HorTon?

Graduate Untversity for Advanced Siudies, Tok: 509-5292
1 Nationel Institute for Fusion Science, Tok: 509-5292
2 fnstrtute for Fuston Siudies, The Unwversity of Tezas of Austin, Austin, Teras 78712, USA

The initial value problem of the toroidal ion temperature gradient mode is studied based on the
Laplace transform of the jon gyrokinetic equation and the electzon Boltzmann relation with the
charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density
and potential perturbations have a branch cut as well as poles on the complex-frequency plane.
The inverse Laplace transform shows that the temporal evolution of the density and potential
perturbations consists of the normal modes and the contineum mode, which correspond to con-
tributions from the poles and the branch cut, respectively. The normal modes have exponential
time dependence with the eigenfrequencies determined by the dispersion relation while the con-
tinuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic
behavior of the potential and density perturbations is dominated by the continuum mode which

decays slower than the normal modes.

KEYWORDS: ion temperature gradient mode, toroidal resonance, phase mixing, analytic continuation, branch cut,

normal mode, continuum mode

$1. Introduction

Many works have been done on the ion temperature
gradient mode (ITG mode)'™®) because it is considered
as the most likely instability to cause the anomalous ion
thermal transport observed in high ion temperature plas-
mas. It is well-known that there are two branches of the
ITG mode: the slab ITG mode and the toroidal ITG
mode.?) Because of its larger growth rate, in the present
study as in most recent works, we are concerned with
the toroidal ITG mode which is driven by the ion tem-
perature gradient combined with the toroidal magnetic
WV B-curvature drift.

The kinetic dispersion relation for the toroidal ITG
mode including effects of the finite gyroradius and the
toroidal resonance are derived by using the gyrokinetic
equation®’ for ions and the Boltzmann distribution for
electrons with the charge neutrality condition Due to
the quadratic form of the parallel and perpendicular ve-
locities in the ¥ B-curvature drift, the toroidal resonance
has qualitatively different characteristics from the par-
alle] drift resonance in the slab case. Thus, when we
define the dispersion function on the complex-frequency
w-plane for the toroidal ITG mode, its analytic continu-
ation requires a branch cut on the Im(w) < 0 plane.1®
We need to take account of this property caused by the
toroidal resonance in order to obtain the complex eigen-
frequencies especially with negative imaginary parts (or
negative growth rates) from the dispersion relation.®
These eigenfrequencies w determine the temporal behav-
ior of the normal modes as o exp{—iwt). However, as
shown by Kim el al.,®) the ballistic response in the pres-
ence of the toroidal resonance shows a slow power-law
decay rather than the exponential decay of stable nor-
mal modes. Therefore, description of the toroidal ITG

mode only by the normal modes seems to be incomplete
especially for stable systems. The power-law decay os-
cillation may be called continuum modes which are re-
quired for the complete representation of the initial value
problem.

In this work, we direct our attention to rigorous de-
scription of temporal evolution of the toroidal ITG mode
including both exponential and power-law dependence.
For that purpose, the initial value problem of the toroidal
ITG mode is explicitly formulated based on the Laplace
transform rather than the Fourier transform. We treat
appropriately a Landau contour and a branch cut for an-
alytic continuation on the complex w-plane by following
Kim ef al® Then, we show that the density and poten-
tial perturbations of the toroidal ITG mode contain two
different types of temporal behavior: the normal modes
and the continuum modes which correspond to contribu-
tions from the poles and the branch cut of the Laplace-
transformed potential function on the complex w-plane,
respectively. The continuum mode is shown to decay by
power law like the ballistic response and dominate the
asymptotic behavior of the torcidal ITG mode for the
stable case.

This work is organized as follows. In Sec. 2, the ion
gyrokinetic equation and its Laplace transform are pre-
sented. The ballistic response is derived from the prop-
agator in the gyrokinetic equation, and the density per-
turbation decay due to the phase mixing by the parallel
and toroidal drift is shown. In Sec 3, the toroidal ITG
mode is formulated as an initial value problem. Analytic
continuation on the complex-frequency plane for the case
with the toroidal magnetic drift is reviewed. Temporal
evolution of the density and potential perturbations of
the toroidal [TG mode is shown to consist of the normal
modes and the continuum mode. In Sec. 4, the disper-
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sion relation and the initial value problem of the FI'G
mode are numerically solved to show the behavior of the
normal and continuum modes in some examples. Finally,
conclusions are given in Sec. 5.

§2. Ion Gyrokinetic Equation

2.1 Laplace transform of the gyrokinetic equation

The ion distribution function in the (&, v} phase space
is divided into the equilibrium and perturbation parts as
fi = noFy + 6f; where ng is the equilibrium density,
Fy = 1r‘3/21;;? exp{—v?/vZ;) is the Maxwellian distri-
bution function, and vr; = (2T;/m;)Y/? is the thermal
velocity for the ions with the mass m,, the temperature
T,, and the electric charge e. In the magnetic field B, the
perturbation part §f; with the perpendicular wavenum-
ber vector k; 1s written as

6]2' = —%RDFM + he_ik*'p (21)
T

where ¢ represents the electrostatic potential, p = b x
v/Q; (b = B/B) denotes the ion gyroradius vector,
and €; = eB/(mjc) is the ion gyrofrequency. Here,
the first and second terms in the right-hand side of eq.
(2-1) represents the adiabatic and nonadiabatic parts,
respectively. The velocity vector v is written as v =
Y b+vi(e; cos€ + ey sin€) where £ is the gyrophase and
{e1, ea, b) are the unit vectors which forms a right-hand
orthogonal system at each point. The ion nonadiabatic
distribution function h is independent of the gyrophase
and is described in the linear, collisionless, and electro-
static case by the gyrokinetic equation®) as

8 . a .
(Z*t_ +éwp + zk"v") h= (a + ZW*T) %JO(kLP)HOFM
(2.2)

where J; is the Bessel function of order Zero, wp =
wp(vi/2 + vﬁ)/v%z- is the 1on V B-curvature drift fre-
quency, and wy,y = wwll + 0 {(v/v7,)? — 3/2}]. The
characteristic ion VB-curvature drift frequency is given
by wp = 2¢uw.; where w,; = —r7lw,, is the ion
diamagnetic drift frequency and ¢, = L,/R is the
ratio of the equilibrium density gradient scale length
L, = —(dInng/dr)~! to the magnetic curvature radius
R. Here 7. = T,/T; is the ratio between the electron
and ion temperatures, w.. = ckg7./(eBLy) is the elec
tron diamagnetic drift frequency, and kg is the poloidal
wavenumber. The ratio of the ion temperature gradient
to the density gradient is given by 7 = dIn7}/dInny. In
the gyrokinetic equation (2.2), we have used the local ki-
netic approximation to replace the parallel drift operator
vyb - V with ikjvy in terms of the parallel wavenumber
ky. Here we assume that the perturbation is localized
mm the bad curvature region of the magnetic confinement
systemn and, in the case of tokamaks, the V B-curvature
drift frequency wp = 2e€pw., corresponds to the value
at the outermost point of the magnetic field line on the
toroidal surface. Using this local approximation for the
toroidal system with a large aspect ratio, the perpendic-
ular wavenumber is approximately given by the poloidal
wavenumber as k1 ~ ky.

In order to treat the initial value problem, it is conve-

nient to introduce the Laplace transform

h{w) = fom dt h(t)e™

and rewrite eq. {2.2) as

(2.3)

(85:(t = 0)eik= p)
w—wp — k)

(2.4)

where (---) denotes the gyrophase average.

2.2 Ballistic response

Here we consider the ballistic response to the initial
perturbation in the presence of the toroidal resonance,
which is determined by the propagator in the left-hand
side of the gyrokinetic equation (2.2). The same prob-
lem was already treated by Kim et al®) although it is re-
viewed here for comparison to the full initial value prob-
lem of the toroidal ITG mode shown later. Let us put
$ = 0 to neglect the right-hand side of the gyrokinetic
equation (2.2). Then, from the inverse Laplace trans-
form of eq. (2.4) or directly from eq. (2.2) with ¢ = 0,
we obtain

=i [ o M0

T w—wp — k”vu
= h(t = 0) exp[—i(wp + kyv)t]. (2.5)

The ion density perturbation is given by
én,(t) = /d% Jo(kLp)h(t)

— zf dw [ 3, Jo(kLp)h(t = 0)e=**
L 2

w—wp — Ky
/d% Jo(kLp}h(t = 0)exp[—i(wp + kyoy)tl.
(2.6)

We find in the next section how to take the contours ¢
and L in eqs. (2.5) and (2.6).
Here, we assume the initial condition to be give by

h(t = U) = Cth(kJ_p)FM (2.7)

where C, is a constant. The above form is taken in order
to simplify comparison to the case of the initial value
problem including self-consistent potential fluctuations
considered in the next section. Then we obtain from
eqs. (2.6) and (2.7),

§n(t) _ Tolbi/(1 + i@pt/2)] exp[—kjv3,12/4(1 + iwpt)]
6n(0) To(b:) (1+i@pt/2)(1 + iap?gll’;

where b; = k3 p7,/2, p3; = v3,/Q? = 2c2m;T,/(e2 BY),
Fo(b;) = Io(b:) exp(—b;), and I is the modified Bessel
function of order zero. In the limit of k) pr; — 40, we
have I'y — 1 and eq. (2.8) reduces to the result obtained
by Kim et al3 The temporal dependence of the density
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perturbation dn(t) divides mto two limiting cases as
exp(—ky v}, 1%/4)
for jwptl < 1.

sn(t)
én(0)

2 exp [—kjjvd, /(405 )] exp likjvi,t/(400)]
To(b,) (iwpt)?/?

t for |wpt! > 1.

(2.9)
For |@pt] < 1, the density perturbation decays exponen-
tially due to the phase mixing by the parallel drift pro-
vided |k”m~,{ > 2j@p|. On the other hand, for |[bpt]| > 1,
the phase mixing is dominated by the toroidal magnetic
T B-curvature drift and the density perturbation decays
according to the power law ox t~32 with oscillation at
the frequency wir = —kﬁv%i/(éldzp) which we call the
branch frequency.

§3. Time Evolution of the Toroidal ITG Mocde

8.1 Formulation of the toroidal ITG mode as an tnitial
valee problem
In order to describe the toroidal ITG mode as an ni-
tial value problem, we use the Laplace-transformed ion
gyrokinetic equation (2.4). Furthermore, assuming the
electron density perturbation én. to satisfy the Boltz-
mann relation

én, ed
n_n —_— Te (3.1)
and using the charge neutrality condition
dn, = én, (3.2)
we obtain
eplw) _ I(w)
= =7 33
T D) 33)
where
: -1 — ik_L Fi4
I(Lv) — /d3v3J0(kJ_,0)(ﬂa 6fz(t 0)6 ) (34)
w —wp — k|vy

D(w)=1+7" [43 (= wr) Jolkar) Pty
w—wp — kY
The dispersion relation for the toroidal [TG mode with
k = kyb+k) is given by D(w) = 0. The time evolution of
the electrostatic potential is given by the inverse Laplace
transform of ¢(w) in eq. (3.3) as

o) = [ Freta)e

where L is a contour which Lies above all of the singular
points of ¢{w) on the complex w plane. Also, substitut-
ing eq. (3.3) into eq. {2.4) and taking its inverse Laplace
transform, we can obtain the time evolution of the nona-
diabatic distribution function h{t).

(3.6)

3.2 Analytic continuation on the compler-frequency
plane
In order to obtain ¢(w} for any complex-valued fre-
quency w, we need to evaluate analytical continuation of
the functions I{w) and D(w) accurately. For that pur-
pose, we follow Kim et 213 and consider the velocity-
space integral in the form of

°° = glw, v, v1)

= d d
) .[_oo U"-/G oL viw+aU_L2+bv||2wcv|
(3.7)

where ¢, b, and ¢ are assumed to be real constants. The
functions D(w) and I(w) both contain the same form of
functions as P(w). Also assuming ¢ and & to be positive,
we transform the velocity-space variables as

! / C
v =Vevy v = Vb (v” - %) (3.8)
and
o = fw)2 + (o)), m=yf (3.9)
Then, the function P(w) is rewritten as
P 24y G001 g4
)= a\/_/ / Y w + w4+ ( )

where we have defined o' = w — ¢?/4b and G(w,v', u) =
glw, vy {v', p), v (v', )} with v (v', p) and v (v, p) given
by the relations in eqs. (3.8) and (3.9). Apparently, the
integrand has two poles v = :I:(—w’)lf'2 on the com-
plex v’-plane. When «' moves from w; = Im(w’) > 0 to
w! < 0 across the wi-axis with w; = Re(w') < 0, one
of these poles (—w )1/2 with Re(—w’)}/? > 0 crosses the
v!-axis with v/ = Re(v') > 0, which corresponds to the
occurrence of resonant pa,rticles. These motions of '
and a corresponding pole (—w’)Y/? with Re(—w)/2 > 0
on the complex v’-plane are shown in Figs. 1 (a) and
(b), respectively. This crossing requires the residue of
the integrand at the pole to be included in P(w} for its
analytic continuation as shown in Fig. 1 (b).

On the other hand, when w' moves from w] > 0 to w, <
0 across the w!-axis with w! > 0, the two poles neither
cross the vl -axis nor make any residue’s contributions to
P(w). Then, we make a branch cut from w' = 0 along
the w!-axis with w] < { as shown in Fig. 1 (a} and write

P{w) as
Po(w)

Plo)= { Pyl) + Ap(w)

where I-IV represent the regions on the complex w’-plane
shown by Fig. 1 (a) and Py(w) denotes the contribution
from the straight integration contour, which is given by
eq. (3 10) with the v'-integration along the vi-axis with
v, > 0. The residue’s contribution Ap(w) is written as

_AE
il } dp Glo, o = (—"YV2, 4.
- (3.12)

The condition w' = 0 gives w = ¢?/4b = wy, which is
called the branch frequency. In the limit of w — wy,, We

in I, I, and IV

in II1 (3.11)
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; v
m I (s
i . I U'r
E (Dr — 2
v : : I/2 C
m I (~a)
Vbranch
:cut
Fig. 1(a) Fig. 1(b)
Fig. 1. Motions of the complex frequency w' = w — ¢? /4b on

the complex w/-plane (a) and the corresponding pole (—w’ )1/ 2
with Re(—w"):'fz > 0 in the complex v'-plane (b). When o/
moves from w: = Im(w') > 0 to u: < ( across the w/-axis with
wi = Re(w') < 0, the pole (—w’)ﬂz with Re(—w’)”z > () crosses
the v!-axis with v1 = Re{v') > 0. A branch cut is taken from
w’ =0 along the w:-axis with wi < 0 as shown by a dashed line
in (a).

obtaln from eqgs. (3.10)-(3.12)

1 o]
Py{w) — Pluy,) = »-L/ d,uf dv'Glw,v', i)
Wl (3.13)

dp Glw, v’ = 0,p].
(3.14)

Whr — W 1/2 1
Ap(w) =~ —m'—( b a\/E) /_1

3.8 Normal modes and a continuum mode

For analytic continuation of ¢(w) given by eq. (3.3), we
need to take account of the poles defined by D{w) = 0
and the branch cut growing from the branch frequency
wyr. Comparing eqs. (3.4) and (3.5) with eq. (3.7),
we obtain 2¢ = b = -dp/v; and ¢ = ky where
wp = 2¢pw. < 0 is assumed. Then, the branch fre-
quency is written as wy, = ¢2/4h = —kﬁv%,-/(éc&p). For
evaluating the inverse Laplace transform (3.3), we take
the integration contour L as shown in Fig. 2.

For t > 0, ¢{t) is written as the sum of the contri-
butions from the poles {normal modes) and the branch
cut:

6(2) = ép(t) + ¢ur(2)

where the poles’ (or normal modes’) contribution is given
by

(3.15)

) o I(n)
5 =i

a0
7 W(‘*’n)

and the contribution from the branch cut is written as

—fw,i

(3.16)

edort) [ o s Lot Ar I
T - Gy, 27 Do+ Ap Iy
L 0 dw; DgAy ~ IAp
=1e “‘“’“"t/ —et ——————
oo 27 D[}(DG + AD) W =Why
3.17

The normal-mode frequencies w, in eq. (3.16) are de-

O
normal mode
QN Dy
4 - O
i
' L
ol |
branch cut

Fig. 2. The integration contour [, on the complex w-plane for
evaluating the inverse Laplace transform (3.3). Dominant con-
tributions to the integral are made by poles and a branch cut.

termined by D(w,) = 0. In eq. (3.17), the branch cut
Ch- 1s taken as the straight line path from wy,. — ico to
wpr — 20 and the functions Dy(w), Ip(w), Ap(w), and
Ar(w) are defined in the same way as Py(w) and Ap(w)
in egs. (3.11) and (3.12). Thus Ap(w) and Aj{w) repre-
sent contributions from the resonant pole in the velocity
space shown by Fig. 1 (b} and are written as

i 1
_ J .
A :47r2(wbr w)Q/ dp =2 §fi(t =10 e"k*p
! (_L:"D)% -1 # o < f( ) > ‘u":ﬂ"o
S (3.18)
an
Ap = 41%(“”’{ “22 / dp (w — war) I3 Fnr |
(=@p)z Jou v'=v,

(3.19)
respectively, where we have transformed the velocity
variables as in egs. (3.8) and (3.9), and where v =
(wpr — w)H/2,

As shown in egs. (3.13) and (3.14) in the limit of
w — wyr, we have Do(w) — Dlwer), fo(w) — Diwsr),
AD(UJ) oy Cp(wbr - w)”z, and A;(w) ~ Cf(wb,. - w)lﬁ
where Cp and Cf are constants. Then, from eq. (3.17),
we obtain the asymptotic behavior of the branch cut con-
tribution to the potential as

ey (1) ’3”/4[ Cr CpI{ws)

D(ws)  {D(ws)}?
(320

~ t—3/28—1w;,,.t ¢

T: 4./7
for t » —1/&p, where

)

872 b, kyes
01 = o et (1 =0 =0 = )
8xl/2; kﬁv‘%g 3
Co = oyl [“br —“*f{H"* (473—5

kﬁv%
cexp| ———— | . (3.21)
( 4 )
Noting that dn; = dn. = nged/T, and comparing eq.
(3.20) with eq. (2.9), we see that, for the initial value
problem of the toroidal ITG mode, the potential and
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density perturbations denved from the branch cut in-
tegration show the same form of asymptotic behavior
o §73/Ze=*r? a5 the the density perturbation for the
ballistic mode without interaction with the potential. [If
we put Dg(w) = 1 with Ap = 0ineq. (3 17), the ballistic
mode case in eq (2.6) is reproduced.]

Now we find from eqs. (3.15), (3.16), and (3 20) that
the long-time asymptotic behavior of the potential and
density perturbations for the toroidal ITG mode is de-
termined by the normal mode with the largest positive
growth rate for the unstable case while it is dominated
by the continuum mode for the stable case in which all
normal modes decay faster than the continuum mode.

It should be remarked here that there is some arbitrari-
ness about how to make a branch cut from the branch
frequency. Different branch cuts make differences in defi-
nitions of é,(t) and ¢, (¢) because of changes in complex-
frequency regions where analytic continuation of D{(w)
and I(w) is defined. However, it is obvious that the to-
tal perturbation ¢(1) = ¢, (t) + és,(t) and its asymptotic
behavior given by eq. {3.20) for the stable case should be
independent of the way to make a branch.

$4. Numerical examples

4.1 Dispersion relation

Following the prescription given in the previous sec-
tion, we can calculate the dispersion function D(w) ana-
lytically continued on the whole complex w-plane. Here
the dispersion relation D{(w) = 0 is numerically solved
to obtain the eigenfrequency w, = w, + iy of the nor-
mal mode. Figure 3 shows the resultant normalized
growth rate Ln,+y/vy, and real frequency Law./vr; of
the toroidal ITG mode as a function of the normal-
ized poloidal wavenumber kgpr; for 7. = 1, ¢, = 0.25,
m = 2.5, and kg R = 1/3,1/2,1. We can see that, ow-
ing to the proper analytic continuation, the growth rate
and real frequency are smoothly continued into the sta-
ble regions where the growth rate is negative. The sta-
ble regions are found for both small and large poloidal
wavenumbers. Also, the growth rate decreases with the
parallel wavenumber increased. For all curves shown in
Fig. 3, the real frequency is smaller than the branch fre-
quency so that the toroidal resonance is essential to the
dispersion relation. The growth rate and real frequency
for the nonresonant mode are not shown in Fig. 3.

Figure 4 shows the normalized growth rate L,v/vr;
(top) and real frequency Lnw,/vr, (bottom) of the
toroidal ITG mode as a function of 3 for 7. = 1,
kypr: = 0.75, k”R = 1/2, and ¢, = 0.1,0.25,04. We
can see that the growth rate increases with increasing 7,
and that the real frequency has the negative sign corre-
sponding to the ion diamagnetic rotation for larger val-
ues of 7;. Since we are able to calculate negative growth
rates, we can clearly identify the critical 5, value which
is shown in Fig 4 to increase with increasing e,.

4.2 Selution of the initial value problem
Here let us consider an example of the initial value
problemn in which the initial perturbation is propertional

0.15 T T T

kg pr,

Fig. 3. The normalized growth rate Lnv/vy, (top) and real fre-
quency Lywy fur, (bottom) of the toroidal ITG mode as a func-
tion of the normalized poloidal wavenumber kgpp, for 7. = 1,
€n = 0.25, 7, = 2.5, and kjR =1/3,1/2, L.

to Maxwellian. Then, we use the same initial condition
for the nonadiabatic distribution as in eq. (2.7) to obtain
a compact expression for the gyrophase-averaged initial
distribution function in eq. (3.4) as

(6:(t = 0)e~ R4 Py = €y Jo(kLp)Fag n(t = 0) (4.1)
with
Cf =7, + (1 4+ re)/l“u(b,-) (4.2)

where (2.1),(3.1) and (3.2) are used. We have Cy — 1 1n
the small gyroradius limit &, pr; — +0. The density and
potential perturbation at £ > 0 are given by using eqgs.
(3.4),(3.5),(3.15)-(3.19), and the initial condition {4.1).

Figure 5 shows time evolution of the toroidal ITG
mode for the stable case where . = 1, ¢, = (.25,
n = 2.5, kg = 0.5, and kepr: = 0.28. In this case,
the eigenfrequency of the normal mode and the branch
frequency are given by Lpuwy /vy = 0.024 — 0.019¢ and
Lpwy, /v, = 0.056. The potential amplitudes of the nor-
mal mode ¢,(t) (a solid curve) and the continuum mode
é3-(1) (a dotted curve) are shown in Fig. 5 (a). The total
potential ¢{t) = ¢,(t)+¢s- () is shown in Fig. 5 (b). The
asymptotic behavior is well described by the Analytical
result given by eq. (3.20) which is shown by the dashed
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0.2— T [ 7 1 1
%
Ln/RTO-l
L,
"vn 02+ L/R=0.25-
|
04 L/R=0.4— i
i 1 ] 3 1 L 1
] 1 2 3 4 )
T

Fig. 4. The normalized growth rate L~y /vyp, (top) and real fre-
quency Lnw, fur, (bottom) of the toroidal ITG mode as a
function of n; for 7. = 1, kgpr; = 0.75, kiR = 1/2, and
en =0.1,0.25,0.4.

line in Fig. 5 (b). The cosine of the phase of the potential
¢(t} is given in Fig. 5 (¢} which clearly shows the change
from the normal mode frequency to the branch frequency.
Note that Figs. 5 (a)-(c) also show the behavior of the
density perturbation because én. = dn; = noeg/Te.

We find from these figures that, for the stable case, the
temporal behavior of the ITG mode is described by the
exponential dependence of the normal mode only near
the initial time although the long-time asymptotic be-
havior is dominantly determined by the power-law decay
of the continuum mode.

Generally, the number of the normal modes for given
parameters is more than one. Figures 3 and 4 show the
growth rate and real frequency for the most unstable
(or the least stable) normal mode. For the parameters
used in Fig. 5, there exist an infinite number of stable
normal modes with eigenfrequencies L,,w, /vp; = 0.024—
0.0194, —0.073 — 0.1037, —0.463 ~ 0.5651, - --. However
only the least stable normal mode is used in Fig. 5 since
the results in Fig. 5 change little even if other rapidly
decaying normal modes are added.

0105 (01 0

10° 10°
107 w0 / .
2 2 .,
10 10} /-‘\ -
103t X 10°F e, 4
104 lew® | T ] 104 ]
-5 s
107 @ - 107 (b)
106 i 1 I 10'6 1 1 1
10 10" 102 10° 16 100 12 10°
(vn /Loyt (v Lyt
I——
— ©)
=4
=0
-1
g
-1 1 1 1
[ 200 400 600 800 1000
G/ Lt
Fig. 5. Time evolution of the toroidal ITG mode for the sta-

ble case where 7, = 1, ¢, = .25, 5, = 2.5, k"R = 0.5, and
kgpr, = 0.28. (a) The potential amplitudes of the normal mode
$p(t) (a solid curve) and the continuum mode ¢;,.() (& dotted
curve). {b) The total potential ¢(t) = $p(t) + ¢p,-(t) normalized
by the initial value ¢{t = 0). {c) The cosine of the phase of the
potential ¢(t). Here the cigenfrequency of the normal mode and
the branch frequency are given by Lywyfup, = 0.024 — 0.019:
and Lpwy, fup, = 0.056. The dashed line in (b) represents the
analytical result given by eq. (3.20} for the asymptotic limit.

§5. Conclusions

In this work, temporal evolution of the toroidal ITG
mode has been studied by solving the initial value prob-
lemn of the 1on gyrokinetic equation combined with the
electron Boltzmann relation and the charge neutrality
condition.

For the toroidal ITG mode, temporal dependence of
the density and potential perturbations is described by
two types of behavior. One is well-known normal modes
which change exponentially in time. Their frequen-
cies and growth rates are determined by the dispersion
relation and correspond to the poles of the Laplace-
transformed potential function on the complex frequency
plane. The other type is a continuum mode which is
given by the integration of the Laplace-transformed po-
tential function along a branch cut. Occurrence of the
branch cut is due to the quadratic velocity dependence of
the torcidal ¥V B-curvature drift. The long-time asymp-
totic behavior of the continuum mode is characterized by
oscillation at the branch frequency and power law decay
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3/2 This behavior 1s the same as that of the ballstic

response obiained by the propagator of the gyrokinetic
equation without taking account of interaction with the
potential.

If the normal mode analysis shows the system to be
unstable, the long-time behavior 18 dominantly described
by the normal mode with the largest growth rate. On the
other hand, when the system is stable, only the normal
modes are not enough for describing the temporal evo-
lution of the toroidal ITG mode. In the stable case, the
systemn 1s eventually dominated by the continunum mode
since all the normal modes decay more rapidly.

In the future, we consider the fields associated with
the test gyrokinetic particle. The noise associated with
an ensemble of statistical independent dressed test gy-
rokinetic particles may be of importance for computer
simulations of ITG turbulence.
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