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Numerical Computation of
Thermoelectric and Thermomagnetic Effects™

H. Okumura! S. Yamaguchi! H. Nakamura? K. Ikeda$ and K. Sawada’

Abstract

Phenomenological equations describing the Seebeck, Hall,
Nemst, Peltier, Ettingshausen, and Righi-Leduc effects are
numerically solved for the temperature, electric current, and
electrochemical potential distributions of semiconductors un-
der magnetic field. The results arc compared to cxperiments.
QOur research is motivated by the desire to design optimal semi-
conductor generators {especially thermomagnetic ones) and
specifically to investigate a thermomagnetic analog of the well-
known effect of sample shape {(e.g. aspect ratio) on the magne-
toresistance.

Keywords: Nemst effect, thermoelectric effect, thermomag-
netic effect, geometric contribution

1 Introduction

Tt is well known that geometry of samples {e.g., ratio of length
to width for rectangular samples) affects magnetoresistance.
Short samples become more electrically resistant under mag-
netic field than long ones (see Fig. 3 below).

For the Seebeck and the Nemst effects, experimental evi-
dences for such geometric contribution are not so clear. Ertl [1]
measured Bi-Sb alloy samples of various lengths, and showed
that longer samples exhibit greater Seebeck coefficients. Mea-
surement of Seebeck coefficient by Ikeda et al [2], however,
is not easy to summarize, but their Nemnst coefficient of wider
(“fat bridge™) sample (Fig. 7) under 4 Tesla was about 12 per-
cent smaller than that of narrower one (Fig. 8).

Though analytic solutions exist for a limited class of the Hall
effect [3], numerical computation 15 necessary to explain these
results in general. We developed a two-dimensional numeri-
cal simulation code based on phenomenological equattons gov-
erning thermoelectric and thermomagnetic effects. Section 2
summarizes the basic equations. Sections 3—6 describe the nu-
merical algorithm. Sections 7 and 8 summarizes the results and
discuss consequences.

*This report is based on the paper presented at ICT98§—the International
Conference of Thermoelectnics, Nagoya, Japan, May 24-28. 1998
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2 Phenomenological Equations

The phenomemological equations governing thermoelectric
and thermomagnetic phenomena of solids are {4, 5]

—Vo=pI+aVT+RBxJ+NBxVT (1)
g=06J —kVT +oTJ+ NTBx J+xMB x VT (2)

where ¢ is the electrochemical potential per unit charge,! p the
(isothermal) electric resisiivity, J the electric current density,
o the (isothermal) Seebeck coefficient, T' the temperature, R
the (isothermal) Hall coefficient, B the magnetic flux density,
N the (isothermal transverse) Nernst coefficient, g the energy
flux density, x the (isothermal) thermal conductivity, and A the
Righi-Leduc coefficient.? In Eq. (1), the last three terms repre-
sents the Seebeck, the Hall, and the Nemnst effects, respectively.
In Eq. (2), the last three terms are responsible for the Peltier/
Thomson, the Ettingshausen, and the Righi-Leduc effects. re-
spectively.

In what follows we assume that (1) the system is in steady
state, so that V - J = V - ¢ = 0 holds; (2) the external mag-
netic field B is independent of the position,” and is along the
z-direction; (3) the electric current J has no z-component; (4)
the temperature T is independent of the z-coordinate; (5) the
conductor is homogenious, so that all of the transport coeffi-
cients (e, p, K, R, ¥, M) are functions of temperature T alone.

3 Overview of the Method

Our aim is to caleunlate T, @, and J distributions for rectangular
and irregular-shaped semiconductor samples such as shown in
Fig. I. We discretize position by constructing a grid with square
meshes of size A x h. We consider T and ¢ on each grid points
(corners of the meshes). and J on each side of the meshes. as
shown in Fig. 2.

TFor electrons, ® = Oucqrosune + fn/{—€), Where iy, 15 the chermcal
potential of electrons with charge —e < 0. Similarly, © = Ogjecrrosiane +
itp/ (+e€) for holes with charge +e > 0. If the system is close to equilibrium,
the @ for each species of carners differ very linle. wo we shall not disunguish
the ©’s and the J's for different carriers

’Note that the “Leduc-Right coeffictent” I of Landau, Lifshitz, and
Pitaevskit [4] corresponds 1o our <AL,

3Rigorously speaking, external field B gives rise 1o electric current J,
which in turn modifies the field B according to the Maxwell equation ¥V x B =
o —epdE J8t. (In steady staie SE /3t = 0.) In practice, however, magnetic
permeability g ~ po = 4% x 1077 is so small that ¥ x B can be safely
neglected
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Figure 1: Example of discretization. This figure corresponds to
the “bridge” shape of Ikeda er al [2].
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Figure 2: Grid point (4, 7} and its four adjacent points. Temper-
ature T3, and potential ¢,; are specified on point {7, 5}, whereas
electnic current Ji7 is specified along the line segment connect-
ing two points (¢, 7) and (¢ + 1, 7).

After setting up suitable initial values for T, ¢, and J, we
proceed as follows:

1. On each grid point (%, 7), update T,; from the discretized
Poisson equation for temperature (sce Section 4 below),
assuming all the other quantities fixed.

2. On each line segment connecting adjacent grid points, up-
date J;; (sec Section 5 below), assuming all the other
quantities fixed.

3. On each gnd point, update ¢,; so as to satisfy the continu-
ity equation for J,; at the point {see Section & below).

4. Goto Step 1.

4 Temperature Updates

The Poisson equation for temperature can be derived by taking
the divergence of Eq. (2} and using Eq. (1):

N2TR2
(f‘i _NTTB ) verT
P

da NTB2dR
= —pl%t (Tﬁ + "p—ﬁ) (VT) .- J

AN NT dp
NTB2d4N _ d_n
p dT  dT

) (VI (3

This second-order partial differential equation for 7", which
we shall abbreviate as V3T (z,y) = F{z,y), can be discretized
as follows: If the point (4, 7) is not on the boundary,

Tirs+ T+ T + Toger h_2

4 4
(with suitable modification to accelerate convergence). On the
boundary, either T,; is given (Dirichlet conditions), or deriva-
tives of T in the direction nommal to the boundary, V,,T(x, y),
is given (Neumann conditions). In the latter case, if the grid
point (2, 7} is on the boundary which is along the z-direction
such that point (i — 1, ) is outside of the sample, the normal
derivative V, T = 9T /8y should be given, and the update for-
mula is

F @

new __
o™ =

Torg +Tory + 2T 540 — 20V, T h_2F )

4 4
Similarly, at a corner point such that points (¢ — 1, 7) and (i, § —
1) are outside of the boundary, the update formula becomes

2T041,5 + 2T 541 ; 2hV.T — 2hV, T _ %ZF (6)

The normal derivative, say V, T, can be derived from Eq. (2)
if there is no energy and current transfer through the boundary
(gy = Jy = 0),

VI =NTB,J./x + MB,V,T N

new __
sz -

new __
=

S Electric Current Calculation
Given T and ¢, the electric current density .J can be computed
from Egq. (1), which can be written as
pJ+ABXxJ=-Vop—-—aVIT-NBxVT (8
or, in coordinate components
p —RB:\ (Je\  (-Ve0—-aV,T+NB,V,T
RB, P Jy)  \—-Vy¢—aV,T - NB,V,T
9

Hence

Je\ _ 1 P RB,
Jy)  p?+R2B:\-RB. p
~Vs¢ —aV,T + NB,V,T
X (vyas —aV,T - NBZVIT) (10)
On the boundary, if Jy = 0 holds, then
Jo = (~Vgd —aV,T+ NB.V,T)/p (1n

Furthermore, if ¢,; = 0 also holds, substitution of {7) into (1 1)
gives

1 \/'ZBQ
Je= (—Vxé — (o~ NMBYV,T + i)
&
(12)
Solving for J;, we have
N’Z 2
Jp = (—ngb — (@ — NM’BE)V;CT) / (p — BZT)
%
(13)



6 Potential Updates

Instead of using a lengthy Poisson equation for the electro-
chemical potential ¢ that can be derived from Eq. (1}, we base
our calculation of @ on the continuity equation of electric cur-
rent, V- J = Q.

We start with Eq. (10) which has the form

1

Iz = pf+ R2R?

(7pv.‘c€" - RBzva)
+ terms independent of ¢ (14)

and similarly for J;,. As was discussed earlier, the discretized
value J7 is taken along the line segment connecting two points
with potentials ¢, and ¢,41 ;. Along this line segment, we can
approximate potential derivatives by V30 = (11, — ;) /R
and V0 = (G141 + Fer1g+1 — Guy—1— Guri y—1)/(4h). Af-
ter these derivatives are substituted, the equation for J7, above
has the o,; dependence:

Py,

Iy = h{o® + R2B?)

+ terms independent of ¢,, (15

Note that J7 is the current outgoing from the point (2. 7) in the

positive z-direction. As can be seen from Fig. 2, there are four

such expressions outgoing from point (i. 7): J7, ij, —J 1

—J? ,—1- When these four expressions are added, we arrive at
T = i@‘im,,— + terms independent of ¢,;  (16)
h{p? + RZB?)
Now, if we replace the value of ¢.; by
O = ¢y — JRR(P + BEBY)/(4p) (D)

the right-hand side of Eq. (16) will vanish. We use Eq. (17) and
similar ones with suitable modification for grid points on the
boundary, to update @,,.

7 Results

We conducted numerical computations on intninsic indium anti-
monide (InSb) semiconductor samples with the following prop-
erties near 300 K.

p =80T 5333 x 108 Qm
R =(-56e"0034T-218) _(9)x 1074 m?A~1s?
a=(-324+001(T-273)) x107* VK
N = (=57~ (T-273)/65 _39) % 1075 m?Kis?
M=5x10"2 m?V-ls?
k=14x10°T 155 WK m™!?
(18)

These values are not meant to be good fits to measurements.
They are only shown here as example inputs to our code. (In
faci, p, v, and NV are rough fits to measurements near 300K by
Ikeda and others [2, 6, 7], but the conditions are not uniform: .V
1s measured under 4 Tesla, whereas o under no magnetic field.)

On the basis of these values, we computed magnetoresistance
and Seebeck and Nernst effects with various sample geomelry.
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Figure 3: Simulation results of magnetoresistance for intrin-
sic InSb semiconductor with different geometry: length (z-
direction) x width (y-direction) = 10mm x lmm, 10mm
x 10mm, and 4 mm x 12 mm, with negligible thickness (z-
direction). External magnetic field is along the z-direction.

The magnetoresistance results (Fig. 3) are in good agreement
with expeniment ([8], Fig. 4.8 of Seeger [9]).

Seebeck and Nemnst ceefficients should vary much with the
magnetic field, so the results for these coefficients are to be
compared with those of different geomeiry under the same mag-
netic field.

As Fig. 4 shows, the Seebeck effect is not sensitive to ge-
omelry if current leads that measure longitudinal voltage dif-
ference are narrow enough. On the other hand, if current leads
are as wide as the sample width, Seebeck effect degrades and
can even change sign for short samples. This tendency ex-
plains some experimental evidence for the size dependence of
magneto-Seebeck effect [1].

Similar tendency can be seen in Fig. 5 for the Nernst ef-
fect. In this case, however, geometry effect exists even with
narrow current leads. This is because the Righi-Leduc effect
causes transverse (y-direction) temperature gradient that is pro-
portional to the magnetic field B. This transverse temperature
gradient in turn causes transverse voltage gradient by the See-
beck effect. When divided by B, this transverse voltage gives a
nearly constant bias to the apparent Nernst coefficient.

This effect partly explains what Ikeda e al {2] found out: Un-
der 4 Tesla the apparent Nernst coefficient for their “fat bridge”
{wide with legs) sample (Fig. 7) is about 12 percent smaller than
those of narrower one (Fig. 8), whereas our simulation gives
only 7 to 8 percent smaller coefficient. Though they are careful
to make their current leads narrow, inevitable finite widths of
the leads might explain further effect.

8 Discussion

As can be seen from the contour maps, the potential distribu-
tions of thermomagnetic samples are rather complicated. They
change dramatically with different sample geometry. More-
over, if we attach current leads of finite widths to the cold and
hot edges, much of the transverse voltage gradient is shorted
out, resulting in quite a different potential distribution. To cor-
rect for such a bias, careful numerical calculation is necessary.

Inspection of Fig. 6 (upper) and Fig. 7 shows that the best
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Figure 4: Simulation results of apparent Seebeck coefficient
for intrinsic InSb samples with different geometry. Apparent
Seebeck coefficient is defined to be cegq = ALd/A,T, where
A ¢ is longitudinal potential difference, and AT is longitu-
dinal temperature difference. Solid lines: Current leads are of
negligible widths, Dashed lines: Current leads are as wide as
the sample widths.
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Figure 5: Simulation results of apparent Nernst coefficient
for intrinsic InSb samples with different geometry. Apparent
Nermnst coefficient is defined to be Nog = LA ¢/BWA, T,
where A, ¢ is transverse potential difference, AT longitudi-
na! temperature difference, L length (in z-direction), W width
(in y-direction), and B magnetic induction. Solid lines: Cur-
rent leads are of negligible widths, Dashed lines: Curvent leads
are as wide as the sample widths.
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Figure 6: Contour maps of calculated potential distribution for
a 12mm x 4 mm sample in 4-Tesla magnetic field. Upper; Cur-
rent leads are of negligible width. Lower: Current leads are as
wide as the sample width. The left and the right edges are kept
at 273 K and 373 K, respectively.

Figure 7: Contour map of calculated potential distribution for
“fat bridge™ sample of Tkeda et al [2].
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Figure 8: Contour map of calculated potential distribution for
“bridge” sample of Tkeda er al.



way to generate clectricity from wide samples under magnetic
ficld is to attach current leads to the bottom left and the top
nght comners. In this way, we can utilize both the Seebeck and
the Nemnst effects.

Figs. 7 and 8 also show that at the far end of a small “leg,”
potential gracdient along the boundary decreases by an order of
magnitude or more, thus making measurement of Nernst coef-
ficients less prone to the widths of current leads.
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