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Abstract

The first plasma operation of the Large Helical Device
(LHD) fusion system has been successfully performed on
March 31 in 1998 by means of the Central (‘Chu-oh’ in
Japanese) Control System (COCOS) connected to  ~50
subsystems using hard-wired interlock, optical-fiber
timing and computer information network. From January
1998, the protective supervision system of COCOS went
into service and the vacuum pumping control system
started operation. The cryogenic control and the coil
power supply control systems were utilized to cool down
and energize the superconducting coils. The sequential
control and timing control systems of COCOS have
successfully started operation for a first plasma production.
A variety of machine operations and plasma experiments
will be continued on LHD using these flexible, reliable
and advanced control systems.

1 INTRODUCTION

Helical confinement systems have distinctive merits of
steady-state operations for fusion reactors. The Large
Helical Device (LHD)[1-3] (Fig.1), the superconducting
helical fusion machine with the major radius of 3.9 m,
the minor plasma radius of 0.6 m and the magnetic field
strength of 3 Tesla, has been completed after the 8-year
construction schedule in Toki-City, Japan. This is a
world-largest helical fusion experiment aiming at steady-
state operation by means of superconducting coil system.
One of the main objectives of this LHD project is to
demonstrate steady-state operations of helical fusion
plasmas that can be extrapolated to the future fusion
reactor. For these purposes the National Institute for
Fusion Science (NIFS) had been established in 1989 and
the LHD machine construction was started in 1990.

As for the LHD main control system (see Figure 2), in
April 1996 we started the real construction of the Central
(‘Chu-oh’ in Japanese) Control System (COCOS), the
LHD Man-machine Interface System (LMS) and the LHD
experimental network [4-5]. In addition to this central
control system, about 50 sub-control systems have been
constructed. These systems are composed of a variety of
computers such as UNIX engineering workstations,
Windows NT personal computers (PCs), VME computer
boards with real-time OS and programmable logic
controllers (PLC).

In this paper, we will explain the overview of the
LHD control system in the following:

(1) LHD operation scenario and its control concept.
(2) Central control system COCOS with hard
wired interlock, soft sequential control and
optical timing control units.

(3) FDDIVATM network architecture.

(4) Client/server LHD Man-machine-interface System
(LMS) using Windows NT with Visual Basic.

(5) Control sub-systems relevant to machine
commissioning, such as vacuum pumping control,
cryogenic control, and coil power supply control
systems.

(6) Real-time control data monitoring system with
VME (VxWorks), Windows NT using Visual C++
and/or Unix workstation using Java.

(7) Distributed control systems for plasma diagnostics,
and advanced data acquisition system by Windows
NT network.

Figurel: Photograph of LHD (Large Helical Device)

Figure2: Photograph of LHD Central Control Room




2 MACHINE OPERATION AND
CONTROL CONCEPT

2.1 LHD Operation Scenario

The LHD system consists of a variety of complicated
systems that should be worked cooperatively. In order to
clarify that, the LHD normal operation modes were
classified into six modes (Fig.3); shut-down mode,
facility operation mode, vacuum pumping mode, coil
cooling mode, coil operation mode and plasma experiment
mode. These modes are related to the personnel entrance
permission with respect to electricity and vacuum, the
magnetic field hazard and the X-ray radiation production,
respectively.

The LHD coil system is cooled down once or twice a
year after pumping out the cryostat. It takes a few weeks
to cool down or warm up the helical and poloidal magnets,
which should be operated safely and reliably, and the
plasma experiment will be caried out flexibly. These
magnets will be operated for about 10 hours per day, and
the number of short-pulsed plasma operations with 10
second duration will be typically 50 - 100 shots per day.
The LHD is also going to be operated in steady state
(more than one-hour pulse length) and requires interactive
control of the machine and the plasma.

For the analysis and protection of abnormal operation
(for example, coil quench, electric power failure or
earthquake accidents), the following six modes were
defined; “1Q mode” (quick coil-current dump mode for coil
quench protection), “IM mode” (medium coil-current
decay mode), “1S mode” (slow coil-current decay mode),
“2 mode” (plasma shut-down mode), “3 mode” (next
sequence stop mode) and “4 mode” (warning mode). These
signals are used in the interlock design, and its concepts
had been successfully demonstrated in the real LHD
experiment.

Figure 3: Six Operation Modes on LHD.

2.2 Control Concept and its Architecture

The latest mission of the LHD project was to produce
a first plasma as soon as possible, and as reliable as
possible. On the basis of above-stated operation scenarios,
the designed control system is composed of the central
experimental control system and several sub-supervisory
facilities which are connected by the FDDILAN in
addition to hard-wired interlock/sequence control and first
timing optical signals (Fig.3).

The real construction of the main unit of the COCOS
was started in April, 1996 based on the following design
philosophies;

(1) Flexibility for the physics experiment,
(2) Reliability for the large engineering machine and
(3) Extensibility for the central control system.

The design philosophy (1) requires human-friendly
man-machine interface and advanced real-time plasma
control systems, the item (2) requires reliable protective
interlock systems with hardwires, and the philosophy (3)
leads to the requirement of distributed and modularized
control/ monitoring systems.

Figure 3 shows the outline of this system architecture.
The conventional hard-wired logic system has been used
between COCOS and about 50 sub-systems in addition to
the FDDI computer network communication. The initial
LHD operation should be carried out reliably on the
schedule. The central boards with programmable logic
controllers directly connected to sub-systems with
hardwires were used for this initial purpose. Especially,
the simple protective interlock system in COCOS was
quite helpful to connect among a variety of complicated
subsystems, some of which had been behind schedule.
The computer systems such as man-machine interface
may sometimes suffer from programming bugs and will
waste a lot of time, however they should be used finally
as flexible experimental tools. We decided to develop
these friendly computer control systems step by step. The
optical triggering signals were used in the fast timing
system for sequential control of plasma discharges in
addition to hard-wired signals and computer digital signals.
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Figure 4: Outline Architecture of LHD Control.




3 CENTRAL CONTROL SYSTEM
3.1 COCOS Overview

On the basis of the LHD operation scenarios, the
designed control system is composed of the COCOS
central unit (Fig.5) and several tens of sub-supervisory
facilities which are connected by the hard-wired interlock
and soft sequential control link in addition to the
FDDI/ATM communication network [4-5].

At the beginning of the LHD proposal (morethanl0
years ago), the control system was considered based on the
centralized control “process computer”. Around several
years later the UNIX engineering workstation system with
VME computer connected by Ethernet-LAN was proposed.
Now, some client-server systems by personal computers
(PCs) are added for control and data acquisition. These
various systems are presently connected by the advanced
FDDI / ATM switching network system.

Figure 5: Central Unit of COCOS

Top: central operation console, four central control

computer, central supervision panel and large-
scale display in the central control room.

Lower left: VME timing board, central sequence
control board, and /O board in the basement of
the control building.

Lower right: protective interlock board and so on in
the LHD building.

The central control system COCOS is composed of the
central control unit (including central operation console,
central sequence control board, central control computer,
central supervision panel, large-scale display, and the
VME timing board), the torus instrumentation unit (torus
supervision computer, torus supervision VME board and
protective interlock board), the LHD Man-machine
interface System (LMS), the control data monitoring
system, the LHD experimental LAN and the uninterrupted
power supply (UPS) systems. This system is provided
with a variety of computers such as UNIX engineering
workstations, Windows NT personal computers, VME
computer boards with real time OS (VxWorks) and
programmable logic controllers (PLCs).

The outline of this system architecture was shown
in Figure 4. The central control board with PLCs

directly connected to sub-systems via hardwires was used
for the quick and reliable operation of LHD. Especially,
the reliable protective interlock system is available in
COCOS. The fast timing system with 64 channel optical
signals (accuracy: < 1 micro-second, setting-up interval: 1
ms ~ 10 hr) was distributed to sub-systems. The feedback
control for plasma current, position and cross-sectional
shape will be carried out in the near future using
intelligent VME control systems, such as applications of
fuzzy logic or neural networks in addition to standard PID
plasma control algorithm.

3.2 LMS

For flexible and elaborate experimental setup, the LHD
Man-machine System (LMS) is installed for experimental
operation using Windows NT, Oracle 7 and Visual Basic.
This is a client/server system based on 3-Layer standard
model (presentation, transmission and data house, and
device control layer). This system is used for (1)
presentation of operation mode, (2) setting-up of
experimental condition, and (3) supervision of machine
data. At present 8 clients and 2 servers for LMS are
connecting to 6 subsystems, and will be extended to all
sub-systems in the future. The details of this system are
presented in this conference [6].

3.3 LHD Experimental Network

In the LHD experiment, we may have three kinds of
data from the LHD computer systems: machine operation
data (from main torus and plasma heating system), plasma
diagnostics acquisition and control data, and plasma
analysis data. These kinds of data should be transferred to
the NIFS Campus ATM network. As shown in Fig.6,
three network sub-clusters are used in the LHD
experimental cluster. For machine control data , we added
a fire wall system for safety. Plasma diagnostics data and
analysis data are strongly coupled and we are trying to
install ATM switches between diagnostics sub-cluster and
experimental analysis sub-cluster. The large-scale
computer system for theoretical analysis using
experimental data is connected to the LHD experimental
computers via this ATM campus LAN system.
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Figure 6: LHD experimental network connected to
NIFS campus LAN.
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4 TYPICAL SUB-CONTROL
SYSTEMS

According to the above-mentioned operation scenarios,
various sub-systems started operation in turn. Typical
subsystems among ~50 systems are described below,
which are connected to the central control system by
means of three kinds of signals; PLC interlock hardwire
ON/OFF signals, timing optical-fiber signals and TCP/IP
computer network signals.

4.1 Vacuum Control

The initial important device at the machine start-up is
the vacuum pumping system that consists of pumps,
valves, pressure gauges and so on. Its device controllers
are installed in the basement of the LHD building and four
PCs are installed in the central control room for remote
and automatic operation. More than 100 of status flags are
programmed for operation and interlocks. The software is
now in progress for upgrading the control system.

4.2 Cryogenic Control

Since the cooling scheme of the LHD system is fairly
complicated, a reliable and flexible duplex control system
is required for cryogenic control. Figure 7 shows the LHD
cryogenic control system (TESS) amrangement [7] which
is composed of two clusters: helium refrigerator control
and cooling objet control for helical coil, poloidal coil and
superconducting bus lines. The control system is based on
open system and consists of Unix workstation, VME-
VxWorks controllers, LAN and operation graphic
consoles. This system is composed as a duplex

redundancy system that significantly improves the reliable
operation with fault diagnoses of each component. The
VME controllers are used as a pair of one in service and
the another in waiting. Two VME controllers are identical
in both hardware and software. In case the running VME
has trouble, the service is instantly switched over to the
another VME controller which is in the waiting mode.
The workstation and LAN are also duplicated, and
controlled by the master workstation. The network is the
optical duplex link type LAN that is compatible with
Ethernet. At present the upgrade of the automatic
operation programming is being in progress.

4.3 Coil Power Supply Control

For the achievement of excellent plasma, high accuracy
of coil current control is required The coil power supply
control system is composed of VME controllers and Unix
workstations. The required performance criteria of this
system are (1) current control error is within 0.01 % in
the steady state operation, (2) 0.1% error permissible for
setting cumrent value within 1 second in the normal
operation, and (3) overshoot of current is prohibited. The
current regulator in the VME machine is based on the
state variable control theory to uncouple the mutual
coupling between coils. At present P and PI control
scheme is applied and the superconducting coil system has
been operated successfully.

4.4 Real-Time Machine Monitoring System

We installed two real-time machine data monitoring
system; one is a slow and reliable system coupled to the
COCOS, another is a fast and flexible system for

Workstations anlich
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Figure 7: Cryogenic Control System




experimental data handling, as shown bellow.

For reliable machine supervision one of the data
monitoring systems is based on Windows-NT using 1300
channel VME boards within COCOS [4-5]. This treats
with a variety of signals such as machine temperature,
mechanical stress, vacuum gauge signal, magnetic field
strength and so on. These are used as both protective soft
interlock signals for LHD operations and real-time slow
display with sampling time of 1~10 s. The man-machine
interface of this monitoring system was programmed by
Visual C++. In this system the relational database Oracle
is used.

For flexible real-time data monitoring, another LHD
data monitoring system with 512 channel VME and the
UNIX workstation was also constructed [8]. The sampling
time is 1 second for real-time data, and 1 milli-second for
batch data by the same acquisition system. Full Java
computer software on WWW Browser was used in this
system and will be extended to 4000 channels in the
future. To manage Data, relational database (SyBase) was
used in this system. The special data compression scheme
is adopted here.

4.5 Diagnostics Control and Data Acquisition

High quality data from the various plasma
diagnostics is key to good experiment and good physics.
Here the data acquisition and control for diagnostics were
divided and connected by FDDI switch as shown in Fig.6.

The data acquisition system [9] is using distributed and
object-oriented technology. The plasma data from ~20
diagnostic instruments are managed by CAMAC-VME
and Windows-NT distributed systems. The typical raw
data amount is a few 100MB per each shot, and maximum
10GB per day. It adopted the object-oriented database. For
diagnostics control, the system is parallel to the
diagnostics data acquisition system. Figure 8 shows the
photograph of this diagnostics system with more than 50
clients and 30 servers (Windows-NT) .

Figure 8: Photographs of Diagnostic client PCs in
the Central Control Room (upper) and a cluster of
server computers in the Diagnostics Computer
Room (lower right)

5 SUMMARY

The first plasma operation of the Large Helical Device
(LHD) fusion system has been successfully carried out
just on schedule after eight-year construction period
This has been achieved by the help of the Central Control
System (COCOS) connected to ~50 subsystems using
hard-wired interlock, optical-fiber timing and computer
network information. From January 1998, the protective
supervision system of COCOS went into service and the
vacuum pumping control system was started. The duplex
cryogenic control system and the high-accuracy coil power
supply control system were used to cool down and
energize the superconducting coils. Sequence control and
timing triggering systems of COCOS have successfully
started operation for a first plasma production. The
COCOS man-machine system for monitoring and timing
is based on Windows NT personal computers (PCs) with
Visual C++. The LHD Man-machine interface System
(LMS) based on Windows NT PCs with Visual Basic also
stated in service and communicates with several sub-
systems. The plasma diagnostics control and data
acquisition system is also based on Windows NT
client/server distributed system. The real-time monitoring
system using Unix workstation with Java programming
is also running. Using these flexible, reliable and
advanced control systems, a variety of machine operations
and plasma experiments will be continued on LHD.
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