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Abstract

ECRH-driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte
Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal
electrons can be seen; the first one is a rapid convective phase due to the direct radial motion of trapped electrons
and the second one is a slower phase due to the collisional transport. The important role of the radial transport of
suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven
fiux is also evaluated and put in relation with the “electron root™ feature recently observed in W7-AS. It is found
that, a1 kow collisionalines, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the
condition of ambipolarity and, thus, the observed “electron root” feature in W7-AS is thought to be driven by the
radial (convective) flux of ECRH generated suprathermal electrons. The possible scenarie of this “ECRH-driven
electron root” is considered in the LHD plasma.

I. INTRODUCTION

In non-axisymmetric devices the particles trapped in the helical rippie tend to drift away from the
starting magnetic surface. Thus, at low collisionalities, the suprathermal electrons generated by the elec-
tron cyclotron resonance heating (ECRH) can drift radially before being collisionally thermalized. These
fast radial motions would enhance the convective transport of suprathermal electrons. The ECRH exper-
imental results in CHS, H-E, and W7-AS have suggested the important role of the suprathermal electrons
transport in broadening of ECRH power deposition profiles[1] and in flattening of density profiles[2]. Al-
so the ECRH driven suprathermat electron flux is considered to play a dominant role in the recently found
“electron root” feature at W7-AS{3, 4], where a strongly positive radial electric field, £, (> 40kV/m),
and a reduction of thermal diffusivity have been measured. These facts have put a considerable interest
in a quantitative analysis of the ECRH driven transport due to the drift motion of suprathermal electrons.
However, because of the non-local nature of the suprathermal electron transport, conventional local ap-
proaches can not be utilized for this analysis.

In this paper we study the ECRH driven transport of suprathermal electrons in non-axisymmetric
plasmas solving the drift kinetic equation as a (time-dependent) initial value problem based on the Monte
Carlo technique (in 5D phase space)[S, 6]. A technique similar to the adjoint equation for dynamic lin-
earized problems is used and the linearized drift kinetic equation for the deviation from the Maxwellian
background, & f, is solved. In the linearized kinetic equation, the wave-induced flux in velocity space
(quasi-linear diffusion term) is obtained from 3D ray-tracing calculations and the steady-state distribution
function is evaluated through a convolution with a characteristic time dependent "Green’s function”.
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In the following the simuiation model and our new Monte Carlo simulation code are presented in
Sec. 2. In Sec. 3 the behaviour of the ECRH generated suprathermal electrons is analyzed and the effect
of ECRH-driven transport on the ECRH power deposition profile are investigated in the W7-AS plasma.
In Sec. 4 the relation between the ECRH-driven electron flux and the experimentally observed “electron
root” feature in W7-AS is studied and the possible scenario of similar “electron root” feature experiment
is considered in the LHD plasma. The conclusions are given in Sec. 5.

2. SIMULATION MODEL

Because of the non-local nature of the ECRH-driven transport in stellarators we must consider the
electron distribution function at least in five dimensional phase space. We solve the drift kinetic equation
as a (time-dependent) initial value problem based on the Monte Carlo technique.

Writing the gyrophase averaged electron distribution function as
F@ 01,01, = faraa(r, v)) + 5 f(2, vy, v1, 1),

where farq(r, v9) represents a Maxwellian depending only on the effective radius, r, via n.(r) and T,(r)
the drift kinetic equation can be reformulated with the initial condition & f(z, v, vL,t=0)=0

3§—f a2 L gt - 5 f), e
t oz Ov

where v is the drift velocity and (= vy b) is the parallel velocity, respectively. The acceleration term
© = (%,%) is given by the conservation of magnetic moment and total energy, and C and S are
the collision operator and the quasi-linear diffusion operator for the absorption of the ECRH power, re-
spectively. Here the quasi-linear effects, S%(6 f), are not included in the quasi-linear source term and a
linearized collision operator is assumed for simplicity.

k is convenient to introduce the Green function G(x, v, UL, T x’, Uﬁ’ v’ ) which is defined by the

homogeneous Fokker-Planck equation corresponding to eq. (1).

oG G . 0G o

E'F(‘Ud-l"l?”)“ga—;-l"v'%—cw (g)=0 {2)
with the initial condition G(z, vy, vt = 0|/, 'z;’l,'va) = §(xz — z') §(v — v'). The Green function, G,
has a straight-forward physical interpretation[?,Sf. An electron starting at the time ¢ = O at the position
«' with the velocity v’ will be found with the probability G(z, vy, vt 'u‘l’!, v} dz dv at the time ¢
in the phase space volume element da dv centered at x, v. Then, the solution for §f, is given by the
convolution of §%with G:

t
6f(:r:,v,t):/0 dt'fda:’/dv’ S9(fataz(r’, v'?)) G, v,t -t |2, v". (3)

In the quasi-linear source term S¥(faseq)[= —%(Dql - Q*g‘;')ﬂ)], the quasi-linear diffusion operator is
defined with respect to D%(z’, v, ). For stationary conditions, this explicit time-dependence in D%
disappears, and the integration is performed in the limit £ — co in Eq. (4). In this approach, only the
Green function G has to be determined by the Monte Carlo technique.

The Green function approach has been implemented in the Monte Carlo simulation code[9,10}].
The code allows for the calculation of the drift orbits with high accuracy in a complex magnetic field
configuration solving the equation of motions in the Boozer magnetic coordinates[11] based on a three
dimensional MHD equilibrium. The collisional effects (both pitch angle and energy scattering) are taken
into account using the linear Monte Carlo collision operatorf12].



The presented selutien refers to the hinear ECRH problem. where the effect of the quasi-linear
deformation of the distribuiion function on the absorption processes itself 1s disregarded. In this approx-
imation, the obtained & f is therefore proportional to the injected power. Also for simplicity, the densities
and temperatures of background plasma were assumed to be radially constant.

The quasi-linear diffusion term is evaluated by means of a 3D Hamiltonian ray-tracing code. This
code makes use of the quasi-linear expression in the limit of a homogeneous magnetic field[13], and
D‘f 1 1s evaluated by overlapping the contributions from several discrete rays. Whereas the r, vy, v}

dependence of Dii | 18 very sensitive to the absorption mechanism, the dependence on both the toroidal
and poloidal angle mainly reflects the ECRH beam width.

3. SUPRATHERMAL ELECTRON BEHAVIOR AND ECRH DEPOSITION PROFILE

We first study the behavior of suprathermal electrons and the effect on the broadening of ECRH
deposition profile in W7-AS plasma (standard configuration). The guasi-linear source term for ECRH
in the W7-AS configuration is evaluated by a 3D ray-tracing code and, then, the linearized drift kinet-
ic equation is solved. Figure 1-(a) shows the time development of radial profile of A(6f%)/AL(r, t) =
{f dv' [ dx'G - §9*) (S9** is the positive part of S% and () means the flux surface average) which shows
the radial diffusion of suprathermal electrons generated by ECRH (X-mode 2" harmonic). In this plot
the time is measured from the generation of the suprathermal electrons by ECRH. We set the plasma pa-
rameters as ng = 1.0 x 10°%m™3, T, = 2.6 keV. T, = 0.5keV, Zeps = 2 and By = 2.5T, respectively.
We can see that the radial profile rapidly extends to outside during the first 0. 1msec and, then, gradually
broadens. It is also found that the lower distribution of A{¢ f*) /At moves faster than higher one.

In order to see more clearly the diffusion of the suprathermal electrons we define the quantity wy
which is the radial width of A{§f*) /At with a specified value. In Fig. 1-(b) we show the time history of
w4 for two values of A(Sf*)/At; A{6f*)/At =1and 3 x 10" cm3sec™!. Tt is found that the broadening
in the radial direction can be separated into two different phases, namely, a first rapid phase (till 0.1msec)
and a second slower phase {after 0.1msec). The first period of the phase is shorter than the slowing down
time of the typical suprathermal electrons (~ 10kel”). The broadening speed of the first phase is about
3 x 10° cm/sec in the case of A{6f*)/At = 1 x 10cm 3sec™!. This value is of the same order as the
radial drift velocity of typical suprathermal electrons. Sc¢ we can say that the first phase is related to the
direct radial convective transport of trapped electrons. On the other hand, the broadening speed of the
second phase for the same case is about 2.4 x 10°cm/sec and the second phase could be related to the
collisional transport.
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FIG. 1. Time development of the radial distribution of suprathermal electrons generated by ECRH; (a)
radial profile of A8 f*)/ At and (b) time history of wy (the radial width of A{6f*) /AL).
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FIG. 2. Time history of the pitch angle and averaged radial position of a test suprathermal electron
with a initial energy of 10 keV. The collisivnal time for this electron is about 0.36msec. [Ty = 2 keV,
np = 2.0 x 10%cm =3},

t=0.64msec

FIG. 3. Isosurfuce plots of the distribution 6 f (the deviation from the Maxwellian driven by ECRH).

To better address the question of the two time scales of the suprathermal electron transport we
analyze the (collisional) orbit of a test suprathermal electron in W7-AS (standard magnetic field config-
uration). Figure 2 shows the time history ot the pitch angle and averaged radial position of a typical
suprathermal electron generated in the ECRH launching plane with an initial energy of 10 keV. As time
passes, the electron energy is slowed down and the pitch angle scattered by Coulomb collisions. The
fast oscillations of the pitch angle across the zero line indicate that the test electron has become trapped.
One can see that the test electron directly dnitt so much radially during first 0.05msec as trapped particle.
Then, the particle undergoes a sequence of detrapping and trapping phases, with net radial displacements
in correspondence with the trapping phases. This confirms that the first rapid phase of radial broadening
is due to the convective transport of trapped suprathermal electrons and the second slow phase is due to
the collisional transport.

We can also see the difference of these two phases in the disiribution of §f. Figure 3 shows the
isosurface plots of (magnetic surface averaged) ¢ f in the three dimensional space (v, v /- T)at the -
wo different times. £ = 0.06 and 0.64msec. In the figure the lower (upper) surfaces show the negative
(positive) regions of 6 f, respectively. ECRH tends to push resonant electrons towards higher energies.
consequently a depletion (with respect to the Maxwellian} tends to appear at lower energies and a tail is
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FIG. 4. Comparisons of the simulation results of ECRH deposition profile (») with the ray-tracing (dashed
line) and experimental ones{1] (solid line) for two different plasma parameters; (a) no = 2.0x 10%m™3
and T, = 2.2 keV, and (b)no = 1.0 x 10¥%cm™3 and T, = 2.6 keV.

created at higher energies. We can see a “nose-like structure™ at the upper surface which is related to the
radial convective transport of the energetic trapped particles at ¢ = 0.06msec. After that, the suprathermal
electrons start to slow-down and the radial diffusion occurs uniformly in the velocity space (we can not
see a clear “nose-like structure” ).

Using the obtained distribution §f, we can evaluate the ECRH deposition profile. Figure 4 shows
the comparison of the simulation results of ECRH deposition profile () with the ray-tracing (dashed line)
and experimential ones (solid line) for X-mode 2% _harmonic ECRH in the standard configuration [1].
The plasma parameters are (a) ng = 2.0 x 10%cm™ and T, = 2.2 keV, and (b) np = 1.0 x 10¥%em—3
and T, = 2.6 keV. The other parameters are fixed to By = 2.5T, T, = 0.5keV, and Z,55 = 2. Itis found
that a deposition profile broader than that predicted by ray-tracing is obtained in both cases and the larger
broadening can be seen in the lower collision frequency case (b). We is found a relatively good agreement
between the experimental and numerical results for both cases. This tends to confirm the important role
of radial convective transport of suprathermal electrons in the broadening of ECRH deposition profile in
W7-AS.

4, ECRH-DRIVEN “ELECTRON ROOT”

The neoclassical “electron root” feature has been observed in W7-AS. A strongly positive radial
electric field, E, (> 40kV/m), has been measured in the central plasma region in W7-AS and with amuch
lower experimental heat diffusivity than the the neoclassical one for £, = 0, leading to highly peaked
central electron temperatures (up to 6 keV). These results agree to the “electron root” features of the neo-
classical theory. However, there are also some points that can not be explained only by the neoclassical
theory. One aspect is the smaller reduction of heat diffusivity than that estimated by neoclassical theory
and the other is the strong relation to ECRH. The "electron root” feature was only observed with high
power (> 400kW) X-mode 274_harmonic ECRH and, up to now, could not be driven by O-mode 158
harmonic. Also this feature depends on the magnetic configuration at the ECRH launching plane related
to trapped suprathermal electrons. From these facts and experimental ECE measurements we infer the
important role of ECRH-driven flux in the “electron root” feature to drive a strongly positive E,.

We, first, evaluate the ECRH-driven flux by suprathermal electrons to understand the difference
between the X-mode and O-mode. Figure 5-(a) shows the simulations of the radial profile of the ECRH
driven electron flux for the two polarizations. It is found that the maximum fiuxes are obtained for both
cases in the central plasma region (r/a ~ 0.2) where the “electron root” feature has been observed, and
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FIG. 5. ECRH driven electron flux. (a) comparison of the radial profile for X- and O-mode cases, and
(b) Er dependencies of the maximum value of the driven flux.

that the flux for the X-mode case (~ 7 x 10"sec™! - cm™2) is about 2 times higher than that for O-mode
(~ 4 x 10Psec™! - cm™2) at maximum points. This is related to the different absorption mechanism
for the two polarizations. The X-mode is mainly absorbed by deeply trapped particles (v /= 0), while
the absorption for perpendicularly injected O-mode, requiring finite values of v //- 18 shifted towards the

passing particle region [1].

Also we evaluated the ECRH-driven flux under a strongly positive E, assuming a similar E, pro-
file to the experimentally observed one. The E, dependence of the maximum value of the ECRH driven
flux is shown in Fig. 5-(b) for the standard configuration (two polarizations) and for a “low mirror” (NCI)
configuration without small fraction of trapped electrons in the ECRH launching plane (X-mnode). The
largest electron flux is found in the case of X-mode for the standard configuration which corresponds the
only case in which the “electron root” feature is observed with the 400kW of ECRH heating power. In-
terestingly, the E;. dependency seems to be weaker than that of the neoclassical flux which is proporticnal
to E, >/*. This is because the radial transport of suprathermal electron is mainly by the direct convec-
tive motion of trapped electrons. These results are consistent with our conjecture that the ECRH-driven
suprathermal electron flux plays an important role in the “electron root” feature.

Comparing the ECRH driven flux with the neoclassical flux of background plasma we consider the

. effect of ECRH-driven flux on the ambipolar conditions. Figure 6 shows the comparison of the ECRH
driven flux and the ambipolar neoclassical fluxes obtained by the DKES code. The solid lines show
the X-mode ECRH driven flux without E, evaluated by our simulation code. The full and dashed lines
show the X-mode ECRH driven flux for the case without and with a strongly positive F.(~ 400V/cm),
respectively. The circles refers to the DKES results. We can see that the ECRH driven flux is comparable
to the ambipolar neoclassical thermal one with the ion root (£, ~ 0} and much larger than the ambipolar
neoclassical thermal one with strongly positive F, region. These suggest that the ECRH-driven flux
plays dominant role to drive strongly positive E, and, therefore, we can conclude that the experimentally
observed “electron root” in W7-AS is driven by the radial flux of ECRH generated suprathermal electrons.

We, next, consider the possible scenario of this "ECRH-driven electron root” in the LHD plasma.
As shown in Fig. 6, the “ECRH-driven electron root” could be expected when the ECRH driven flux,
CECRH 44 comparable with background neoclassical flux, F'VC. In order to obtain such a large TECRE
we need a sufficiently big fraction of trapped suprathermal electrons. So we assume the LHD magnetic
configurations with A,z = Ocm (Ocm shift of magnetic axis from the coil center). And the heating point is
selected as r/a ~ 0.2. Also we assume 1MW of heating power and the plasma parameters are as follows;
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ng = 4 x 108¥m~3, T,y = 2.5keV, Zepy = 2 and By = 1.5T. The background neoclassical flux can be
simply written, assuming £, ~ O ( “ton root”) and no density gradient, as

NC _ s e

e =6 DT 4)
where g, and T, are the electron heat flux and temperature, respectively, and ép is the ratio between DY,
and D5, with Df, the transport matrix coefficients for electrons. Then, the total background neoclassi-
cal flux is evaluated as FNC = fTNCdS ~ 4 x 10%sec™!, where the value of §p is assumed to be
ép ~ 1/6[14]. We evaluate the ECRH-driven flux in the LHD plasma assuming these parameters. Figure
7 shows the comparison of the ECRH-driven flux (solid line) with background neoclassical flux (dashed
line} in the 1LHD plasma. We can see that the large ECRH-driven flux is obtained in the central plasma
region and that the value of ECRH-driven flux is comparable with the ion root flux near r/a ~ 0.2. So
we can expect that the ECRH-driven “electron root” would be observed near the central region in the LHD.

Finally we discuss the possibility of the “ECRH-driven electron root” with higher density. If we
assumne that the ECRH-driven flux is mainly generated by the convective flux of trapped suprathermal
electrons, then, the total ECRH-driven flux at the maximum point, FECRH (ry(= [TECRH{S), can be
estimated as R

FEGRH ~ L [* qlaEonn,, g, 5)

Agps Jo

where fi;, €50 and Ay are the fraction of the trapped suprathermal electrons, the characteristic energy
of suprathermal electrons and the radial width of ECRH absorption region, respectively. And p.(I) is the
probability that a suprathermal electron move radially from the generated point to the distance [ and we
here assume p,(I) = exp(—ad /{3%), where [2€ is the mean free path of suprathermal electrons in the radial
direction and « is a constant. Then the necessary condition for the ECRH-driven electron rooct can be
written as

se

FECRH £, jse (,
T o~ r T _ _ & >
FNC ™ psel = far) (aAabs) 11— expl-erbue/129) 2 G, ©

where e = €5/T, and C(~ 1) is a constant. This relation shows that only {2° strongly depend on the
plasma density and temperature and the other parameters mainly depends on the configurations and ECRH
conditions. Thus, {7° is a key factor which can be estimated as

15¢ ~ vr/u;’gf x n_zeiéz, {7



where v, and .vfg f are the radial drift velocity and the effective collision frequency of trapped particles,
respectively. Assuming €. o 7. and the LHD scaling for energy confinement time of background plasma
we obtain Iy o< n~ -7 P!-1. Then we can obtain the relation between the density and the threshold heating
power for the “ECRH-driven electron root”, PEPEE 45

PCEDER o nl.ﬁ. (8)

This relation show that we need a much higher heating power to obtain the “ECRH-driven electron root™
with higher density.

5. CONCLUSIONS

The non-local transport of ECRH generated suprathermal electrons has been studied in non-axisym-
metric plasmas using a new Monte Carlo code in 5D phase space. The time development of the suprather-
mal electron radial profile and the orbit analysis clearly show two different phases in the ECRH-driven
transport. One is a rapid convective phase due to the direct radial motion of trapped electrons and the
other is a slower phase due to the collisional transport. The distribution & f also shows the important role
of trapped suprathermal electrons in the radial (convective) transport driven by the ECRH. The simulated
broadening of the ECRH deposition profile is found to be in relatively good agreement with the experi-
mentally inferred one.

The code was also applied to evaluate the ECRH driven flux in the “electron root” experiments
at W7-AS. Simulation results show that in the central plasma region X-mode 2™¢-harmonic ECRH is
more “efficient” than O-mode 1™¢-harmonic in driving radial electron fluxes. This could explain why
the “electron root” (and the related improvement of confinement) was experimentally found only for X-
mode. Comparisons with neoclassical predictions (DKES code) have shown the dominant role played by
the ECRH driven flux in the ambipolarity condition for the central region where the strongly positive E,
is experimentally observed. Thus the experimentally observed “electron root” in W7-AS is thought to be
driven by the radial flux of ECRH generated suprathermal electrons.

The possible experimental condition for the ECRH-driven electron root has been studied in the L-
HD plasma. It is found that the ECRH-driven flux becomes comparable to the neoclassical background
flux with ion root and the ECRH-driven electron root could be expected when we assume the outward
shifted configuration of LHD (A,; = Ocm) with a relatively low density. Also we derived the relation
between the threshold power for ECRH-driven electron root and the plasma density as PFPFR o 1!,
which indicates that much higher heating power is necessary to obtain ECRH-driven electron root with
higher density.
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