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Abstract

A new numerical scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase
space is described. At each time step, the distribution function and its first derivatives are advected in
phase space by the Cubic Interpolated Propagation (CIP) scheme. Although a cell within grid points is
interpolated by a cubic-polynomial, any matrix solutions are not required. The scheme guarantees the
exact conservation of the mass. The numerical results show good agreement with the theory. Even if
we reduce the number of grid points in v-direction, the scheme still give the stable, accurate and
reasonable resuits with memory storage comparable to particle simulations. Owing to this fact, the
scheme has succeeded 1o be generalized in a straightforward way to deal with the six-dimensional, or

full-dimensional problems.
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1. Introduction.

In recent years, various numerical methods have
been used for solving the nonlinear Vlasov equation
and these methods are roughly divided.into two classes.
One numerical approach is the particle method that
directly follows the trajectories of particles, such as the
PIC method (see for review [1,2] ). This method has
been considered to be quite stable even if only few
computational particles are used. Therefore, recent
higher dimensional simulations have been performed
with this scheme. On the other hand, it is known that
this scheme essentially involves some serious
disadvantages stemming from statistical numerical
noise particularly when detailed structure of
distribution is needed for the purpose of transport
phenomena like viscosity and heat conduction and for
atomic processes.

Another approach is the Eulerian method that uses
a hyper-dimensional computational mesh in phase
space and the time integration of the distribution
function is carried out on each computational mesh
point with the help of Fourier — Fourier transformn{3],
Fourier — Hermite transform[4,5], and splitting
method[6]. Because these methods don’t involve any
source of the statistical noise intrinsic to the particle
methods and the profile of the distribution function is
stored equally, this numerical approach is more suitable
for the simulations in which the particle distribution in
a certain velocity region plays an important role [7,8,9].
However, since this method covers all the phase space
with grid points, the memory storage and computation

time rapidly increases as N®, N being the grid point

needed in one-dimension. With the conventional

algorithm, this N has not been sufficiently small
leaving the six-dimensional simulation in merely a
world of dream. However recent development of
numerical algorithm for hyperbolic system has a
possibility to bring this dream into reality.

The Cubic Interpolated Propagation (CIP) scheme
is a novel unified numerical scheme developed by
Yabe et al.[10-13] for the solving hyperbolic equations.
The CIP scheme is a low diffusion and stable scheme,
and can solve the hyperbolic equations by the 3rd order
accuracy both in time and space [14], and this scheme
has been successfully applied to various complex fluid
flow problems, covering both compressible and
incompressible flow, such as laser-induced evaporation
[t5], shock wave generation, elastic-plastic flow,
bubble collapse and so on (see for review [16]). In the
CIP scheme first spatial derivatives are introduced as
free parameters on each grid point and the time
evolution of the derivatives is calculated from the
spatial derivatives of a model equation which is
consistent with the master equation. Thus, the
coefficients of the cubic-polynomial are analytically
determined from the physical values and these first
derivatives on the neighboring two grid points without
any matrix solutions. These facts allow us to easily
extend the scheme to hyper-dimensional scheme and
solve hyperbolic equations with lower computational
effort. Furthermore, the CIP scheme can carry out
stable and accurate calculations even if the number of
employed computational mesh points is comparatively
small. Therefore, it would be very interesting to apply
the CIP scheme to the hyper-dimensional Vlasov



equation and examine a possibility of six-dimensional
simulation by the present scheme.

This paper presents one possibility to directly
simulate the six-dimensional grid system. In section 2,
we describe a brief introduction of the CIP scheme and
a new numerical technique for calculation of spatial
derivatives in  hyper-dimensional CIP scheme.
Furthermore, we prove that the present CIP scheme
exactly conserves total mass in the solution of the

Vlasov equation and show a numerical stability and

accuracy by some test runs. In section 3, some
examples including simulations in two and four-
dimensional phase space are represented. In section 4,
we actually show a solution of the six-dimensional
Vlasov-Poisson equation, and we give a prospect of a
simulation in six-dimensional phase space together
with conclusion.

2. Numerical Procedure

In this paper, we treat the following normalized
one-species collisionless Vlasov-Poisson system;
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where f = f(x,y,z,v,,v,,v,) and E=(£_E_E,) are
the dimensionless distribution function and
electric field, respectively. Time is measured in
the wunit of the inverse plasma frequency
o) = (an,le'n,)'"?, length in the unit of the Debye

length 2, =(&,7,/¢%n,)"* and velocity in the
unit of the
Vi = 0,45 = (KT, fm)"?.

background with uniform density (indicated by
“1” on the right hand side of Eq.(2) ) is assumed.

Since the Vlasov equation (1) is merely advection
equation in six-dimensional phase space, obviously it
is possible that the CIP scheme is directly applied to
the Viasov - Poisson system.

thermal velocity
In this model, an ion

2.1. Basic Principle of the CIP Scheme.

In this section, the CIP scheme is biefly reviewed
by the use of a simple one-dimensional hyperbolic
equation:

of 10t +vof 13x =0. (3)

If the velocity v is constant, the theoretical solution of
Eq.3) is obtained by shifting a profile

like f(x,t+Af) = f(x—vAtf). Similarly even if
the velocity is not constant, an approximate solution
can be given by

St + AN = fx; —vALL), C))

where x;is the grid point. Equation (4) represents a

simple translation of profiles with a velocity v. The
initial profile (solid line in Fig.1(a)) moves like a
dashed line in a continuous representation. At this time,
the solution at grid points is denoted by closed circles
and is the same as the exact solution. However, if we
eliminate the dashed line as in Fig.1(b), it is hard to
imagine the original profile and one may incline to
retrieve the original profile like that shown by solid
line in Fig.1(c). Thus, numerical diffusion arises when
we construct the profile by the linear interpolation even
with the exact solution as shown in Fig.1(c). This
process is the first-order upwind scheme. On the other
hand, if we use quadratic polynomial for interpolation,
it suffers from overshooting. This process is the Lax-
Wendroff scheme or Leith scheme,

What made this solution worse? For this reason,
we have neglected the behavior of the solution inside
grid cell and merely follow after the smoothness of the
solution. Therefore, we should consider how to
incorpolate the real solution into the profile within a
grid cell. We propose to approximate the profile as
shown below. Let us differentiate Eq.(3) with spatial
variable x;then we get

80,1 0t+va0, f)lox=0, (5)

where O, f abbreviates &f /0x . Equation (5) is the
special case of the CIP method in which velocity v is
independent of x. As will be shown later, the Vlasov
equation is such a simple case. Thus in the simplest
case, Eq.{5) coincides with Eq.(3) and represents the
propagation of spatial derivative 3, f with a velocity
v. By this equation, we can trace the time evolution of

S and O,f on the basis of Eq.(3). If 8,1 is
predicted as shown by the arrows in Fig.1(d) according
to Eq.(5), the profile after one step is limited to a
specific profile. It is easy to imagine that by this
limitation, the solution becomes very closer to the
initial profile.

If two values f and O,f are given at

neighboring two grid points, the profile between these
points can be described by the cubic polynomial
function such as

F(x)=A, X +42,X*+0,f, X+ f, (6



where X =x-—x  The coefficients of Eq. (6), Al,

and A2,

function and its first derivative is continuous at the
both ends:

are determined so that the interpolation

Fx)=f,. (F /&), =8.f, (7

‘F;(xmp) = j:up ? (6F: /ax x= = ax.f;up (8)

where fup =1+ sgn(—v,At) and sgn(a) means the

sign of a. As a result of above simultaneous equations,
we have

1= (8,1, +0,0,)/ 8% + 20/, = f,,)] % )
2, =-(28.f +3 f, ) Ax, =3 f — f.) A%} (10)

agp fup

where Ax, =x, —X. After all, advected profile is
given by

fn-rl= ( §)=A1,§3+,42 —2+a fn§+j.,"s (11)
e =(oF 18x),_, . =348+ 242,840, 17, (12)

where & =—v Af and the superscript “»” indicates

the time. In the CIP scheme, matrix solutions for the
interpolation like that used in conventional spline is not
required at all and the interpolated function can be
determined explicitly by using values at neighboring
two grid points only. Thus, the scheme can effectively
reduce computational cost and suits parailel
computations. Here we point out that only Eq. (3) is

used to derive Eq. (5) and therefore the gradient &, f

in the CIP scheme reflects the physical model written
by Eq. (3) differently from one in the spline scheme.
Because of this fact, we can expect that interpolated
profiles in the CIP scheme are consistent with Eq. (3)
10 a certain extent.

2.2 Extension of the CIP Scheme to Higher
Dimensions.

There exist two methods to extend the one-
dimensional CIP to higher dimensions. One is to
construct the interpolation profile directly in multi-
dimensions[13,17} and to shift the profile in the
direction of the velocity vector. However, the cubic
polynomial in six-dimensions may not always
guarantee the mass conservation that will be discussed
later on and may not be worthy for the hard effort of
constructing the profile. Another method is to use the
technique known as fractional step. We shall use the
latter in this paper because of its simplicity and
extendability to six dimensions.

For example, let us show two-dimensional case:

of 18t +v,0f /ox+v,0f 18y = 0. (13)
where v and v are the velocities in the x- and y-

direction. By the fractional step technique, the solution
of Eq.{13) is split into

fr=Lx)f;
fg"+] - L(y)}:;

(14a)
(14b)

where L{A) is an operator of any scheme which
gives the solution of the equation;

of lot+v,8f /0A=0. (15)

Here, we have to pay some attention to the solution of
Eqgs.(14), because the CIP scheme needs the
information of the spatial derivatives. In solving
Eq.(14b), (11) and (12) can be directly applied to the y
direction with the aid of Eqgs. (9) and (10), simply
replacing x by y. However, the spatial derivative in the

y-direction & f

, 1s not yet known because in the

solution of Eq.(14a) only 5,};
to Eq.(12). Therefore, some method is required to

is obtained according

estimate 6y £l although it is automatically calculated
in fully multi-dimensional advection without fractional
splitting. In order to clarify the computing procedure,
let us introduce the “CIP operator™ C(A,Af) which
means the CIP solution of Eq.(15) by the Egs. (9), (10),
(11) and (12) after Af time interval. By using this
expression, Eq.(13) can be symbolically written as

£y I

T =CAy T | e
.ty Z

5,,?; = S(x,y,A)3, fyf‘, (a7n
-f;{!+1 ﬁn

Lo l=CEAay T a®
g f' yy
A, 17 =S(y.x, AN, fF,  (19)

where S(&, 5, At) represents an operator which gives
the solution of the equation

J l
E(ﬁﬁf):_%(vaaaf)

which is derived from Eq.(15) by simply taking its

(20a)



derivative. To calculate Eq.(20a), many methods can be
employed. In the previous paper[11], we applied the
simplest one, the first-order upwind scheme to the
equation

&
E(aﬁf)']-

which is an alternative form of Eq.(20a). However, the
result was far from that with the direct multi-
dimensional scheme and the deformation was quite
large. Here, we propose a new scheme which uses
simple centered finite difference approach to Eq.(20a)
instead of Eq.(20b), and thus Eqgs.(17) and (19) are put
into

(20b)

g &v
Ve E(ﬁﬂf)= >

o5

ayﬁf =067 —At(v,; xEr}H = V- xax%;'}_x (21a)
x11+Iaxf1; 1~ Vgl B, 1J~1)/4AY
and
05" = 0.8 - vy AL v BENS . 1)
F Vi ;fol:i; ya— uayf;nlj)m’Ax

As shown in the next section, this method exactly
guarantees mass conservation law in phase space.

2.3 Mass Conservation Law.

Here, we shall prove that the present method
exactly guarantees the mass conservation law in the
solution of the Vlasov equation. Let us use a two
dimensional equation represented by Eq.(13) with
periodic boundary condition for this purpose. We can

assume that the velocities v, and v, do not depend

on the variable x and y, respectively but v_can be a

function of y for example. This is the characteristic of
the Vlasov equation in phase space. After one time step,
according to Eqs.(11), (12} and (21), physical variables
and it’s spatial dertvatives are written as

f =A1,E° + 42,87 v B, frE+ ), (22a)
B.f; =341, +242 Eve fr.  (22b)
avf:;‘ = Oyftf At(vx 1 J*ioxf‘l I+l vx,:,riaxf;:ml, (22C)
xljviaxfinJH le—lefil,‘j—l)/&IAy
and

S =Bl + B2,y + 8, fry+ £ (233)

B, /7" =3Bl 2" +282 x40 fI, (23b)
axfljvl - axf;Jn At("ywl I xfII:-T; ya-L3 yfn % (230)
+vy;~lja‘xf:l+; yx Li yf;“:‘j)//_]_Ax

where &=y _ ALY TV, ;A and coefficients Al
A2,, Bl,6 and B2,

b

U’

are given by applying Egs.(9),

(10) to x- and y-direction:

Ay =@, 1] +8, fu VAT + 2] - fin Yax}  (24a)
A2, =—(20,f7 + 8, fu, ) Ax, = 3(f ~ fi, ;) Ax} (24D)

Bl =@,/ +8,f ) &y] +2(f7
=—(20,

- fro)ayt (252)
17+ 0, F ) B9, = 37" ~ Flip )/ By} (25)

where
tup =i—sgn(v, A1), jup = j —sgn(v,Ar),
Ax, =x,, —x,and Ay, =V =Y,
The mass conservation of the present method can

be examined by taking a summation of Eqs.(22) and
(23) over the entire computational domain. Since

SO S
ZBIJJ = 226),};" aﬂd Zqu = ﬁ}Zayzjn , We Obta.in
i j 7 5

ny‘" = 2(25"3 —38 + EHAxY B, f7 +Z 7 (26a)

30,77 = (68 -6 +1)Y 8, £ > (26b)

| Zayi,-uzayﬁ;l (26¢)
and ! ’

T =0 -3 DT, 1 L5 T

Za,ﬁ-f“ ;Za, 27b)

Za "*‘—(;;22-62+1)Zayj;, (27¢)

where £=E/Ax, 7= y/Ay. Obviously, if the
summations of derivatives satisfy a condition

Za Za f, =0,

Eqs.(26a) and (27a) lead to exact conservation form
Z net Z £ Furthermore, as a result of Egs.(26b),

(28)

(26c) (27b) and (27c). Za £ andZa £ are

rewritten as
}:c =682 -6f+ )Y 0, £ (299)
8L = (63— 61+ 1)y 8,E"
23,8 2.0.5 29)

=63’ —6% + 1)y o 17
St '
i

Therefore if a relation



So=Te,s-0 G0

holds for the initial condition of computation, then the
condition Eq.(28) is always satisfied according to
Eqgs.(29) and the total mass is exactly conserved at
each time step. The condition (28) must be a

discretized expression of the continuity of f{x, y.f),

f@f {x,y,0)dx = j.é}.f(x, yv.)dy =0. (1)

Therefore, the condition (28) is considered to be a
reasonable requirement from the view point of physics.

If initial values of Z, f and &, f are given by

é)xj:f =(Jlj.]‘1 - ,?LJ)IZAX and
Bfy =(fou =128y, (D)

the condition (28) can be automatically satisfied.
In addition to this, even if Eq.(28) does not hold
initially, we can prove that the mass conservation is

quickly recovered. If we restrict Af such that
0<&<l and 0< $ <1 (which corresponds to

Ax > suplvx\ - At and Ay > sup|vy| -AL

respectively), a function ®(a)=6a’ ~6a+1
which appears in Egs.(29a) and (29b) is always less
than unity and the following relations hold;

>ar) G

1

<. < <

- J1+ 01
12 af,
i

o mel
> )
I
and

<< < L)

lzc?,f;"*”

Yo <Paty

Therefore, even if the condition (28) is broken
for initial condition, the summations ZBI £

and Za ,f, rapidiy vanish in the course of time
7

and the scheme guarantees conservation of total mass

after Eq.(28) is established.

Besides the mass conservation, this scheme can
provide quite a symmetrical result even if it uses
fractional step. This scheme is fested by the two-
dimensional solid body rotation problem called as
Zalesak’s solid-body problem{18]. Figure 2(a) shows
the schematic view of this test problem. The value of

f inside the cut-off cylinder is 1.0, while outside
f =0.0 and the solid-body rotates with a constant
angular velocity @ = 27 . The other computational

conditions are all the same as those in Zalesak’s test
run. Figures 2(b) and Fig. 2(c) show profiles after one
complete revolution. For comparison, the numerical
result of spline interpolation method is also shown. In

Fig.2(b), the contour of f is plotted from f = 0.1

to f =1.2 with increments of 0.1. In the result of
spline scheme, the numerical oscillation and diffusion
arise and the severe deformation of the upper part is
observed, while the present scheme gives a stable and
less diffusive resuit and restores well the shape of the
initial profiles. The present scheme has conserved total

mass exactly and the relative error was 107, we
should also mention the computation time. In the spline
method, a tridiagonal matrix must be solved in each
direction and this would be disadvantageous to parallel
computation, while the CIP method suits paraile]
computation since the scheme is explicit. In the case of
Fig.2, the solution of the ftridiagonal matrix is
straightforward by the use of Gaussian elimination and
is quite fast if the boundary is fixed. Even in this case,
the CIP method is twice as fast as the spline method
(total computation times of the CIP and spline code by
a VT-Alpha PC 500AXP were 38.04s and 76.12s,
respectively). For the periodic boundary condition
employed in many examples given later, the spline
method becomes much slower compared with the CIP
method.

2.4 Splitting scheme.

In the CIP scheme, hyper-dimensional advection
term is split into a sequence of one-dimensional
advections in the each directions. When the
distribution function is advected in phase space
according to the Vlasov equation, it’s well known that
the trajectory of particles can be solved in the 2nd
order accuracy by using the technigue known as the
splifting method[6]. The Vlasov equation is split into
three steps and this procedure is represented by

£ (xv)=f"(x—VvAt/2,v) (35)
ffEv =1 (xv+E @A) (36)
V)= T (x-vAL/2,v) (37

At the first step, the distribution function is advected in
the spatial direction for a half time interval Ar/2. At
the next step, the electrical field E™ is solved

according to the Poisson equation using the value f “of
previous step and f is advected in the velocity
direction for a time interval Af. At the last step, the

distribution function f is advected in the spatial

direction for Af /2 again. The orders of advections in
each step are quite arbitrary. By a sequential



substitution of Eq.(37) and Eq.(36) into Eq.(35), the
series of the advections are expressed as

Frixov) = £lix—var/ 2, v+ AET (D)) = (X, %), (38)

where T=Xx—vVAf/2. In the above relation, the
arguments of the right hand side /",

2
ixx~vA[+%E*(‘c) and

V=v+AE (1), (39

corresponds to a form of the time integration of the
particle motion. We introduce X(Z) as a real particle

trajectory and then E (T) can be regarded as an
approximation of E(X(f),f) with the first order

accuracy in time. Therefore, X and V are considered
to be equal to a particle trajectory with the 2nd order
accuracy in time.

3. Numerical Results.

In this section, some numerical results are
described below to demonstrate the accuracy and
efficiency of the present method. Especially, we should
emphasize a merit of the computational cost; required
grid points can be suppressed by using the present
method. This fact plays a very important role for the
solution of the hyper-dimensional phase space. In
reality, reducing the grid point by two in one-direction

can get rid of 27 =128 reduction of computational
effort in six-dimensional space and time.

3.1 Two - Dimensional Phase Space.

In order to show the numerical features, first we
shall treat the simplest case in two dimensional phase

space composed of space x and velocity v _[19]. The

Vlasov-Poisson equation, Egs.(1) and (2) are rewritten
as

of(x,v 1)/ ot+v of(x,v_,t)}/0x
-E, (x,0f(x,v, . t)/dv, =0,

» ¥y

(40)

and

oE. [ox =1- If(x,vx,t)dvx. (41)

We use the Cartesian mesh to represent the x-v
phase space with the computational

domain R ={(x,v,)|0 < x < L,| v, [<v, } ,where

L is the spatial periodic length and Vs 1s the cutoff

velocity. The number of mesh points used in x and v,

directions is designated by N and 2M respectively.
The recurrence effect, the Landau damping and the two
stream instability are examined.

A. Recurrence effect for the free-streaming case.
The first example is the recurrence effect for the
free-streaming equation which is the advection

equation in phase space when £, = 0 in Eq.(40):

Bf (x,v,,0)/ &t +v Bf (x,v_,0)/ 8x = 0. (42)
The initial condition is
F(x,v,.0) =1/ 2r exp(—v?/2)- Acosk_x 43)
where A=0.1, £ =05, L=4r, Vs =4.0.

The solution of the free-streaming equation is given
by:

fev,)=fx-vitv.,0) @9
According to Eq.(43) and Eq.(44), the electron density
p(x,t) is obtained by analytically integrating f
over Vv space,

P = [ f(xv,0dv, = exp(-kit*) dcos(k,x).  (45)

On the other hand, the density is numerically obtained:

M-l M-t
o) = Zf(x, v, AV, = Zf(x —v, 5y, .t =0)Ay,

J=—M J==M

= AAv, MZ‘ fov,Yeostk.x—(j+ %)Avxt) (46)
J=M

Equation (46) is a summation of periodic functions in
time and the density is restored to the initial value at
the recurrence time T, =2z /Av k, [6]. Figure 3
shows a computational result with N=16 M=16. The
initial condition is recoverd at £=39.0 with the
amplitude 4 = (.0990, which agrees very well with
the theoretical value 7, =38.95 and 4 =0.1. The

total mass of the entire computational domain is
exactly conserved. Even if the number of mesh points

in the x-direction is reduced to N = &, the recurrence
effect is accurately realized and the recurrence time
is +=38.9. We should note the second equation in
Eq.(46) is the same as Eq.(4) and may not be always
satisfied in most of numerical algorithms because
x—v, ,f is not given at the grid point and thus we

need a method to interpolate it. Therefore, the accurate
realization of the recurrence is one of the



demonstrations of our method in advection equation.

B. Landau damping.
The second example is the Landau damping. The
Initial condition is

Flav, 0)=1/27 exp(—v2/2)(1+ Acosk,x)  (47)

with 4=0.01,k, =0.5,L=47andv, = 40. In
this case, according to Landau’s theory, the phase
velocity of the electric field is v, =2.83]12 and the

trapped particles are located in the tail of the
distribution function. Therefore, generaily it is hard to
solve this problem with such an initial condition by
using particle schemes like the PIC scheme.
Figure 4 shows the time evolution of the basic
Fourier component E, {(k =0.5,f) of the electric
field E, with N=32, M=16 and Af=1/8. The

amplitude of £ (0.5,1) decays exponentially in time
according to the theory of Landau damping and the

recurrence effect appears at around 7, = 48.7 which
is a theoretical recurrence time predicted from the free-
streaming case. The damping ratey and the

frequency @ of the oscillation are 0.1553 and 1.4211,
respectively and agree very well with the
corresponding theoretical values 0.1533 and 1.4156.
The total mass and energy are conserved except for the
one caused by roundoff errors and the relative errors

stay always less than about 1077 and107°,
respectively.

Secondly, we shall examine the effect of reduction
of the mesh points in v-direction. Figure 5 shows a
numerical result with M=8, reduced by half of Fig.4.
The Landau damping is computed clearly even with
such a coarse grid and the obtained numerical values of
y and @ are 0.1669 and 1.4436, respectively. The
agreement can be considered to be good enough,
especially if one keep in mind that we are using only
16 mesh points to describe the entire shape of the
distribution function in v-direction (which corresponds
to 48 “‘particles” per a spatial mesh point as far as
storage is concerned.). Figure 6 shows the dependence
of the numerically obtained y and @ values on the
mesh conditions in the v-direction. The dotted line and
solid line represent the ¥ and @, respectively, and
the relative error to the theoretical values are plotted in
the fogarithmic scale against M. While errors increase
with decreasing M, the » and @ have been
computed with reasonable accuracy even if extremely

few mesh points are employed such as M <10,

C. Strong nonlinear Landau damping.

When the initial amplitude increases, it is turned
into the strong nonlinear Landau damping which has
been computed by many authors{3,6,19,20]. The initial
condition is also given by Eq.(47)but with A =0.5,
k., =05, L=4r and v, =5.0. The numerical
result is shown in Figs.7, 8 and 9.

Figure 7 shows the time evolution of the first
three Fourier modes. Right after the computation
started, the higher modes £ ,(1,f) and £, (1.5,1)
are excited and reach their first maximum. The basic

E_(0.5,1) damps much more rapidly

(y =-0.280) than y, =~0.153 predicted by the
linear theory and reaches its first minimum at
t =15.3 which shows good agreement with other
calculations. Until # =15, the second and third mode
also damp with y=~0.584 and y =-0.991,
respectively which agree well with values calculated
by C. Z. Cheng and G. Knorr[6]. After =15 all

three modes grow exponentially until # = 40 and then
saturate. After the saturation, the amplitude of the basic

mode oscillates slowly with a period 7 =19.8 which
agrees  well  with the particle trapping time
T, =20.99 calculated from the first maximal value
of the basic mode at f = 41.2.

Figure 8 shows the time development of the
spatially integrated distribution function

mode

N
£ )= f(x,,v,,1)Ax. The frequency of the
=1

oscillation of the basic mode is estimated to be

@, =1.4 and the phase velocity of the electrostatic

wave is calculated to be v, =@, /k, =2.8. As
predicted by the quasilinear theory, a plateau appears
around the phase velocity of the electrostatic wave
v, at 1 =5.At £ =15 asmall bumps are formed at
the phase velocities of the modes and cause all of them

to grow. After =20, wrinkles appear and grow
rapidly on the main body of the distribution function.

The wavenumber agree well with &f/2z which is
considered to be due to the formed filamentation of the
distribution function. As waves grow, the hole in the
region 2.0 <v_<2.5 becomes deeper until =25,
Then it tends to be filled out unti! the saturation occurs
at =40,

Figure 9 shows the contour plots of the

distribution function in the region 1.5 <v, <5.0 and

only contours for f <1x10™" have been drawn.
Right after the computation started, particles are
accelerated by the electric field and the tail of the
distribution function is dragged out until #=20.



From =25 to f= 40, beginning of trapping the
accelerated particles and the appearance of formation

of the vortex around the phase velocity v, are

exhibited clearly. After t=40 until the end, the
trapped particles oscillates in the well of the
electrostatic wave and the vortex rotates with a period
which corresponds to the slow oscillation of the basic
mode after the saturation in Figs.7.

The time development of the distribution function
shows good agreement with a result by C. Z. Cheng
and G. Knorr[6]. We here used N =32, M =128
and At =1/8. The relative errors of the conservation
of the mass and energy stay always less than
1.0x107 and 2.0x107, respectively. These errors
stem from the escape of particles through the velocity
boundary. We have decreased Af to Af=1/16 and
the same results are obtained. We also have decreased
N to N =16 and results are roughly the same as
Figs.7 and the total mass is conserved again with the

refative error 1.0x 107 . This example demonstrates
that the CIP method can save the special grid points as
well as the velocity.

D. Two-stream instability.
We consider the symmetric two-stream instability
with initial condition
Flav 0= 1/2xv exp(—v2 /1 2)(1 - Acosk,x)  (48)
where 4 =0.05.4, =0.5,L =4randv,, =5.0.

First we used N=32, M=128 and At=1/8. The results
are shown in Figs.10, 11, 12 and 13. Figure 10 shows
the time development of distribution function in phase

space. At 7= 8.5, trapping and formation of a vortex

starts. From (=85 to =178, the instability
grows rapidly and a hole structure appears. After

t =18.0 until the end, trapped particles oscillate in
the electric field and the vortex rotates with 2 period
T =18. The time evolutions of the first three Fourier
modes of the electric field are depicted as solid curves

in Fig.11 where explanatory notes IEII, E2| and
|E3i indicate the amplitudes of F_ (k=0.5),

E (k=10) and E_(k=1.5), respectively. After
an initial transient phase, the first mode E1 grows
exponentiaily and reaches it’s first maximum
at? = 18.0, then saturates and slowly oscillates due to
the trapping of particles. Higher two modes £2, E3
also grow exponentially and oscillate but always
remain inferior to the first mode FET. In Fig.12, the
development of the electric field energy

W;‘,:l/Zzlf E (x.f)[* is plotted by the solid
Wc[

curve(a). grows mapidly from (=85 1o

t =17.8 and oscillates with a period of approximately
18. Conservation of the total mass and energy holds

with a relative error 2.3x10”° and 4.4x107,
respectively from beginning to end. Figure 13 shows
the time development of the spatially integrated
distribution function. The hole near the minimum

v, =0 is filled as time advances and the filling in of

the hole stops at =15 around which saturation of
| E1| occurs. After saturation wrinkles appear on the
body of the distribution function and remain until the
end of the computation. This growth of the wrinkles
indicates the progress of filamentations of the
distribution function.

Then, the mesh points in v-direction were
drastically reduced to M=24 and the evolution for the
same initial condition were examined. In Fig.11 and 12,
The time evolution of the first three modes and the
electric field energy are plotted by dotted curves. We
should emphasize that the evolution is quite similar to
the case with M=128 and particularly the behavior for

t <20 can not be distinguished even though 5 times
smaller numbers of grids are employed. In Figl2, after

saturation, the oscillation of We, is attenuated more
rapidiy and a period of the oscillation decreases by

about 8%. However, every modes and W, exhibit the

behavior which agree well with the results of M=128.
A profile of the distribution function at =20.0 is shown
in Figs.14. A hole structure appears clearly regardless
of M and a trapping of particles is shown as a vortex in
the hole structure. For comparison, numerical results of
the PIC method for the same initial condition with 72
“particles” per a spatial mesh point are shown in
Fig.12(dashed curve(c)) and Figs.14(c). Although this
number of particles corresponds to twice larger storage
than M=24 of the CIP, the electric field energy and the
distribution function in the phase space is poorly
described and unclear with the PIC method because of
the statistical noise of the particles. Therefore, at least
as far as the two-dimensional Vlasov equation
concerned, we think that the CIP can solve an entire
profile of the distribution function more accurately
with a lower computational cost.

We should not forget the pioneering preceding
works by the spline method. Although the two-stream
instability has been simulated by the spline method[6]
and has proved to work well, no information on the
distribution function were available. Therefore, we
made the program based on the spline method and
tested. Time evolution of electric fields were similar to
the other method and the CIP method. However, as
Fig.14(d) shows the distribution is not as good as the
CIP method. In order to quantitatively view the
behavior, we plot the cross section of distribution
function in Fig.15(b) at two points shown by thick
lines in Fig.15(a). We have compared several results



with the coarse and fine grids of the CIP, the coarse
and fine grids of the spline method and the PIC method
of 229500 particles which corresponds to 100 times
larger storage than the CIP method. This figure shows
that the distribution of the spline method has large
spikes and large negative value, which increase with
fine grids.

3.2 Four - Dimensional Phase Space.

Nextly. we extend the scheme to the four
dimensional phase space that consists of two spatial

directions x , y and its velocity
directions v, . v, (Appendix A). According to Eq.(1),

the four dimensional Vlasov - Poisson equation is
rewritten:

of(x,y.v v, 1)/ dt+v &f(x,¥.v_,v ,1)/x
v Of(x,y,v v, )/ By 49)
-E (%, y,Df(x,y,v .V ‘,t)/o‘v
-E Ly Df(x,y, v, v, /8y, =0
GE, /ox+0E, /oy =1- [[f(x,y.v,.v, . 0dv,dv, - (50)

We use the Cartesian mesh to represent the four
dimensional phase space with the computational
domain

R={(x=)’a\"= \)IO<X<L 0£y<L),

v Evee Liv [Evg}

where L and L, are the spatial periodic lengths in the

x and y directions, respectively, v . andv, . are the

cutoff velocities for the v, and v directions,
respectively. The number of mesh peints used along

the directionsx, ¥, v and v, are designated by N v
N,.2M and2M |

respectively.

E. Recurrence effect for the free-streaming case.
The first example shows the recurrence effect for
the four dimensional free-streaming equation, when

E = E'1 = () in Eq.(49):

Fix vy, v, v, 0/ o+ v Bf(x,y,v, v
+v of(x,v,v v, 1)/dy=0

v, 8]/ 8% (51)

The initial condition of the distribution function is
given by:

Flxyv,v 0)= fi(v,,v, X4, cosk,x+ 4, cosk,y), (52)

where A=A, =4 =005 k=k =k, =05

¥y
and

Jolv, v, )=1/2zx- exp(-v2/2) exp(wvi /2. (53)

The density p(x, y,f) can be integrated analytically as
an exponential function:

p(x 3.1 = [ff(x.y.v,,v,.0dv,dv,

=e VA cosk,x + A cosk,y)

. (34

in the same way as the two dimensional case, while

po(x,,¥,,t) is numerically given by the summation of
the periodic functions in time:

p(X,¥,1) =
M, -1 M-l
D XX~ Vgl Y~ Vi, Vg, Vo = 0)AV, AV,
I=-M, m=—M,
M -1 M-I 1
= AV, Av, Z Z £,V Vo)A cos(k, X, —kx(l+—2—)Avxt)
I=-M, m=-M,

1
+A cos(k )y -k (m+ E)Avyt)}

(55)
According to Eq.(55), if the %, and Av_ are equal to

k, and Av,, respectively, the density p(x;,y,,)
recovers the initial value p(x;,y;,0) with the

recurrence  time 7, =2z/k Av, =27x/k Av,. We

USEL‘zLy=471': Vf—V =40, N1=Ny=]6=
M,=M,=8 and Ar=1/8. In Fig.16, the time

evolution of the density is plotted on the logarithmic
scale against time, where the solid curve and dotted
curve represent the densities at the positions

(x,)=(0,0) and (L,/40),
recurrence is observed at £ =23.5 and t=47.125
which agree very well with the theoretical recurrence
time T, =23.56 and 27, =47.124, respectively.

Even if the numbers of mesh points in the x, y

respectively. The

directions are reduced to N, = N y = 8 , the recurrence

effect is accurately computed and the recurrence time
is obtained as 7= 23.5. The total mass of the entire
computational domain is exactly conserved in any
cases. Figure 17 also shows the change of the density
at the positions x =0,y =0 untii f =8, where the
solid curve represents the numerical result and the
dotted curve represents the theoretical value given by
Eq.(54). Until the recurrence effect occurs, the

densities exponentially decay in time, as predicted by
Eq.(54).



F. Landau damping.

The next example is the Landau damping in the
four dimensional phase space. The initial condition is
setto

(56)
where f,(v,,v,) is defined in Eq.(53) and various

£(x,y,v,.v,,0)=1/2m-f(v,,v,) - g(%,¥)

values will be given to g(x,y) which will be
discussed later on.

1.First, we consider the case in which the initial
condition is given by

g(x,y)=(1+ Acosk xcosk,y),
where A=0.05, Vs = Ve =V, =40,
k. =k, =05, L,=L =4r
N,=N,=16 and Ar=1/8. The same resuit was

(37)

hence and

obtained, even if we chose a smaller Af, like
At =1/16, instead of Af =1/8. Furthermore even if
N,=N )= 8 is used, the code gives accurate and
stable calculations. Hereafter, the Fourier modes of the
electric field components £, (x,y} and E {x,y)

are represented by E (a,f) and E,(a,f),

respectively, where & and f are wave numbers. For
example, the basic modes are represented

by £,(0.5,0.5) and £,(0.5,0.5) for this initial
condition. Because of the symmetry regarding the x
in Eq.(57), E_ (C.¥)
E, (w,¢) are predicted to be equal. Actually, this

symmetry was verified from the numerical results.
Figure 18 (a) shows the exponential decay of the

amplitude of £ (0.5,0.5). Solid curve represents the
M,=M,6=16.

with

and y coordinates and

nurnerical result with

E_(0.5,0.5)
y =—0.39399 (damping rate of the oscillation) and

decays exponentially
@ =1.6973 (frequency of the oscillation) which agree
very well with the theoretical values y = —0.394 and
@ =1.682 . Dotted curve represents the resuit with
M,=M,6=8. Even though M, and M, were
greatly reduced, the numerical values of » and @
have been calculated with reasonable accuracy

( y=-0.4065, @ =1.71105 ). The recurrence

appears around the recurrence time 71, =23.56 as
predicted from the free-streaming case. In Fig.18 (b),

time evolution of the mode £ ,(0.5,0) is shown.

Right after computation start, £, (0.5,0) was excited
by the basic mode and then E_(0.5,0) decays
exponentially according to the linear theory. However,
amplitude of E ,(0.5,0) remains to be much smaller
than £, (0.5,0.5) and the greater part of the electric
field energy is due to £ (0.5,0.5). The theoretical
y and @ for the mode £, (0.5,0) are predicted as
y ==0.1533, ®=1.4156 from the linear theory.
In the case with M_ =M =16, a computation
gives y=-0.15915, ®=144305 and the
agreement with theoretical values is fairy good. Even
in the case with M, =My =&, the behavior of

E ,(0.5,0) shown by the dashed line corresponds to
the solid curve of finer grid and the numericai values
also agree well(y =—0.15984, @ =1.46875). The

relative errors of the mass and energy conservation are

about 1.2x107° and 2.0x107°, respectively and
the computation has been very stable.

2. Secondly, we consider the case when the two basic
modes £ (0.5,0) and E,(0,0.5) initially coexist.
The initial condition is given by

g(x,y}=(1+ 4, cosk,x+ A4 cosk, y), (58)

where 4, =4, =0.05, vtw,zvxwzvyw=4.()’
k.,=k,=0.5, hence L,=L =47. We use

N, =N, =16, M, =M =16 and Ar=1/8.
This case has been computed by M. M. Shoucri and R.

R. J. Gagne with same mesh condition[20,21]. As
predicted from symmetry of initial condition regarding

x and y, E (¢,y) and E,(w.¢) -remain to be
exactly equal for all the time. In Figs.19(a), time
evolution of the amplitude of £, (0.5,0) is plotted in

the logarithmic scale against time. Solid curve
represents the numerical result for this mesh condition.

E . (0.5,0) decays exponentiaily with y =—0.1542
and @ = 1.4133 which agree very well with the
theoretical values y =—0.1533 and @ =1.4156.
In Figs.19(b) and Figs.19(c), the time evolution of the
higher two modes E,,(1,0) and E,(0.5,0.5) is
shown with the solid curve. Right after the
computation started, those modes were excited.

However, for all the time, those amplitudes remained
by at least two orders of magnitude smaller than the

basic mode E ,(0.5,0). Hence. most of the electric
field energy is kept in the basic mode £ (0.5,0).
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Therefore both excited modes and

E,(10)
E,(0.5,0.5) show the exponential damping as
predicted by the linear theory. However, whereas
E,(0.5,0.5) damps roughly with the theoretical
damping rate ¥y =-0.394, £ _(1,0) damps much
slower than the linear theory and the damping rate is

about half of the theoretical rate (¥ = —0.851). The

time developments of the higher two modes are quite
similar to the Shoucri’s resuits[20.21]. The relative
errors of the mass and energy conservation are

5.18x107™° and 1.01x107*, respectively.
The dotted curves, in the Figs.19(a), Fig.19(b) and
Fig.19(c), represent the numericai results when we use

the mesh; N =N =16, M, :My =§. Same
values are used for other computational parameters.
The basic mode £, {0.5,0) decay exponentially and

the numerical values of ¥ and @ are -0.1602 and
1.4224, respectively which are in very good agreement
with the theoretical values. The higher mode

E_ (1.0} shows the recurrence effect at 7 =11.78.
However, until the recurrence time, the higher two

E,(1,0) and £,(0.50.5) the
behavior similar to the case with N, =N}, =16,

M,=M, =16. We have also verified that the

almost same results were obtained with the mesh;

N, =N, =8, M,=M, =8.

modes show

4. Six-Dimensional Simulation and Cenclusion.

In the present work, we proposed a new numerical
scheme for the solution of the hyper-dimensional
Vlasov equation. The time integration of the
distribution function was carried out by a shift of the
distribution function in phase space and the hyper-
dimensiona! advection was calculated by the CIP
scheme. The CIP scheme solves the advection
explicitly and does not require any matrix solution.
Therefore, computational cost was reduced and we
verified that computation was at least twice as fast as
the spline method with single CPU. Furthermore, we
developed a new numerical technique for the
calculation of the gradients in the multi-dimensional
CIP scheme. By adopting this new technique, the
scheme came to exactly guarantee the total mass
conservation in the solution of the Vlasov equation,
and we proved this fact analytically and verified
numerically. The modified CIP scheme was used for
Zalesak’s test run, and solved the problem more stably,
accurately and efficiently than the scheme based on the
spline interpolation.

The present scheme has been applied to the
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solution of hyper-dimensiconal Viasov-Poisson system,
and solved a number of linear and nonlinear problems
in two- and four-dimensional phase space. Unlike the
particle methods, the scheme provides noiseless
numerical results and a fine resolution for the
distribution function all over the phase space including
very low density regions. The CIP scheme can provide
stable and accurate calculation with much fewer
“particles” than the PIC method. Furthermore, even
though the computational mesh in velocity direction is
very coarse, the present scheme can describe a fine
structure of the distribution function without numerical
errors such as negative regions of the distribution
function, and simulate physics clearly. These facts
strongly suggest a possibility that the scheme can be
applied to more complex calculation in  hyper-
dimension and a solution of the full-dimensional
Vlasov equation. If the computational mesh points in v
- direction could be reduced to 16x 16x 16 by using
the CIP scheme, the required computational memory
size is about 1G bytes when the mesh points in x-
direction is 16x16x16. By the recent computer
development, this amount of the computational cost is
considered to be within the capacity of personal
computers. Actually, we have completed a six-
dimensional Vlasov code based on the procedure given
in Appendix A. For example, a numerical result of full-
dimensional solution is shown in Fig.20. We used only
a personal computer for this calculation and the
computation time was 6.7 hours. Furthermore, the CIP
method suits parallel computation since the scheme is
explicit. Therefore, a larger scale simulation can be
carried out easily by the supercomputer and the parallel
computers. We should note that we can save the
computational grid points in the v-direction if we use
the polar coordinate for this direction. This will be an
interesting future subject.
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Appendix A.

Four dimensional extension of Egs.(16) - (19) is
straightforward. However, because we adopts the

splitting method represented by Eqs.(35), (36) and (37),

the four-dimensional advection of the distribution
function is split into six steps of the one-dimensional
advection and carried out by the following sequential
calculations;

Stepl:

S ey v,y = v M2 v,y (@)
StepZ:

PPy = S ey =y M 2y (D)
Step3:

£ v v,)= £ (x, y,v, + ETV2 Anv,) (a3)
Stepd:

f"cw{x,y,vx,vy):f““pa(X,y,vx,vy+E;'+”2AI) (ad)
Step5:

£ (%, y,v,v,) = Fr xy -y, At/ 2, v, vy (85)
Step6:

Fr vy ) = P x—v,A 2y, (26)

+1/2 I/2 -
where £ and E}',r+ are calculated according to

the Poisson equation (50) using the value [,
Therefore, if four dimensional solution is write down it
symbolically, it leads

Ttegr] n
{;;Jk;s!cpl} C(x At/z){gj}‘h
a f.\n.pl

x4 yih
S(x,A,512)8 fl
[J‘LZ’Z”Z S

A=yv,v,)s
p f,’“"’zJ C(y,Atfz)[a fan

G =S(n, A0 2)8 foui' (A=xv,,7,)

], @7)

(ad)

(a9)

(al0)
.s!e.p.) \ mpz
S =C(v,, At e > (all)
éj f;jmp) a f;\:eﬂZ
oSl =5(v,, 2,008, [ (A=xpv,) (212)
srepd el
S olece @)
5 f;\!;p-% a f;m.p;
0",1 ;};’;!)4 = S(V A A!}a” fsupfi (/1 =x,7, Vx) , (2114)
atep3 stepd
T = C(y,At!2) T, (al5)
ﬁ f-ljn'cpz 0—7 f;slcpt:
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P ﬂ$-’£P5 S(y,l,At/2)é’_‘,j}j‘;,,""”4 (l=x,vx,vy), (al6)
uH steps
{f"‘“" ,,J C(x,At/Z)[J:’H' . 5} (al7)
a -f) ‘9xﬁﬂ;p
Gifom =S(x, M8 fF  (A=yyv,,v,), (al8)

where C(A,At) is 2 operator which gives the CIP
solution of one-dimensional advection equation (15)
and S(m,4,At) is a operator which gives the solution
of Eq.(20a) (see section 2.2).

In the six-dimensional case, the time integration of
the Vlasov equation is also split into the sequential
nine solutions of the one-dimensional advection.

Stepl:
FoPx p,2,v,,v,,v,) = Fix—v.At/2,y,2,v ,v,.v,)
(al9)
Step2:
fifcpz(x,y,z’vx,vy’vz)=fﬁfcpl(x,y_vym/z’z’vx:vy,vz)
(a20)
Step3:
f""’i(x,y,z,vx,vy,vz) = f“””z(x,y,z—vat/2,vx,vy,v2)
(a21)
Stepd:
I % 1,2,9,,7,,9,) = £ (x,p,2,v, + E:*”zAt,vy,vz)
(a22)
Step5:
steps stepd L/
ey v,y )= Py, v, + EV ALY
(a23)
Step6:
L3279,V = [ (%, 3,2,9,,,,v, + ELV2 A
(a24)
Step7:
Fo (% 3,2,v,,v,.v,) = f7 P (x,y,2-v, At/ 2,v,,v,,v.)
(a25)
Step8:
f"’“"s(x,y,z,vx,vy,vz) = f“eﬂ(x,y—vyAi‘/Z,z,v,,vy,vz)
(a26)
Step9:
5z v,y ) = P (x—v, AL 2, 3,2,v,,v,,9,)
(a27)

where EX?, EXV? and EI'?are calculated
according to the Poisson equation using the value

e ®  Therefore, if six-dimensional solution is write
down it symbolically, it leads

stepl
ax f;jkh

, (a28)
a f;w!epl



) wpl e : 1 A gr
CA-f.I;SU: - .S(.X,/.,AJ‘ 2)€x kb

(A= FIvLv,,Y) (a29)

el sl A
(.f.,m ‘\]: Cly At ;2)(fuu1 , (a30)
o) s
&, U}:,‘"': =50 A,AT 28, f,j;j," (A=x0,v,v,,v.)
(a31)
¢ g3 \ [ ponpl
[ [, /.
T L d=ceaay T (32)
La:fu;“J \: g
Gl = S5, 4,808, folt (A=x,pv,.v,,v.)
(a33)
‘ s _f, \Ih.p3
Te a0 @)
&, Join 2

E folt =S, 2,808, [ (A=xp.20,.0.)
(a35)
(flm‘,m j;m.p-!
s [P GO0 e (@36)
o, qu! J Ov,fyth
G = S(v,, 2,808, it (A=xyp,2,v,v,)
(a37)
[j-«‘u,ur\ A f\n.,')s
o |=Ct,an T P (a38)
&, .j:;‘k;" a, f.:ﬂ(hp
G = 8,808, fu (A=x3.5v,,,)
(a39)
sep ¥ sepb
T ceanny L (@)
R il 3
G fo” =Sz AAIE [ (A=xp,v,,v,,7,)
(ad1)
vepk ‘] f\!cp7
Y = Cnan) T (ad2)
0..]‘-:;;\11‘, J » ljkhl

oLt =S AMIDE, frF (A=x, V,,v,,v,)
(ad3)
| e p¥
i Foid”
Jun ]L Cooari2y ™ s (@44
o) A

Cifom = SNAMIIE ful (A=y,z,v,,v,.v,)

(ad3)
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Fig.2(b) Contour plots of the computational
results for Zalesak’s problem afier one

complete evolution.
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Fig 2(c) Three-dimensional views of the computational results for Zalesak’s test problem after one
complete evolution.
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Fig.3 The recurrence effect for the numerical free-streaming solution with 4 =0.1,k, =0.5, Vg = 5.0,
M =16 and Ar=1/8.

15



102 J I : i PR 1.
¥=0,15583 o=l 4211
theory: ¥y=D, 1533  w=1.4156

IO'L_ 3
=] ‘
‘Q‘
(=)
~—
E:
=
o 10 L
- ]
=3
=
=
E
<

10%5 3

[{end T T T T T

@ 10 20 30 0 50

Time
Fig.4 Linear Landau damping with recurrence effect. 4 = 0.01,k, = 0.5,v,, = 4.0,
N =32,M =16 and Af =1/8. The theoretical recurrence time is T, =48.69.

10'2 RS B S B S DS

T T T T

107

T T T

Amplitude [Exk(0.5,t)|

10
0 5 10 15 20

Time

Fig.5 Linear Landau damping with reduced mesh points.The initial condition is the same as Fig.4 and

the computation mesh is N =32, M =8 with &k, = 0.5,V0jjr =4.0and Afr=1/8.

16



Amplitude [Exk(k=0.5,1)

Relative Error
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Fig.7 Amplitudes of the first three modes of the electric field for the strong nonlinear
Landau damping with 4 =035,k, =0.5,v,, =5.0,L, =4z, N=32,M =16
and Ar=1/8.
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Fig.10 Appearance of a hole structure in the two-stream instability. The initial
condition is given by Eq.(48) with 4A=0.05, £, =05, L=4r, Vo =5.0,
N=32, M =128 and At=1/8.
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Fig.11 The time evolution of the first three modes for the two-stream instability, where El, E2 and
E3 indicate the Fourier mode E_(k=0.5), E_ (k=1) and E_ (k =1.5), respectively. The initial
condition is given by Eq.(48) with 4=0.05, k =05,L=4x,v; =5.0, N=32 and At=1/8. Solid
curves and dotted curves represent the numerical results with M =128 and M =24, respectively.
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Fig.12 The time evolution of the total electric field energy for the two-stream instability. Solid curve(a)
and dotted curve(b) represent the numerical results of the present scheme with M =128 and M =24,
respectively. Dashed curve(c) represents the result of the PIC scheme with 4608 “particles” which
corresponds to M=24(curve (b)) as far as storage is concerned.
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Fig.14. Over-view profile of the distribution function at =20.0 using (a) CIP (M=128), (b) CIP (M=24),
(¢) PIC (4608 “particles”, correspond to twice larger storage than M=24 of CIP) and (d) spline method (M=24).

Fig.15(a) The positions of cross sections shown in Fig.15(b). “1” is x=0.0 and “ H “ isx=2 1.
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Fig.15(b) Cross sections of distribution function vertical to x-axis for two-stream instability. Figure (I-
1) and (I-2) are along the line (I) in Fig.15(a) at t=22.5, and Fig.(II-1) and (II-2) are along the line (II) at
t=53.75. In each figure, a solid curve shows the result by the CIP, a dashed curve shows the result by the
spline method, and a dotted curve shows the result by the PIC. Figure (I-1) and (II-1) are results with
M, =24, and Figure (I-2) and (II-2) are results with M =128. We use quite a lot of particles (229,500
particles) in the PIC code to reduce the noise in the distribution function.
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Fig.16 Time evolution of the density at the positions x=0,y=0 (solid curve) and x=Lx/4,y=0
(dotted curve) for the four dimensional free-streaming equation, and for the initial condition
inEq.(52) with 4, =4, =005k, =k, =05, =L, =4x,v,;=v,, =40, N=16 and M =8
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Fig.17 Time evolution of the density at the position x=0,y=0 for the four dimensional
free-streaming equation. A solid curve(a) and dashed curve(b) represent the computatio-

nal result and theoretical result in Eq.(54), respectively.
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Figs.18 The Landau damping for the four-dimensional Vlasov equation as discussed in the case F-1.
Figure (a) and (b) show the time development of the basic Fourier mode E_(0.5,0.5) and the excited
mode E_(0.5,0), respectively The initial condition is given by Eq.(57) and the parameters
areA=005,v,, =v, . =v =40, k, =k, =05, L =L, =47z, N,=N, =16 and Ar=1/8. In
each plot, the solid curve represents the numerical result with M_ =M =16 and the dotted curve
represents value with M, =M =8.
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Figs.19 The Landau damping for the solution of the four-dimensional Vlasov equation in the case F2.
The time developments of the basic mode E_(0.5,0) and excited modes E_,(1,0), E,(0.5,0.5) are
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Fig-20 The full-dimensional Vlasov simulation of the Landau damping. The initial conditoin is given by
fp.2,9,,v,,v,,8) = Q)" exp(—v: /12—l /12— 1 2)(1+ 4, cosk,x + 4, cosk,y+ A, cosk_z) with
A, =A4,=4,=001, k, =k, =k, =0.5. We used M=8 mesh points in v-direction, N=8 points in x-direction
and Ar=1/8. We used an Alpha-chip based personal computer (VT-Alpha PC AXP600) and the total
computational time to calculate until =25 is 6.7 hours in CPU time. Numerical values of the damping rate and the
oscillation of electric field are y =—0.176 and @ =1.4142, respectively while the theoretical values predicted
by the linear theory are y =—0.1533 and @ =1.4211).
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