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Abstract

The initial experiments of the Large Helical Device (LHD) have extended confinement studies on
currentless plasmas to a large scale (R=3.9 m, a = 0.6 m). Heating by NBI of 3 MW has produced
plasmas with a fusion triple product of 8 X 10'® keVm’s at a magneuc field of 1.5T. An electron
temperature of 1.5 keV and an ion temperaiure of 1.1 keV have been achieved simultaneously at the line-
averaged electron density of 1.5 X 10'° m”. The maximum stored energy has reached 0.22 MJ with neither
unexpected confinement deterioration nor visible MHD instabilites, which corresponds to <f> =0.7%.
Energy confinement times, reaching 0.17 s at the maximum, have shown a manner similar to the present
scaling law derived from the existing medium sized helical devices, but improve on 1t by 30%. A
disunguishing feature of a favorable dependence of energy confinement time on density remains in the
present power density (~40kW/m’) and the electron density (3X10"m?) regimes unlike L-mode in
tokamaks. Temperatures of both electrons and ions as high as 200 eV have been observed at the
outermost flux surface, which indicates a qualitative jump in performance from the helical devices to date.
Spontaneously generated toroidal currents agree with the physical picture of neoclassical bootstrap currents.
Change of magnetic configuration due to finute-f effect has been well described by the 3-D MHD
equilibrium analysis. An escape of particles from the core region leading to a hotlow density profile has
been observed in hydrogen plasmas, which ts mitigated through core fueling with a pellet injection or 1n
helium discharges.

1. INTRODUCTION

The physics research goal of the Large Helical Device (LHD) [1,2] is to achieve and study
currentless plasmas which can be extrapolated to the reactor condition in a heliotron configuration.
The minor radius of 0.6 m is prerequisite to separate the core region confining high temperature
plasmas from the boundary where atomic processes play an essential role. This paper describes the
first experiments with regard to confinement studies under conditions that the helical devices had not
satisfied to date. LHD has the major radius of 3.9 m and the operated magnetic field in this study is
1.5 T although superconducting coils have capability of 3 T operation [3]. Progress in experiments
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of helical devices (CHS, Heliotron E, Wendelstein VII-AS, and ATF) in the last decade [4] has
demonstrated performance equivalent to L-mode plasmas in tokamaks with similar dimensions and
has indicated clear clues for further confinement improvement [5-7].  The first primary subject in this
study lies in the clarification of the extrapolation of prior experience to large-scale plasmas which are
sufficiently collisionless.

The magnetic geometry in this study is set at the optimized one from MHD stability,
neoclassical transport and particle confinement. The magnetic axis is 3.75 m which is inward shifted
from the machine center and the averaged elongation is 1. The plasma vacuum vessel which also
functions as the first wall is stainless steel and is conditioned by discharge cleanings of He glow or
ECR (2.45GHz) DC plasmas, and by Ti gettering with a coverage area of 20 %. The 2nd harmonic
84-GHz ECH up to 400 kW has been employed to generate plasmas, which are targets for NBL.  The
ray of ECH is well focused with waist sizes of 50 mm in the toroidal direction and 15 mm in the radial
direction.  Since the focal point is controllable by movable mirrors, the deposition profile effect on
transport and kinetic effect of power deposition with relation to the magnetic geometry can be
examined. Two negative-ion-based neutral beam injectors are aligned for tangential injection in
opposing directions relative to the helical coil current (co- and counter-injections) to operate plasmas
free from beam driven toroidal currents. Each injector is designed to inject a 7.5 MW hydrogen
beams at an energy of 180keV for 10s. One of the injectors is also designed to mject 100 keV beams
of 0.5 MW up to 90 s.  In the initial experiments, the ion sources are optimized for a lower energy up
to 100 keV considering that the target plasma density is low under the 1.5 T operation. In this sudy
the available injecting beam power is 3 MW in total. Profile measurements are available by YAG-
laser Thomson scattering for the electron temperature, charge-exchange-recombination spectroscopy
(CXRS) for the ion temperature and muiti-chord FIR interferometer for the electron density.

. 2. CHARACTERISTICS OF PLASMA DISCHARGE

ECH produces target plasmas with a density of more than 110" n1 so as to have the shine-
through power of NBI less than 40%. Waveforms of a typical hydrogen discharge are shown in
Fig.1{a). The plasma expands in the radial direction with increasing temperature and density during
the initial 0.5 s. When the high-temperature plasma reaches the magnetic boundary, a divertor
channel is formed. The events of a rapid pump-out of density, a decrease of radiation and bursts of
divertor flux start with regard to this timing. The decay time of the decrease in density is enhanced
by an increase of the heating power. Density does not build up efficiently despite strong gas puffing
in the pump-out phase for several hundreds ms. A peliet injection is effective in increasing density as
well as the stored energy, however, the decay constant of the density is not improved. Typical
electron density, temperature and particle flux on the divertor plates in this phase are 5X 10" m”, 10 to
20 eV and 10” ms, respectively. The amplitude of the oscillation in the particle flux is about 50%
and no obvious peaks in the power spectrum have been observed. In the discharges which are longer
than 1 s, density clamping is terminated in the later phase. Since the stainless steel becomes
occluded at around 1 X 10” hydrogenic ions per m’, this phenomena can be explained by degradation
of pumping efficiency. The pump-out phenomena is much milder and density can be maintained by
recycling instead of auxiliary gas puffing in helium discharges since the metailic wall does not pump
helium (see Fig.l (b)). Helium plasmas also mitigate the shine-through losses of NBI in the low
density regime.

The present operational density limits bounded by radiation coliapses are 4.5X 10" m™? in
hydrogen plasmas with a gas puff, 6.0X 10" m™ in hydrogen plasmas with a pellet injection, and 6.3 X
10" m” for helium plasmas. The radiation collapse phenomena can be classified into two types. The
first type is characterized by a hollow radiation profile that increased symmetrically up until the
radiation collapse. In these instances the peak total radiated power is at or below the beam input power.
In these discharges the stored energy drops steadily to zero in a time frame of 100 ms ot more. The
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FIG1. Tvpical discharges of NBI heated plasmas. (a) Hydrogen. The peller is injected arr = 0.81s.
(b) Helium.
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FIG2. Evolution of electron density and temperature profiles.  Density profiles are derived from Abel
inversion from FIR chordal daia. Temperatures are measured by the YAG laser (50Hz)-Thomson
scattering system. (a) Density profile in a hydrogen discharge. (b) Temperature profile in a hydrogen
discharge. (c) Density in a helium discharge. (d) Temperature in a helium discharge.
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second type 18 characterized by a rapid increase in the total radiated power over a 100 ms time frame
resulting in an instantaneous peak total radiated power, which is well in excess of the input heating
power. The detector profile shows a sharp peaking on the inboard side of the plasma which increases
and moves towards the center of the plasma in 30 ms.

Figure 2 illustrates the evolution of density and temperature profiles in the discharges shown in
Fig.1. In a hydrogen discharge, a broad density profile becomes hollow when the pump-out starts.
Pellet injection (3 mm in diameter and 3 mm in length, particle inventory of 10™") has mitigated the
hollow density profile. Broad density profile is maintained throughout a helium discharge and the
edge density is higher than that in a hydrogen discharge, which is due to a larger neutral source from
recycling. The temperature profiie is more peaked in a hydrogen discharge than a helium one.

While hydrogen discharges are accompanied by the density pump-out, the low recycling
condition which has been strongly related to confinement improvements has been realized. The
temperatures of both electrons and ions have reached 200 eV at the outermost flux surface and the
density is sharply bounded at the outside of the last ciosed flux surface (see Fig.3). Although a clear
significant improvement of confinement has not been observed yet, the above mentioned density and
temperature characteristics have not been observed in the helical devices to date and the increase of
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FIG3. Typical radial profiles of ion and electron temperatures and electron density in the pump-out low-
recycling phase.
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edge temperatures which is a key of confinement improvement would be expucted by mcreased input
power in further experiments.

The poloidal rotation which 1s closely connected to the radial electric fieid £, has been
measured by CXRS. A change in the direction of the rotation has been observed before and after the
start of pump-out in a hydrogen discharge. Figure 4 indicates that the plasma rotates mrtially in the
electron diamagnetic direction and then changes to the 10n diamagnetic direction. This may reflect a
change in the sign of E, from negative to positive. Hollow density profiles are enhanced by the
posttive electric field [8) and a neoclassical theory has pointed out that this problem 1s pronounced in
large-scale plasmas [9].

3. GLOBAL CONFINEMENT

Four major inter-machine scalings of energy confinement time for helical devices (LHD
scaling [10], Lackner-Gortardi scaling [11], gyro-reduced Bohm {12] and Intemational Stellarator
Scaling 95 (ISS95) [13]) have been proposed so far and all describe simular manners of power
deterioration and positive density dependences. The international stellarator scaling 95 (ISS95)
expresses,

tE — 0079 a 221 R 065 P -05% ,?3051 Br 083 {.2’304 ,
where Tz in s, 2 and R in m, P in MW, 7 _in 10"m?, and B, in T. While this scaling describes L-
mode plasmas in large tokamaks as well, density dependence is pronounced unlike in the tokamak L-
mode scaling. From expenience in tokamaks, larger devices which have less heating power density
make the transition to saturation from linear ohmic confinement in the lower density regime, which is
connected to an L-mode with auxiliary heating. This 1ssue is cructal for the prospects of helical
devices since the present reactor design relies on the favorable density dependence on confinement.

Energy confinement times are estimated by the stored energy measured by diamagnetic loops.
The response of diagmagnetic loops has been calculated by the 3-D magnetic field analysis with 3-D
finite-B equilibria. The NBI power deposition is modeled by the database from a number of runs of a
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-

o



3-D Monte-Carlo simulation code, MCNBI [14]. In heliotrons a large Shafranov shift occurs at finite
B to change the beam birth profile and the drift orbit of beam particles. Therefore, in the code, the 3-D
magnetic configuration including the finite-p effect is used for the evaluation of the deposition profile.
The computational results suggest that heating efficiency and deposition profiles are not different for
the cases of co- and counter- injections in the current experimental condition. The stored energy
derived from kinetic measurements agrees with the diamagnetic measurement, which is consistent
with the fact that results from the NBI power deposition model suggest a negligible effect from the
beam pressure (at most a few %).

Figure 5 (a) shows the comparison of experimental data with the prediction from the IS§95
expression. The density and power absorption ranges cover 1.0 — 5.0X 10" m” and 0.5 ~ 2.3 MW.
The data in hydrogen discharges have been adopted here, since the estimate of power deposition in
helium discharges cannot be discussed with the same accuracy as in hydrogen now. While the trend
of energy confinement times of NBI heated plasmas in LHD has a manner similar to [SS93,
experimental data is systematically better than ISS95 by a factor of 1.5. Deviation from the scalings
indicates an enhancement of a factor of 2 from the LHD scaling and is comparable to the L-G scaling
{see Fig. 5 (b)).

High density plasmas with a pellet injection and one NBI have almost the same absorption
power as low density ones with two NBI's. Comparison of those sequences indicates that energy
confinement is improved with the square root of the density in the accessible the density range
(3 X 10" m?) with a power density of 40 kW/m’.

4. MHD CHARACTERISTICS

The MHD equilibrium properties have been well described by 3-D finite-f equilibrium
calculation in helical devices [15]. Since the volume averaged beta < § > has reached 0.7%, The
theory predicis the Shafranov shift of 14 cm on the prolate cross-section and 23 cm on the oblate one.
Figure 6 shows the shift of the peak of the soft X-ray profile which corresponds to the magnetic axis.
Since the increase of B is primarily attributed to the increase in density, the pressure profile is flattened
in the higher B region in accordance with broadening of the density profile. The experimental
estimates agree with the finite-B calculation very well. Also, a similar change of plasma profiles has
been observed in the density and the electron temperature.
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No internal relaxation phenomena have been observed in the core region so far.  Spontaneous
generation of a magnetic well due to the Shafranov shift realizes Mercier (idea!l mterchange mode)
stabie configuration leading to the equilibrium hmt.

5. GENERATION OF TOROIDAL CURRENTS

Research in both tokamaks and helical devices [16,17] has confirmed neoclassical bootstrap
currents. The magnetic field of LHD 1s excited in a real steady state with using superconducting
coils. Therefore, the applied voltage is extremely low and ohmic currents are absoiutely excluded.
The capability for long-pulse discharges can also eliminate the ambiguity of time dependent behaviors.
A precise investigation will progress in LHD making full use of these advantages. A toroidal current
of up to 50 kA has been observed in a discharge with co-injected NBI of 1.5MW while the equivalent
currents to generate the rotational transform in the vacuum magnetic field of LHD i1s 700 kA at 1.5 T.
It takes more than 2 s for currents to reach a steady state, which is comparable to the L/R time of the
plasma. Figure 7 (a) shows the dependence of the toroidal currents on density. These currents
result from the synergetic effect of bootstrap currents and Ohkawa currents.  All currents flow in the
paramagnetic direction which increase the rotational transform. Since the bootstrap current is
expected to flow in the paramagnetic direction, the total currents shift to this side. Observed
currents with co-injection decrease in the high density regime which is expiained by the degradation of
efficiency of the Ohkawa current. The Ohkawa current is cancellied out in the case of balanced
injection and bootstrap current is pronounced. Figure 7 (b} indicates that the toroidal current
increases in proportion with the stored energy which reflects pressure gradient. A neoclassical
estimate [18] bounds the upper limit of the experimental observation, which is explained by a
discharge duration which is too short to ramp the full current.
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FIG7. (a) Toroidal currents as a funcrion of density. (b) Torvidal currents as a function of stored energy.
Only the case of balanced injection is illustrated here for NBi. Since the ray of ECH is injected
perpendicularly to the magnetic field, no momentum input exists. Lines: prediction from the neoclassical
theory by scanning the density profile n, = n(I-p *with the fixed temperature profile T = (1-p ) (keV).

6. DISCUSSIONS AND SUMMARY

The initial experiments on the Large Helical Device (LHD) have extended confinement studies
on currentiess plasmas to a large scale. An outlook of confinement of NBI heated plasmas has shown
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a trend similar to the prior scaling laws, however, a significant improvement compared with the ISS95
expression by a factor of 1.5 and comparable data to the Lackner-Gottardi scaling have been obtained.
In the present experimental condition, an absorbed power of NBI depends on the operational density.
Therefore, it needs a careful attention and further systematic scans to separate the power degradation
from a favorable density dependence. Comparison with two kinds of experimental set-up with the
same absorbed power, i.e., high density discharges heated by 1 beam with a pellet injection and low
density discharges heated by 2 beams is consistent with the prediction that confinement is improved
with the square root of density.

Fueling of particle is reconfirmed as an important operational issue in the experiment. An
escape of particles from the core of the plasma has been highlighted in hydrogen discharges. Low
recyching condition is achieved simultaneously, which leads to high temperatures at the edge. This
observation is explained from the concept of the high temperature divertor {19]. Combination with
central fueling by pellet injection has mitigated a hollow density profile temporally. Helium
discharges facilitates particle control through high recycling. Here it should be noted that the high
edge temperature is not specific to hydrogen discharges. A careful control of helium gas puffing can
realize a similar high edge temperature.

Heating by NBI of 3 MW has realized plasmas with a fusion triple product of 8 X 10'® keVms
at the magnetic field of 1.5T. An electron temperature of 1.5 keV and an ion temperature of 1.1 keV
have achieved simultaneously at the line-averaged electron density of 1.5X 10" m>. At the density
as low as 4 X 10"®m?, the central ion temperature reaches 1.4 keV.

Spontaneous generation of toroidal currents has been observed, characteristics of which agree
with neoclassical bootstrap currents. Changes of the plasma profile have been well described by the
3-D MHD equilibrium analysis.
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