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Global mode analysis of ideal MHD modes
in a heliotron/torsatron system:
I. Mercier-unstable equilibria
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TNational Institute for Fusion Scrcnee. Toks 509-5292, Japan:

= Graduate Unwversity for Adranced Studies, Japan

Abstract

By means of a global mode analysis of ideal MHD modes for Mercier-unstable equilibria in a planar axis
L = 2/M = 10 heliotron/torsatron system with an iulereutly large Shafranov shift. the conjecture from
local mode analysis for Mercier-unstable equilibria given in [ N. Nakajima. Phys. Plasmas 3. 4536 (1996} |
has been confirmed and the properties of pressure-driven modes. namely, ballooning modes and interchange
modes. inherent to such three-dimensional systems have been clarified. The change of the local magnetic
shear due to the Shafranov shift. which is related to roroidicity, reduces the field line bending stabilizing
effects on ballooning modes. According to the degree of the reduction of the local magnetic shear by the
Shafranov shift, the Mercier-unstable equilibria are categorized into toroidicity-dominant (strong reduction)
and helicity-dominant {weak reduction) Mercier-unstable equilibria. Since the local magnetic curvature due
to helicity has the same period M in the toroidal direction as the toroidal field period of the equilibria. the
characteristics of the pressure-driven modes in such Mercier-unstable equilibria dramatically change, both
according to the reduction of the local magnetic shear by the Shafranov shift and also according to the
relative magnitude of the typical toroidal mode number n of the perturbation compared with the toroidal
field period of the equilibria M. In the toroidicity-dominant Mercier-unstable equilibria, the pressure-driven
modes change from interchange modes for low torcidal mode numbers n < A, to tokamak-like poloidally
localized ballooning modes with a weak toroidal mode coupling for moderate toroidal mode numbers n ~ M,
and finally to both poloidally and toroidally localized ballooning modes purely inherent to three-dimensional
systems for fairly high toroidal mode numbers n > Af. In the helicity-dominant Mercier-unstable equilibria,
the pressure-driven modes change from interchange modes for n < A or n ~ M, directly to both poloidally
and toroidally localized ballooning modes purely inherent to three-dimensional systems for n 3» M. Those
interchange modes are localized on the inner side of the torus. because the Shafranov shift enhances the
unfavorable magnetic curvature there rather than on the outer side of the torus. In both types of Mercier-
unstable equilibria, the pressure driven modes become more unstable and more localized both on flux tubes
and in the radial direction. and have stronger toroidal mode coupling through the magnetic curvature due
to helicity, as the typical toroidal mode numbers increase. All of these properties are consistent with the

conjecture from the local mode analysis.

Keywords: global mode analysis. teroidicity-dominant Mercier-unstable equilibrium, helicity-dominant
Mercier-unstable equilibrium. interchange mode, tokamak-like Lallooning mode. ballooning mode inherent

to three-dimensional system.



L. INTRODUCTION

Previously. from an analysis of finite-3 Magnetohy-
drodynamic {MHD) equilibria (where 3 is the ratio of
the kinetic pressure to the magnetic pressure) in an
L = 2/M = 10 planar axis heliotron/torsatron sys-
tem with an inherently large Shafranov shift {where
L and M are the polarity and toroidal field period
of the helical coils, respectively). it has been shown

that:

1. The local magnetic shear {(which makes a sta-
bilizing term for high-mode-number ballooning
modes) is related to helicity of the helical coils
in the considered vacuum configuration. Its

change due to a large Shafranov shift is essen-

tially axisymmetric, i.e., related to toroidicity.

This change leads to the disappearance of the

{integrated) local magnetic shear on the outer

side of the torus, even in the region with a

stellarator-like global magnetic shear. resulting

in the destabilization of high-mode-number bal-

looning modes.!

2. The local normal magnetic curvature (which
constructs a potentially destabilizing term for
high-mode-number ballooning modes together
with the pressure gradient) consists of parts due

to both toroidicity and helicity of the helical

coils, which determines the three-dimensional
properties of the high-mode-number ballooning

modes.?

In three-dimensional MHD equilibria, the eigenval-
ues w? for high-mode-number ballooning modes have
the functional form w® = W2(¢", 6, @) where v la-
bels the flux surface. a labels the magnetic field line
on it, and 6y is the radial wave number associated
with the eikonal approximation. Since w? has no
a-dependence in axisymmetric systems. the stronger
the a-dependence of w? is (mainly coming from the

helicity part of the local magnetic curvature), the

more siguificant the three-dimensional properties of

w? are. The topological properties of the unstable
eigenvalues ..? (< 0) in (%, O, o) space, as schemati-

cally shown in Fig. 1, are the following?:

1. For Alercier-unstable equilibria, two types of

2 coexist in

topological level surfaces for w
(v.8;,a) space. One is a tokamak-like topolog-
ically cylindrical level surface whose axis isin a
direction. The other is a topologically spheroidal
level surface inherent to three-dimensional sys-
tems. which is surrounded by the topologically
cylindrical level surface. From the relative posi-
tional relation of these two types of level surfaces,
modes with spheroidal level surfaces for -2 have
larger growth rates than those with cylindrical

level surfaces.

2. In Mercier-stable equilibria, only a topolog-
ically spheroidal level surface exists. swhich
is surrounded by the level surfaces of stable

Toreidicity-induced Alfvén Eigenmodes (TAE).

From these results, it was previously conjectured?
that the global structure of pressure-driven modes

would have the following properties:

I. Global modes that correspond to modes in the
local mode analysis with a topologically cylin-
drical level surface for w® will be poloidally lo-
calized tokamak-like ballooning modes or inter-
change modes, Effects of the toroidal mode cou-

pling on these modes are weak.

2. Global modes corresponding to modes in the lo-
cal maode analysis with a topologically spheroidal

level surface for w2

will be such hallooning
modes inherent to three-dimensional systems
with strong toroidal mode coupling that they
have high poloidal and toroidal mede num-
bers and are localized in both the poloidal and
toroidal directions. These modes become local-

ized within each toroidal field period of the heli-



¢al coils, as their typical toroidal mode numbers

become higher.

3. For Mercier-unstable equilibria, where both
topologically cylindrical and spheroidal level
2 poloidally localized

tokamak-like ballooning modes or interchange

surfaces for w* coexist,
modes with weak toroidal mode coupling ap-
pear when their typical toroidal mode numbers
are relatively low. As the typical toroidal mode
numbers become higher. such ballooning modes
inherent to three-dimeusional systems appear
with strong toroidal mode coupling that they
have larger growth rates and are localized in both
the poloidal and toroidal directions, which lead
to modes localized within each toroidal field pe-
riod of the helical coils.

4. In Mercier-stable equilibria, where only a topo-
logically spheroidal level surface for w2 exists,
only such ballooning modes inherent to three-
dimensional systems appear with strong toroidal
mode coupling that they have high poloidal
and toroidal mode numbers and are localized in
both the poloidal and toroidal directions. These
modes become localized within each toroidal
field period of the helical coils. as their typical

toroidal mode numbers become higher.

The purposes of the present work are to prove the
above conjecture that was based on local mode anal-
vsis for Mercier-unstable equilibria and to clarify the
inherent properties of pressure-driven modes, namely,
ballooning and interchange modes. through a global
mode analysis of the ideal MHD stability for Mercier-
unstable equilibria in the planar axis Z = 2/M = 10
heliotron/torsatron system used in Refs. 1 and 2.

The present paper is organized as follows. In
Sec. 11, the characteristics are given for the AMercier-
unstable equilibria used in the global mode analy-
sis of ideal MHD stability. In particular, we catego-
rize Mercier-unstable equilibria into two tvpes., viz..

toroidicity-dominant Mercier-unstable equilibria and

helicity-donunant Mercier-unstable equilibria. This
categorization comes from the local properties of the
Mercier-unstable equilibria brought by the Shafra-
nov shift. The Shafranov shift in the considered pla-
nar axis three-dimensional system is essenutially ax-
isymmetric. nanlely. related to toroidicity. and hence
the change of the local magnetic shear due to the
Shafranov shift is also essentially related to toreidic-
ity. As the Shafranov shift becomes larger. the field
line bending stabilizing term due to the local mag-
netic shear is reduced, finally resulting in the destabi-
lization of Ligh-mode-number ballooning modes. The
toroidicity-dominant Mercier-unstable equilibria are
characterized by properties that it is easy for the
local magnetic shear to vanish on the outer side
of the torus. which is brought by a relatively large
Shafranov shift. Thus, in the toroidicity-dominant
Mercier-unstable equilibria, ballooning modes are
easy to destabilize. The helicity-dominant Mercier-
unstable equilibria are characterized by properties
that it is hard for the local magnetic shear to van-
ish on the outer side of the torus, which is brought
by a relatively small Shafranov shift. Thus, in the
belicity-dowinant Mercier-unstable equilibria. bal-
looning modes are difficult to destabilize. Note that,
in both mypes of equilibria. the Shafranov shift lo-
cally reduces {enhances) the unfavorable normal mag-
netic curvature on the outside (inside) of the torus.
which is another local property due to the Shafra-
nov shift. The global mode analysis of pressure-
driven modes is described in Sec. II1. First. the nu-
merical procedure for the global stability calcula-
tions is described. Then the results for the global
mode analyses for toroidicity-dominant and helicity-
dominant Mercier-unstable equilibria are presented.
We find thart the characteristics of the pressure-driven
modes iIn snch Mercier-unstable equilibria dramat-
ically change, both according to the degree of the
reduction of the field line bending stabilizing term
by the Shafranov shift {according to the type of

the Mercier-unstable equilibria) and also according



to the relative magnitude of the typical toroidal
mode numbers n compared with the toroidal field
perioed of the equilibria M. In the toroidicity-
dominant Mercier-unstable equilibria, the relatively
large Shafranov shift strongly reduces the stabiliz-
ing effects of the local magnetic shear on balloon-
ing modes, so that tokamak-like poloidally localized
ballooning modes occur from the moderate torcidal
mede numbers n ~ M following interchange modes
with low toroidal mode numbers n < M. Both
poloidally and toroidally localized ballooning modes
inherent to three-dimensional MHD equilibria occur
for fairly high toroidal mode numbers n > M. In
contrast, in the helicity-dominant Mercier-unstable
equilibria, the reduction of the stabilizing effects
by the Shafranov shift is weak, and hence inter-
change modes occur for both low toroidal mode num-
bers n < M and moderate toroidal mode num-
bers n ~ M. For fairly high toroidal mode num-
bers n 3 M, just as for the toroidicity-dominant
Mercier-unstable equilibria, ballooning modes inher-
ent to three-dimensional MHD equilibria occur. All
of these properties of the pressure-driven modes in
Mercier-unstable equilibria are quite consistent with
the conjecture from local mode analysis given in
Ref. 2. In both types of equilibria, interchange modes
have a radially extended structure on the inside of the
torus, which comes from the change of the local nor-
mal magnetic curvature due to the Shafranov shift.

The conclusion and discussioin are given in Sec. IV.

IL. PROPERTIES
MERCIER-UNSTABLE EQUILIBRIA

OF

As the vacuum configuration, we use an L =
2/M = 10 planar axis heliotron/torsatron configu-
ration like that for the Large Helical Device* (LHAD).
This configuration is exactly the same as that used

in Refs. 1 and 2. The three-dimensional finite-3

equilibria are calculated with the Variational Mo-
ment Equilibrium Code® {VMEC) under the condi-
tion of a fixed boundary. The boundary is deter-
mined from the outermost flux surface of the vacuum
magnetic field, which has nearly concentric circular
magnetic flux surfaces when averaged in the toroidal
direction. The properties of the vacuum configura-
tion are understood as a straight helical configura-
tion toroidally bended. Since the aspect ratio is rel-
atively high: Rgfa = 7 ~ 8 [ here Ry and a are
the major and minor radi, respectively |, the global
and local properties of the vacuum configuration are
mainly determined by helicity of the helical coils. As
global properties, surface quantities — namely. the
global rotational transform ¢, the giobal magnetic
shear s = 2dIn¢/dIn v, the quantity d2V/d¢% that
measures the average favorable magnetic curvature
{average magnetic well) [ d2V/d¢3 < 0 means an av-
erage favorable magnetic curvature |, and the Mercier
criterion parameter Dy | Djr > 0 means Mercier
stable, for the definition see Eq. {3) in Ref. 2 | are
drawn in Fig. 2 as functions of the normalized radial
coordinate ry = /¥y. where vy = ¥/ Uedqge 15 the
normalized toroidal flux, and v is the label of the fux
surface, defined as 4 = ®,/{27) with @, the toroidal
flux inside a flux surface. The stellarator-like global
magnetic shear s {> 0) and the average unfavorable
magnetic curvature (magnetic hill): &*V/di% > 0
are shown in the whole plasma region, just as in a
corresponding straight helical system. As well as the
global quantities, the local quantities associated with
the high-mode-pumber ballooning mode analysis (lo-
cal mode analysis), namely, the local magnetic shear
and the local magnetic curvature are strongly related
to helicity in the vacuum configuration. In order to
express such local quantities. the Boozer coordinate
system® (¢, 8, ¢) is used. with ¢ the radial coordinate.
and ¢ and ¢ the poloidal and toroidal angles, respec-
tively. The origin for the poloidal angle # is on the
outer side of the torus and the origin for the toroidal

angle is on the vertically elongated poloidal cross sec-



tion. The local magnetic shear § 1s decomposed into

the global magnetic shear & and the oscillatory part

5 as
e Vo x B
with
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where 27.J is the poloidal current outside a flux sur-
face and 2#J is the toreidal current inside, and the
covariant metrics are given by g.p = 0,7 - 87 and
G = 0.7+ 0; 7. The magnetic curvature & is also
decomposed into the normal magnetic curvature "

and the geodesic magnetic curvature x; as

Vi -
— + K 8.
TR

R=(i-V)i= " (3)

where # = B /B is the unit vector along a magnetic
field line and
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The local magnetic shear § and the normal and
geodesic magnetic curvatures. x* and &y, appear in
the high-mode-number ballooning equation in the
covering space (¢, 7, o) [here n = 6. and o = (-6 /+.
(—xc <<+, 0<a<2n/M) ]2

[z 2.0 2 (BN 1z 2
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where |k | is the perpendicular wave number includ-
ing the local magnetic shear integrated along a mag-
netic field line, which is given by

(AR

- VLP
l J'I 2By

and @ = o7y is the eigenfrequency normalized
Ly the Alfién time 74 which is given by 735 =
fonf ('er.@,/rﬂ')z. The integrated local magnetic
shear along « wagnetic field line f 3dn contributes
1o both the first and second stability of high-mode-

nunther ballooning modes as a stabilizing term.

The unfavorable normal magnetic curvature &7 con-

.tributes to the first stability of high-mode-number

The

geodesic maguetic curvature £, contributes to the

ballooning modes as a destabilizing term.

first aud second stability together with the integrated
local magnetic shear along a magnetic field line f §dn.
In the following global mode analysis of the ideal
AHD stability. we could not appreciate the signif-
icant influences of the geodesic magnetic curvature
on pressure-driven modes. and hence we concentrate
our attention ou the local magnetic shear § and the
normal magnetic curvature x*. Shown in Fig. 3 are
equally spaced (1", 9) meshes [Figs. 3{a)] and the cor-
respouding contours for the local magnetic shear §
[Figs. 3(b}l. and for the normal magnetic curvature
multiplied by the Jacobian ./gx™ {Figs. 3{c)}; these
are shown both on vertically (left column} and hori-
zontally (right column) elongated poloidal cross sec-
tions. It is shown in Fig. 3 that the local properties
of the local magnetic shear and the normal magnetic
curvature mainly come from helicity in the vacuum
configuration. The effect of toroidicity is more appar-
ent in the normal magnetic curvature ,/gs™ than in
the local magnetic shear 8. On the horizontally elon-
pated poloidal cross section. the locally unfavorable
magnetic curvature due to helicity is superposed on
that due to toroidicity on the outer side of the torus,
and hence the normal magnetic curvature is more un-
favorable on the outer side of the torus thar on the
inner side of the torus. In contrast, on the vertically
elongated poloidal cross section. the locally favorable
magnetic curvature due to helicity cancels the locally
unfavorable magnetic curvature due to torsidicity,
leading to locally favorable magnetic curvature even

on the outer side of the torus.



The properties of the finite-5 equilibria are basi-
cally understood as a modification of the vacuum con-
figuration by an essentially axisymmetric and inher-
ently large Shafranov shift. The essential structure of
the Shafranov shift is understood by a model equa-
tion. With the use of the stellarator expansion with
high-3 ordering — viz.,, 3 ~ &), ¢s = a/Ry — a
model expression for the Shafranov shift A is found

asl

dA Ry dg

T =g o

(8)
where r is the radial coordinate, 3 = 2P/ B2, and
By is the magnetic field strength at B = Ry. From
Eq.(8). it is found that either peaked pressure pro-
files with no net toroidal current or peaked pressure
profiles with a net toroidal current making + decrease
create a large Shafranov shift. In contrast, for the
same beta value 3y at the magnetic axis, broad pres-
sure profiles with no net toroidal current or broad
pressure proiiles with a net toroidal current making
+ increase create small Shafranov shift. Since the
properties of the vacuum configuration is mainly de-
termined by helicity as shown in Fig. 3 and since
the Shafranov shift is essentially axisymmetric, the
larger the Shafranov shifi becomes, the more signifi-
cant the effects by toroidicity become, compared with
helicity. Such a Shafranov shift changes the local
and global properties of equilibria,'® namely, the re-
duction of the lecal magnetic shear (local property)
and the formation of the average favorable normal
magnetic curvature near the magnetic axis {(global
property). The former is unfavorable to ballooning
modes through the reduction of the field line hend-
ing stabilizing effects and the latter is favorable to in-
terchange modes through the Mercier criterion Dy,
Since only Mercier-unstable equilibria are considered,
according to the reduction of the local magnetic shear
brought by the Shafranov shift, Mercier-unstable
equilibria can be categorized into two types, namely.
toroidicity-dominant Mercier-unstable equilibria and

helcity-dominant Mercier-unstable equilibria. The

toreidicity-dominant Mercier-unstable equilibria are
created by a relatively large Shafranov shift. These
equilibria are characterized by local properties that
the (integrated) local magnetic shear is strongly re-
duced by the Shafranov shift, leading to the situation
that ballooning modes would be easy to destabilize.
In contrast. the helicity-dominant Mercier-unstable
equilibria are created by a relatively small Shafra-
nov shift. These equilibria are characterized by local
properties that the (integrated) local magnetic shear
is not reduced so much by the Shafranov shift, lead-
ing to the situation that ballooning modes would be
difficult to destabilize.

On the basis of these considerations, in this pa-
per the following two types of Mercier-unstable equi-
libria have been adopted in order to examine the
competitive or synergetic effects of toroidicity and
helicity on pressure-driven modes. The toreidicity-
dominant Mercier-unstable equilibrium is created
with the peaked pressure profile P = Fy(1 — yy)?
with 35 = 3.9%. under the fux conserving condi-
tion. i.e.. with a specified profile for the rotational
transiorm ¢. Note that this equilibrium is slightly
more Mercier unstable than one with the same pres-
sure profile but no net toroidal current. made by
specifying + io be larger than that obtained under
the zero-current condition. The toroidicity-dominant
Mercier-unstable equilibrium with the same pressure
profile under the currentless condition are now under
investigation, associated with Mercier-stable equilib-
ria. The helicity-dominant Mercier-unstable equi-
librium is created with the broad pressure profile
P = P(1 — %) and gy = 4.0%, under the cur-
rentless condition. Note that this equilibrium is ex-
actly the same as used in Ref, 2, In order to show
the global properties. surface quantities are drawn in
Tig. 2 as functions of the normalized radial coordi-
nate ry = /¥y for both the toroidicity-dominant
[Fig. 2{a}] and helicity-dominant [Fig. 2(b)] Mercier-
unstable equilibria. The helicity-dominant equilib-

rium with the broad pressure profile is rather Mercier



unstable. compared with the toroidieity-dominaut
equilibrium.

Shown in Fig. 4 are equally spaced (v.6) meshes
[Figs. 4(a)}] and the corresponding contours for the lo-
cal magnetic shear § [Figs. 4{b)]. and for the normal
magnetic curvature multiplied by the Jacobian \/gs"
[Figs. 4(c)] both on vertically (left column) and hori-
zontallv (right columa) elongated poloidal cross sec-
tions for the toroidicity-doniinant Mercier-unstable
MHD equilibrinm.

Fig. 53 for the helicity-dominant Mercier-unstable

Same quantities are drawn in

MHD equilibrium. A comparison of Figs. 3(b}. 4(b).
and 5(b) indicates that the local magnetic shear.
which is the stabilizing term of high-mode-number
ballooning modes. is significantly reduced on the
outer side of the torus, especially at the horizon-
tally elongated poloidal cross section, as the Shafra-
nov shift increases. Moreover. it is understood from
a comparison of Figs. 3(c). 4(c). and 5{(c) that the
locally unfavorable magnetic curvature at the hor-
izontally elongated poloidal cross section becomes
stronger on the inner side of the torus than that on
the outer side of the torus. The reason is as follows.
In this horizontally elongated poloidal cross section.
the normal magnetic curvature #” is approximated

as
i@Bz
B? gu -

(9)
At the considered 3-value. the diamagnetic effect is
so weak that the distribution of the magnetic field
strength hardly changes. However. the change in the
distribution of fux surfaces due to the Shafranov shift
is quite large as shown in Figs. 4{a) and 5{a). The in-
terval of flux surfaces on the inner side of the torus is
wider than that on the outer side of the torus. There-
fore. the locally unfavorable magnetic curvature at
the horizonrally elongated poloidal cross section be-
comes stronger on the inner side of the torus than

that on the outer side of the torus.

It would be worthwhile mentioning the followings.

As J increases, the toroidicity-dominant Mercier-

unstable cquilibria created by peaked pressure pro-
files with no net toroldal curreut have a second sta-
bility 1egion with respect to iuterchange modes. The
reason 1 that the average magnetic curvature due
to the Shafranov shift is favorable in the region
where tlie maximum pressure gradient of peaked pres-
sure profles exists. In contrast, helicity-dominant
Mercier-unstable equilibria created by broad pressure
profiles with ne net toroidal current do not have sec-
ond stability against interchange modes, because the
wmaximum pressure gradient still exists in an aver-
age unfavorable magnetic curvature region. Thus, the
toroidicity-dominant equilibria are more Mercier sta-

ble than the helicity-dominant equilibria.

I1I. GLOBAL MODE ANALYSIS
PRESSURE-DRIVEN MODES

oF

A. Numerical procedure

For the global mode analysis of ideal MHD stabil-
ity. we used a version of the Code for the Analysis
of the MHD Stability of 3-Dimensional equilibrium
(CAS3D): namely. the CAS3D2MN version”®. which
is based on a formmulation of the ideal MHD energy
principte in the Boozer ccordinate system (. 8.¢)
and in whiclk the finite-element-Fourier method is
used. Here, we address four important points con-
cerning global mode analysis with the use of the

CAS3ID2AIN code.

1. Fourier space of the equilibria’

The three-dimensional equilibrium is expressed in
terms of the Fourier decomposition in both the
poloidal and toreidal directions. Let m. and n, be
the poloidal and toroidal mode numbers of the equi-
libriun. respectively. In the following calculations.

31 poloidal modes {¢ < m, £ 30) and 21 roroidal



modes (—10 < 7. /M < +10. where M is the toroidal
field period of the equilibria, with M = 10) are used
to express the three-dimensional equilibria. There-
fore. the total number of Fourier modes A, is 641.
The accuracy of the mapping from VMEC coordi-
nates to Boozer coordinates is estimated from the
relative errors in B and R due to the transformation
at the grid points. The maximum relative errors in
B and R for the toroidicity-dominant equilibrium are
1% 107% and 3 x 1077, respectively. For the helicity-
dominant equiltbrium, the corresponding relative er-
rors are 7 X 1077 and 1 x 10~7. Note that the number
of poloidal modes is important for egnilibria with a
large Shafranov shift, in order to be able to recon-
struct the MHD equilibrium in the Boozer coordinate
system, and that this number increases as the Shafra-

nov shift becomes larger.
2. Fourier space of the perturbations’

The phase factor (Af,, N,} has been introduced in
order to select Fourier modes (m.n)} of the pertur-
bation in the desired Fourier space and to reduce the
memory and CPU time. For example, the normal dis-
placement 5 -V ¢ is expressed in the following manner
(where the notations are slightly different from those

in Refs. 7 and 8 for convenience)

£V = X° cos[Mp8 — Np(| + Y sin[M,8 — N,].

{10)
where
AfZ,
X = ) Xi(uw)cos[me (i) — ne(i)(].
i=1
ﬂf:q S -‘Weqa (11)
Mz,
YO = 3 ¥e(yw)sinime(i) ~ne(i)d.
1=1

In Eq. (11), M, is the total number of Fourier modes
selected from the Fourier space of the equilibrium.
Thus, a Fourier mode {m,n) of the perturbation

is expressed as a combination between the Fourier

mode of the equilibrium {m,..n.) and the phase fac-
tor {Af,, N,

m = AMp+m.(i). n = N, +n.(i), e=1,--- 3,

m = AM,—-m.(i). n = N, —n.(i).

Thus, the total number of Fourier modes of the per-
turbation is M, = 2M_ — 1. Both the phase fac-
tor (M, V) and Fourier modes of the equilibrium
(me,ne) to the number of M, are carefully chosen.
in order that a set of the Fourier modes (m,n) of the
perturbation is selected in a desired Fourier sub-space
aronnd (M. V).

Figure 6(a) shows the chosen Fourier modes
186) and
the Fourier space of the equilibrium indicated by the

{m..n.) denoted by plus signs (A oy =

rectangular box, and Fig. 6(b) shows the resultant
Fourier modes {m.n) of the perturbation with the
phase factor {3f,.N,) = (38,22). Hence we have
My = 207, —1 = 371. These values are used for the
stability calculations, with the typical toroidal mode
number of the perturbation being n ~ M. The same
quantities are displayed in Fig. 7 for M, = 336 and
(Mp, Np) = (133, 77), so that M, = 2M;, —-1=671
these were used for the stability calculations when the
typical toroidal mode number of the perturbation is
n3 A

From this procedure to comstruct the Fourier
modes of the perturbation. it is noted that a suf-
ficiently large Fourier space of the equilibrium is
needed in order to express ballooning modes that
consist of the superposition of many resonant Fourier
modes. An especially large number of poloidal modes
is required in equilibria that have strong global mag-
netic shear. We also note that this phase factor
technique is particularly powerful for the analysis of

short-wave-length pertarbations.
3. Radial interval’

By knowing the radial localization of a particular

perturbation. we are able to reduce the radial range

(12)



of the equilibrium while still keeping sufficient radial
resolution. The radial direction is spanned by Ne+1
radial grid points. with AS = 1/Ng the radial reso-
lution. When the region where the perturbation lo-
calizes is roughly known — say. from v, (> 0) to
tae (<€ 1) — the stability calculations are linuted
in the range [Uy] = [t'vs.vne]. with the boundary
condition E Vi =0 at both end points. This tech-
nique is especially powerful for the analysis of short-
wave-length perturbations in equilibria with strong
global magnetic shear. In the following calculations,
vxg (> 0) and vn, {< 1) are used in order to effec-
tively reduce the radial region for short-wave-length
perturbations and also to reduce the needed memory
and CPU time. This also avoids equilibrium numer-
ical errors near the maguetic axis and the boundary.

if any such errors exist in the calculated equilibrium.
4. Shift-and-invert Lanczos algorithm®

The most difficult part of a global mode analysis is
to solve the eigenvalue problem of a real symmetric
band matrix A with the order dim(A) of ~ 10%. Con-
sequently. the shift-and-invert Lanczos algorithm is
employed. The Lanczos algorithm can focus on a de-
sired portion of the spectrum by reducing the original
matrix A to a Lanczos matrix T,,, whose order is much
smaller than that of A, namely. dim(T,,) < dim(A4).
The main arithmetic operations come from A7 where
¢ is a Lanczos vector. Therefore, parallelization can
be easily done and also extra memory requirements
can be controlled to be negligible.

The application is performed as follows: (1) Make
A a positive definite matrix C' with the use of an ap-
propriate shift of the eigenvalue A, (2) Calculate a
desired portion of the spectrum of the inverse ma-
trix of ' with the Lanczos algorithm. (3) Check the
convergence hetween the eigenvalues from the Lanc-
zos matrix and those of the original matrix. If the
convergence is not good. the procedures from {2) to

(3} are repeated until convergence is satisfied. (4)

Transform the cigenvalues so obtained into ones of
the original mairix by taking account of sA. As the
input paramceters. we need to specify the maximum
relative error hetween the eigenvalues of the Lauc-
zos matrix and those of the original matrix, namely,
the convergence tolerance £: the order of the Lanczos
matrix in the initial step dim(Ty); and the shift of
the eigenvalue ¢A. The order of the Lanczos matrix
dim (T} is automatically increased in order to satisfy
convergence tolerance. In the following calculations,
the typical values of £ = 1.0 x 107>, dim(Ty) = 100.
and 64 = 0.1 are used. For well convergent cases,
dim(T,;,) = 200 is enough for convergence; however.
dim(T,,) = 1000 is needed for badly convergent cases.
When the order of the matrix for global mode anal-
vsis of three-dimensional equilibria is very large (sax.
108}, we note that the shift-and-invert Lanczos algo-

rithm is very powerful

B. Global mode analysis for toroidicity-

dominant Mercier-unstable equilibrium

Pressure-driven modes with long-wave-lengths —
e.g.. long-wave-length interchange modes — expe-
rience the magnetic curvature with its local wvari-
ation averaged out. As the wave length becomes
shorter. pressure-driven modes begin to feel the lo-
cal structure of the magnetic curvature, The three-
dimensional equilibria considered here have toroidal
field period A . and this is what mainly determines
the toroidal period of the local magnetic curvature
due to helicity. Therefore, we investigate the proper-
ties of pressure-driven modes for various cases of rel-
ative magnitude between the typical toroidal mode
number of the perturbation, n. and the toroidal pe-
riod of the local magnetic curvature due to helicity.
M: pnamely, n < M, n ~ M, and n > M. For
a particular selection of the numerical parameters.
namely. the Fourier modes of the perturbation, the

radial resolution, and the radial interval, there are



many unstable eigenvalues. In the followings, we will
examine the most unstable eigenmodes for a partic-
ular selection of the numerical parameters.

For low toroidal mode numbers » < M, inter-
change modes occur, which feel the average mag-
netic curvature with its local variation averaged out.
One of them is shown in Fig. 8. The radial dis-
tribution of the Fourier components of the normal
displacement £ - V¢ is shown in Fig. 8(a). Three
resonant mode structures with n = 3 are visible,
whereas the amplitudes of other modes with different
toroidal mode numbers are quite small, and hence the
toroidal mode coupling is negligible. This toroidicity-
dominant equilibrium is weakly Mercier unstable as
shown in Fig. 2(a), and the dominant mode with
{(m.n) = (5,3) is quite radially localized around the
resonant surface with ¢+ = 3/5 in the Mercier-unstable
region with Dyy < 0, together with two small reso-
nant structures at ¢« = 3/6 and + = 3/4. both of
which are slightly outside the Mercier-unstable re-
gion. The corresponding contours of the perturbed
pressure P = —VP - 5"' on beoth vertically and hori-
zontally elongated poloidal cross sections are shown
in Figs. 8(b) and {c). Comparison of the direction
between magnetic field lines and constant level sur-
faces of P = —-VP - 5 shows that the amplitude of
the perturbation is almost constant along a magnetic
field line. From these properties, it is concluded that
this perturbation is an interchange mode almost free
from the toroidal mode coupling. These interchange
modes more radially extend on the inner side of the
torus than on the outer side of the torus, which is dif-
ficult, however, to understand from Fig. 8. The detail
of the mode structure of the interchange modes will
be discussed in the next sub-section.

For moderate toroidal mode numbers n ~ Af, the
modes begin to feel the local structure of the mag-
netic curvature due to helicity. Since the Shafranov
shift strongly reduces the stabilizing effects due to the
local magnetic shear on the outer side of the torus

in the toroidicity-dominant Mercier-unstable equilib-

rium as shown in Fig.4 (b}, tokamak-like poloidally
localized ballooning modes with weak toroidal mode
coupling occur. This is shown in Fig. 9. where the
Fourier space of the perturbation shown in Fig. 6 is
used. The typical toroidal mode numbers are still
so small that the modes can not feel the local struc-
ture of the magnetic curvature due to helicity effec-
tively. and hence the toroidal mode coupling is weak.
In Fig. 9(a). three groups of Fourier modes for the
normal displacement 5 - Vi with different toroidal
mode nwuabers are visible, namely, n = 22, n = 32,
and n = 42: these result from the weak toroidal
mode coupling in the three-dimensional equilibrium.
Each group, however, consists of many Fourler modes
with ifferent poloidal mode numbers caused by the
poloidal 1mode coupling. and the Fourier modes exist-
ing in the region with a finite global magnetic shear
{rx > 0.35) have the largest amplitude around the
resonant Hux surface satisfying + = n/m. Thus. the
structure of each group due to the poloidal mode cou-
pling is quite similar to that of ballooning modes in
tokamak plasmas. The Fourier modes have the finite
amplitude in the region where the rotational trans-
form monetonically increases in the radial direction
{(ra > 0.4). as shown in Fig. 2(a), so that the group
of Fourier modes with higher toroidal mode number
appear in the outer flux surfaces. The most domi-
nant group of the Fourier modes with n = 32 exists
around the Mercier-unstable region, and other two
groups with n = 22 and n = 42 extend from the
Mercier-unstable region into the Mercier-stable re-
gion. The group with n = 22 extends into a con-
siderably weak magnetic shear region (ry ~ 0.5),
where the high-mode-number ballooning formalism
breaks dowa, and slightly off-resonant modes without
the resonant surface have the finite amplitude there.
Note that among the three groups of Fourier modes
with different toroidal mode numbers, neighboring
groups have opposite phase: e.g., between n = 22
= 42,

The relation between this relative phase difference

and n = 32, and between n = 32 and =
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and the position of the origin of the toroidal angle,
which is located where the poloidal cross section is
vertically elongated, indicates a weak localization of
the mode in the toroidal direction. A comparison of
Figs. 9(b) and (c) shows that on the outer side of the
torus, the radial extention of the perturbed pressure
P=_-VP-{is larger on the horizontally elongated
poloidal cross section with locally unfavorable mag-
netic curvature at the outside of the torus, than on
the vertically elongated poloidal cross section with lo-
cally favorable magnetic curvature at the outside of
the torus. On the vertically elongated poloidal cross
section, the perturbed pressure on the outer side of
the torus changes phase in the radial direction.

For fairly high toroidal mode numbers n » 1[.
the modes can easily distinguish the local fine struc-
ture of the magnetic curvature due to helicity. This
results in the appearance of ballooning modes inher-
ent to three-dimensional systems, which have such
strong poloidal and toroidal mode couplings as to lo-
calize in both the poloidal and toroidal directions, as
shown in Fig. 10, where a Fourler space for the per-
turbation larger than that in Fig. 7 is used. namely.
Mz, =397, (M. Np) = (342,198). and M, = 793.
There are eight groups of Fourier modes with different
toroidal mode numbers for £- Vi through the strong
toroldal mode coupling. Their different toroidal
mode numbers are shown in Fig. 10(a), namely. n =
178.188,198, 208, 218, 228, 238, and 248. All groups
exist around Mercier-unstable region. where the ro-
tational transform ¢« monotonically increases in the
radial direction. The groups of Fourier modes with
higher toroidal mode numbers exist in the region with
higher rotational transform, and neighboring groups
of Fourier modes have opposite phase to each other,
just as in Fig. 9{a}. This relative phase difference of
the neighboring groups leads to the clear localization
of the perturbed pressure in the toroidal direction.
as shown in Figs. 10{b) and (¢). On the outer side
of the torus. the perturbed pressure. which localizes

on the horizontally elongated poloidal cross section

i1

withh the locally unfaverable magnetic curvature at
the outside of the torus, almost disappears on the
vertically elongated poloidal cross section with the
locally favorable magnetic curvature at the outside
of the torus. Moreover. the strong toroidal mode
coupling causes a type of poloidal localization that
> different frowm the kind only due to poloidal mode
coupling. This phenomenon becomes quite clear in
Fig. 10(d). which shows the correspondiug contours
of the perturbed pressure on the (. () plane with
oune period in the poloidal direction and one-teuth of
a period (one field period) in the toroidal direction
at rv = 0.734. where + = 0.58 which 1s where the
208 has its maximum ani-
plitude. as indicated in Fig. 10{a). In Fig. 10{d). it

Fourler mode with n =

can be seen that regions where the perturbed pres-
sure has large amplitude (indicated by dark diagonal
stripes) alternate with regions of quite swall ampli-
tude {denoted by white diagonal stripes). Judging
from the value of the rotational transform on this
flux surface, namely. « = 0.58. we conclude that
these high-amplitude and low-amplitude stripes are
aligned along magnetic field lines, and that the strong
toroidal mode coupling in addition to the poloidal
mode coupling makes the perturbation be localized
on seleeted flux tubes. The small amplitude regions
{white diagonal stripes) also show that. as well as in
the poloidal direction, there is a region with rather
low amplitude in the toroidal direction on the outer
side of the torus, around the vertically elongated
poloidal cross section, namely. at § ~ 0 and ( ~ 0
(since the origins for the poloidal and toroidal angles
exist on the outer side of the torus and on the ver-
tically elongated poloidal cross section. respectively).
In the case of a tokamak. these low-amplitude regions
ocenr due only to the poloidal mode coupling, and
conscquently their widths are very narrow. The bal-
looning modes that are inherent to three-dimensional
systems still have fairly extended structures in the
toroidal ditection. as shown in Fig. 10, and they do

not localize in one toroidal field period.



Independent of the value for the typical toroidal
mode pumbers. unstable modes are radially local-
ized near the Mercier-unstable region. As the typical
toroidal mode numbers increase. the radial intervals,
in which modes are localized, become more narrow
and the modes become more unstable, and also the
toroidal mode coupling becomes stronger through the
normal maguetic curvature due to helicity. Therefore,
it is expected that more unstable ballooning modes
localized in one toroidal field period. which are con-
jectured in the local mode analysis’. may occur in
quite narrow radial intervals as the typical toroidal

mode numbers become increasingly larger.

C. Global for helicity-

dominant Mercier-unstable equilibrium

mode analysis

For low toroidal mode numbers n < A, inter-
change modes occur, as shown in Fig. 11. just as
in the case for the toroidicity-dominant equilibrium.
The radial distribution of the Fourier components of
the normal displacement g-Vz!J is shown in Figs. 11(a)
| where the origin of the poloidal angle is on the outer
side of the torus | and (b) [ where the origin of the
poloidal angle is on the inner side of the torus ], where
three resonant mode structures with n = 4 are visi-
ble. The amplitudes of modes with different toroidal
mode numbers are quite small. This equilibrium is
quite Mercier unstable, as indicated n Fig. 2(b), so
that the interchange mode has a fairly radially ex-
tended structure around the mode rational surfaces
with ¢ = 4/7, 4/6, and 4/5. all of which are inside
the Mercier-unstable region with Dy < 0. The con-
tours of the perturbed pressure P=-vVP. é’ shawn
in Figs. 11{c) and (d) indicate that the interchange
modes with n < A have a large radial extension on
the inner side of the torus and change phase in the
radial direction on the outer side of the torus. This

is because the normal magnetic curvature is more

unfavorable on the inner side of the torus than on
the outer side of the torus by the Shafranov shift as
shown iu Fig. 3(c) and also consistent with the results
in Refs. 11 and 12. These properties are more easily
understood from Fig. 11(b), where the Fourier modes
of the normal displacement 5 - V¢ are displayed with
the origin of the poloidal angle shifted from the outer
side of the torus to the inner side of the torus, so that
the Fourter components with an odd poloidal mode
number change their signs. In this case. the Fourler
modes with {m,n) = {7.4) and (m.n} = (5.4) change
their signs. The mode structure is similar to that of a
ballooning mode except that each Fourier mode has
hoth positive and negative parts. which means that
this type of interchange mede has a tendency to ex-
tend radially {or to localize) on the inner side of the
torus and to change phase in the radial direction on
the outer side of the torus through poloidal mode cou-
pling. In other words, this type of interchange mode
is anti-ballooning with respect to the poloidal mode
coupling.

For moderate toroidal mode numbers n ~ Al
Fig. 12 shows that interchange modes still oc-
cur, in which the Fourier modes of the perturba-
tion shown in Fig. 6 are used. just as in Fig. 9.
However, tokamak-like poloidally localized balloon-
ing modes do not appear in the helicity-dominant
Mercier-unstable equilibria, in contrast to the case
for the toroidicity-dominant Mercier-unstable equi-
libriuin shown in Fig. 9, because the reduction of the
stabilizing term of ballooning modes by the Shafranov
shift is not enough for tokamak-like poloidally local-
1zed ballooning modes to be destabilized as shown in
Fig. 5{b). Thus. interchange modes driven by the av-
erage unfavorable magnetic curvature can be desta-
bilizedd. The toroidal mode coupling of interchange
modes becomes stronger as the toroidal mode num-
ber increases, as shown in Figs. 12(a) [ where the
origin of the poloidal angle is on the outer side of the
torus | and {b) [ where the origin of the poloidal angle

is on the inner side of the torus |, where two groups



of Fourier modes with » = 22, and n = 32 are dom-
inant. Just as for interchange modes with n < M
showu in Fig. 11, the interchange modes with n ~ 1f
also have a rendency to be radially extended on the
inner side of the torus and to change phase in the
radial direction on the outer side of the torus due to
poloidal mode couplng. as shown in Figs. 12{c) and
(d). Moreover, the weak torcidal mode coupling, in
cooperation with the poloidal mode coupling, causes
a bumpy-like localization of the perturbed pressure
in the poloidal direction. which is more clearly seen
on the inner side of the torus in Figs. 12{c) and {d}.

For fairly high toroidal mode numbers n » 1,
just as for the toroidicity-dominant Mercier-unstable
equilibrium, the modes can distinguish the fine lo-
cal structure of the magnetic curvature due to he-
licity. This results in ballooning modes inherent to
three-dimensional systems just as for the toroidicity-
dominant Mercier-unstable equilibrium shown in
Fig. 10. which have strong poloidal and also toroidal
mode couplings and localize in both the poloidal and
toroidal directions, as shown in Fig. 13, where the
Fourier modes of the perturbation shown in Fig. 7
are used. The dominant toroidal mode numbers of
the Fourier modes of £ - V¢ are shown in Fig. 13(a),
namely, n = 67,77,87.97.107.117, and 127. Al-
though there are fewer than for ithe case of the bal-
looning mode shown in Fig. 10(a). a similar mode
structure is obtained. The most dominant toroidal
mode number of this ballooning mode. n ~ 97, is
fairly small compared with the corresponding mode
number. n ~ 208 in Fig. 10. Therefore, the degree of
localization of the ballooning mode on the fux tubes
is relatively weak, as can be seen in Figs. 13(b), {c),
and (d).

Just as for toroidicity-dominant equilibria, un-
stable modes radially localize around the Mercler-
unstable region independent of their typical toroidal
mode numbers. As the typical torcidal mode num-
bers increase, the modes become more unstable and

more radially localized. and have a stronger toroidal

node coupling through the normal maguetic curva-
ture due to hebeity. Compared to the interchange
modes with low toroidal mode numnmbers shown in
Fig. 11. iuterchange modes with moderate toroidal
mode numbers {shown in Fig. 12) and ballooning
modes with fairly high toroidal mode numbers (shown
in Fig. 13) are significantly localized in the radial di-

red Tion.

Tu order to mvestigate those results in Sec. III B
and € more carefully. two different auxiliary equi-
libria were introduced. created by changing only the
boundary shape of the original equilibria. One is a
toroidicity-dominant equilibrium and the other is a
Lielicity-dominant equilibrium. Both auxiliary equi-
libiia have quite similar local structures of the lo-
cal magnetic shear and the normal magnetic cur-
vature to those in the original equilibria, and are
more Mercier unstable than the original equilibria, as
showun in Fig. 2 by the dashed curves. In spite of dif-
ference of the violated level of the Mercier criterion,
naiely, the magnitude of negative Djs, those two
toroidicity-dominant equilibria and the two helicity-
dominrant equilibria produced qualitatively the same
results. respectively. Therefore. thought to be guite
reasonable are the categorization of the equilibria into
torowdicity-dominant and helicity-dominant Mercier-
unstable equilibria according to the degree of the re-
duction of the local magnetic shear by the Shafra-
nov shift. and the resultant behavior of the pressure-
driven modes in the both types of Mercier-unstable

equilibria.

IV. CONCLUSION AND DISCUSSION

By means of glohal mode analysis of ideal MHD
mades for Mercier-unstable equilibria in a planar axis
L = 2/AM = 10 heliotron/torsatron system with an

inherenily large Shafranov shift, the conjecture from
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local mode analysis for Mercier-unstable equilibria?
has been investigated and the properties of pressure-
driven modes, namely, ballooning modes and inter-
change modes, inherent te such three-dimensional
systems have been clarified.

Trom the viewpoint of the ideal MHD stability, a
vacuum configuration of a planar axis L = 2/M =
10 heliotron/torsatron system is helicity-dominant.
which comes from the helical coils. Both the lo-
cal magnetic shear and normal magnetic curvature
are mainly determined by helicity.!? The charac-
teristics of the finite-3 equilibria in the planar axis
L =2/M = 10 heliotron/torsatron system are deter-
mined by an essentially axisymmetric large Shafra-
nov shift."”? The change in the local structures of
the local magnetic shear (integrated along the mag-
netic field line} and the normal magnetic curvature
by the Shafranov shift is related to toroidicity. The
Shafranov shift reduces the (integrated) local mag-
netic shear on the outside of the torus, leading to the
reduction of the field line bending stabilizing effect on
ballooning modes. On the other hand, the Shafranov
shift enhances (reduces) the local unfavorable normal
magnetic curvature on the inner (outer) side of the
torus.

According to the degree of the reduction of
the local magnetic shear by the Shafranov shift,
the Mercier-unstable equilibria in a planar axis
L = 2/M =

tem can be categorized into two types, namely,

10 heliotron/torsatron sys-

toroidicity-dominant Mercier-unstable equilibria and
helicity-dominant Mercier-unstable equilibria. The
toroidicity-dominant Mercier-unstable equilibria are
characterized by properties that the local magnetic
shear is strongly reduced by a relatively large Shafra-
nov shift, so that ballooning modes are easily desta-
bilized. These equilibria are created with a peaked
pressure profile either with zero net toroidal cur-
rent or with net toroidal current such that the ro-
The helicity-

dominant Mercier-unstable equilibria are character-

tational tramsform increases slightly.

ized by properties that the local magnetic shear is not
reduced so much by a relatively small Shafranov shift,
so that ballooning modes are not easily destabilized.
These equilibria are created with a broad pressure
profile with zero net toroidal current. The toroidicity-
dominant Mercier-unstable equilibria tend to be more
Mercier stable than the helicity-dominant Mercier-
unstable equilibria, for the same 3 value at the mag-
netic axis, because the average magnetic curvature
due to the Shafranov shift is favorable (unfavorable)
in the region where the pressure gradient is large. for
the former (latter) equilibria.

Since the local magnetic curvature due to helie-
ity has the same period M in the toroidal direc-
tion as the toroidal field period of the equilibria,
the characteristics of the pressure-driven modes in
such Mercier-unstable equilibria dramatically change
according to how much the local magnetic shear
is reduced (whether the equilibrium is toroidicify-
dominant or helicity-dominans) and also according to
the relative magnitude of the typical toroidal mode
nuwnbers n of the perturbations compared with the
toroidal field period 3f of the equilibria.

For the toreidicity-dominant Mercier-unstable
equilibria. the pressure-driven modes change from in-
terchange modes with negligible toroidal mode cou-
pling for low toroidal mode numbers n < Af, to
tokamak-like poloidally localized ballooning modes
with weak toroidal mode coupling for moderate
toroidal mode numbers n ~ M, and finally to both
poloidally and toroidally localized ballooning modes
purely inherent to three-dimensional systems with
strong poloidal and toroidal mode couplings for fairly
high toroidal mode numbers » >» M. Strong toroidal
mode coupling, in cooperation with the poloidal
mode coupling, makes the perturbation localize to
flux tubes.

For the helicity-dominant Mercier-unstable equi-
libria, the pressure-driven modes change from inter-
change modes, with negligible toroidal mode cou-

pling for n < M or with weak toroidal mode
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coupling for n ~ AL, directly to poloidally and
toroidally localized ballooning modes purely inher-
ent to three-dimensional systems with strong poloidal

and toroidal mode couplings for n > Al

Since the equilibria are Mercier unstable, inter-
change modes with low toroidal mode numbers n <
M. experiencing the unfavorable magnetic curvature
with its local structure averaged out, occur for both
toroidicity-dominant and helicity-dominant equilib-
ria. For fairly high toroidal mode numbers n 3» Af,
the perturbations can feel the fine local structure
of the maguetic curvature due to helicity and also
the local magnetic shear is reduced more or less in
both types of equilibria, and consequently poloidally
and toroidally localized ballooning modes inherent to
thiree-dimensional systems are destabilized for both
toroidicity-dominant and helicity-dominant Mercier-
unstable equilibria. The situation for moderate
toroidal mode numbers n ~ A is different between
toroidicity-dominant and helicity-dominant equilib-
ria. The local magnetic shear is more reduced
in toroidicity-dominant Mercier-unstable equilibria
than in helicity-dominant Mercier-unstable equilib-
ria, and also the modes with moderate toroidal mode
numbers n ~ Af can not feel the local structure of
the normal magnetic curvature due to helicity effec-
tively. Thus, tokamak-like poloidally localized bal-
looning modes with a weak toroidal mode coupling
can be easily destabilized for toroidicity-dominant
Mercier-unstable equilibria. and interchange modes.
driven by the average unfavorable magnetic curva-
ture and not experiencing the effect of toroidal mode
coupling, can be destabilized for helicity-dominant
Mercier-unstable equilibria. Since the normal mag-
netic curvature becomes more unfavorable on the in-
ner side of the torus than on the outer side of the
torus by the Shafranov shift, the interchange modes
are localized on the inner side of the torus for both
types of equilibria. This type of interchange mode
is anti-ballooning with respect to the poloidal mode
coupling.

In both types of Mercier-unstable equilibria. the
pressure-driven modes — ballooning modes and inter-
change modes — become more unstable and more lo-
calized both on flux tubes and in the radial direction,
and have stronger toroidal mode coupling through
the normal magnetic curvature due to helicity, as the
typical toroidal mode numbers increase. Thus, we
can expect that ballooning modes localized in one
toroidal field period. as suggested in Ref. 2. may oc-
cur with very narrower radial extent and more unsta-
ble eigenvalues, as the typical toroidal mode numbers
become larger and larger. Al of these properties of
the pressure-driven modes in two types of Mercier-

unstable equilibria are quite consistent with the coxn-

jecture from local mode analysis given in Ref. 2.

For a particular MHD equilibrium, many unsta-
ble eigenmodes coexist, which comes from the differ-
ence of both the number of nodes in the radial di-
rection and mode couplings in both the poloidal and
toroidal direciions. Since the interchange modes basi-
cally localize along mode rational magnetic field lines
driven by the average favorable magnetic curvature.
the toroidal mode coupling merely influences the lo-
calization in both the poloidal and toroidal directious
but does not have an essential effect on the magnitude
of the eigenvalues. This might have a possibility o
lead to the existence of a narrow continuous unstable
spectrum or a quasi-point unstable spectrum31*12,
In contrast, the ballooning modes basically localize
near the locally unfavorable magnetic curvature. so
that toroidal mode coupling significantly influences
the eigenvalues of the ballooning modes. Thus. bal-
looning modes in three-dimensional systems rmight
be unable to have a continuous unstable spectrum
or a quasi-point unstable spectrum, except perhaps
for case with extrenely Ligh toroidal mode numbers
n — 0.

In the Mercier-stable equilibria, only ballooning
modes inherent to three-dimensional equilibria are

expected from the local mode analysis?. These types



of equilibria usually have a shearless region, where
the field line bending stabilizing effects are weak
even for off-resorrant modes, if the degree of the off-
resonance is small. Also, the formalism of the high-
mode-numzber ballooning modes breaks down there.
Thus. the possibility for infernal modes'® to occur
must be investigated, which may determine the typ-
ical lowest toroidal mode numbers of the perturba-
tion in the Mercier-stable equilibria. (On the other
hand, the typical highest toroidal mode numbers of
the perturbation would be determined by kinetic ef-
fects, namely, the finite Larmor radius effects.

A detail analysis of a continuous unstable spectrum
or a quasi-point unstable spectrum, and global mode
analysis of Mercier-stable equilibria, and also the sta-
bilizing effects due to the finite Larmor radins will be

reported elsewhere.
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FIGURE CAPTIONS

Fig. 1 Schemartic pictures of the level surfaces for un-
stable eigenvalues ~* (< 0) in (¢ 8. a) space for (a) a
AMercier-unstable three-dimensional equilibrium. and

(b) a Mercier-stable three-dimensional equilibrium.

Fig. 2 Global rotational transform ¢, global magnetic
din+

dln e’
age magnetic well or hill) index V7, and Mercier crite-

average magnetic curvature (aver-

rion parameter Dy, all as functions of the normalized
minor radius ryx = /o'y. The upper (lower) graphs
are for the toroidicity-dominant {helicity-dominant)
Mercier-unstable equilibrium. For both equilibria.
quantities corresponding to the vacuum configuration
are drawn by dashed-and-dotted curves. Quantities
drawn by dashed curves correspond to the modified

equilibria mentioned in Sec. III C.

Fig. 3 (a) Equally spaced (¢ ) mesh. (b} contours of
the local magunetic shear §, and (c) the normal mag-
netic curvature multiplied by the Jacobian ,/gx™, on
the vertically elongated (1st column) and horizon-
tally elongated {2nd column) poloidal cross sections
for the vacuum configuration. Thin (thick) curves in
the contours of § indicate the negative (positive)} re-
gion. Thin and thick curves in the contours of \/gx"
indicate the locally unfavorable and locally favorable
normal magnetic curvature regions, respectively. In
the vacuum configuration. both the local magnetic
shear and normal magnetic curvature are determined
by helicity. The normal magnetic curvature is more
unfavorable on the outside of the torus than on the

inside of the torus.

Fig. 4 Same quantities as in Fig. 3 for the toroidicity-
dominant Mercier-unstable equilibrium with a rela-
tively large Shafranov shift. For each graph, the same
contour level as one in Fig. 3 is used. Compared with
the vacuum configuration shown in Fig. 3, the local
magnetic shear is strongly reduced on the outer side

of the torus. especially at the horizountally elongated

poloidal cross section. Note that the Shafranov shift
makes the normal magnetic curvature to be more un-
favorable on the inside of the torus than on the out-

side of the torus.

Fig. 5 Same guantities as in Figs. 3 and 4 for the
heliaty-dominant Mercier-unstable equilibrium with
a relatively small Shafranov shift. For each graph.
the same contour level as one in Fig. 3 is used as well
as in Fig. 4. Compared with the toroidicity-dominant
Alercier-unstable equilibrium, the reduction of the lo-
cal magnetic shear on the outer side of the torus is
weaker. Just as in the torcidicity-dominant Mercier-
unstable equilibrium. the normal magnetic curvature
is more unfavorable on the inside of the torus than

on the outside of the torus.

Fig. 6 {a) Plus signs denote the selected Fourier
modes (m.,n.) from the Fourier space of the equi-
librinm. to make the perturbation together with the
phase factor. Here, M7 = 186 and the rectangular
box {10 € n./M < 10, 0 € m, < 30) indicates
the Fourier space to construct the equilibrium. (b)
Resultant Fourier modes of the perturbation (m,n},
which are obtained according to Eq. (12) by using the
selected Fourler modes (m,, n, } givenin Fig. 6(a) and
the phase factor (M, Np) = (38.22). The broad plus
sign shows the position of the phase factor, and the

toral number of the Fourier wnodes is M, = 371.

Fig. 7 Same quantities as in Fig. 6 for M, = 336
and (M, V) = (133,77). Thus. M, = 671

Fig. 8 (a) Radial distribution of the Fourier com-
ponents of the normal displacement 5 - Vg with the
dominant toroidal mode number, and the correspond-
ing contours of the perturbed pressure P = ~VP - é’
on the vertically (b} and horizontally (c) elongated
Herve, (M, N} = (5.3),
M, =76, My = 151, Ns = 240, AS = 4.2 x 1073,
and {r'x] = [0.08.0.94)].
—4.99 x 1073,

poloidal cross sections.

The eigenvalue is .2 =
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Fig. 9 The same quantities as in Fig. 8 for
(Mp, N,}) = (38,22), M = 186, M, = 371,
Ns = 660, AS = 1.5 x 1073, and [¢'»] = [0.1,0.9],
where the Fourier modes shown in Fig. 6 are used.
There are three groups of Fourier modes with dif-
ferent toroidal mode numbers, and each group con-
sists of Fourier modes with different poloidal mode
numbers due to poloidal mode coupling. Here, the
group with n = 32 is most dominant and the toroidal
mode coupling is weak, leading to 2 tokamak-like
poloidally localized ballooning mode. The eigenvalue
2 = —1.89 x 1073, whose absolute value is larger

than that in Fig. 8.

is w

Fig. 10 {a) Radial distribution of the Fourler com-
ponents of the normal displacement f - V7 with the
dominant toroidal mode numbers, and correspond-
ing contours of the perturbed pressure P=-vP. E
on the vertically (b} and horizontally {c) elongated
poloidal cross sections, and (d) on the {4, ) plane at
rx = 0.734. Here, (M, N,) = (342,198), M, = 397,
My = 793, Ng = 1840, AS = 54 x 107%, and
{¢¥'x] = [0.39,0.66]. The eight groups have different
toroidal mode numbers and comparable magnitude,
which leads to poloidally and toroidally localized bal-

looning structure. The outer side of the torus at the

horizontally (vertically) elongated poloidal cross sec-
tion is a locally unfavorable (favorable) curvature re-
gion; thus, the perturbed pressure existing on the
outer side of the torus for the horizontally elongated
poloidal cross section disappears on the outer side of
the torus for the vertically elongated poloidal cross
section. The eigenvalue is w? = —6.32 x 1073, whose

absolute value is larger than that in Fig. 9.

Fig. 11 (a) Radial distribution of the Fourier com-
ponents of the normal displacement f - Vi with their
dominant toroidal mode numbers for the case when
the origin of the poloidal angle is on the outer side of
the torus. (b) Same quantity, when the origin of the
poloidal angle is shifted from the outer side to the
inner side of the torus in order to clarify the poloidal

localization, and the corresponding contours of the
perturbed pressure P=-vPpP. E on the vertically
(c) and horizontally {d) elongated poloidal cross sec-
tions. Heve, (Mp, Np) = (7,4), M, =62, My, = 123,
Ng =300, AS§ =3.3 x 1073, and [¢n] = [0.01,0.98].
The eigenvalue is w? = —3.07 x 1073,

Fig. 12 The same quantities as in Fig. 9 for
(Mp, Np) = (38,22), M, = 186, My = 371, N5 =
660. AS = 1.5 x 1072, and [¢n] = [0.1.0.9]. The
eigenvalue is w? = —5.26x 10~3, whose absolute value

is larger than that in Fig. 11.

Fig. 13 (2) Radial distribution of the Fourier com-
portents of the normal displacement 5_. - Vi with their
dominant toroidal mode numbers for the case when
the origin of the poloidal angle is on the outer side
of the torus, and the corresponding contours of the
perturbed pressure P = —VP - £ on the vertically
(b) and borizontally {c) elongated poloidal cross sec-
tions, and (d) on the (#,({) plane at ry = 0.802.
Here, (M, Np) = (133,77), M;, = 336, M = 671,
N5 =1380, AS = 7.2x 107, and [¢x] = [0.36.0.87].
The eigenvalue is w? = —6.39 x 10~%, whose absolute

value is larger than that in Fig. 12.
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