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The temporal evolution of linear torcidal ion temperature gradient (ITG) modes is studied
based or a kinetic integral equation mcinding an initial condstion. It is shown how to evaluate
the analvtic continuation of the integral kernel as a function of a complex-valued frequency,
which is useful for analytical and numerical calculations of the asymptotic damping behavior of
the ITG mode. In the presence of the toroidal ¥V B-curvature drift, the temporal dependence of
the density and potential perturbations consists of normal modes and a continuum mode, which
correspond to contributions from peles and from an integral along a branch cat, respectively. of
the Laplace-transformed potential function of the complex-valued frequency. The normal modes
have exponential time dependence with frequencies and growth rates determined by the disper-
sion relation while the continuum mode. which has a ballooming structure, shows a power law
decay o 7% 1z the asvmptotic limit, where t is the time variable. Therefore. the continuum mode
dominantly describes the long-time asymptotic behavior of the density and potential perturba-
tions for the stable system where all normal modes have negative growth rates. By performing
proper analytic continuation for the homogeneous version of the kinetic integral equation, de-
pendences of the normal modes’ growth rate, real frequency, and eigenfunction on 7, (the ratio
of the ion temperature gradient to the density gradient), ks (the poloidal wavenumber), # (the
magnetic shear parameter), and 6 (the ballooning angle corresponding to the minimum radial

wavenumber) are numerically obtained for both stable and unstable cases

KEYWORDS toroidal ion temperature gradient mode, ballooning representation analytic continuation, branch

cut, normal mede, continuum mode

§1. INTRODUCTION

So far many theoretical studies have been done on mi-
croinstabilities such as lon temperature gradient (ITG)
modes!) as a cause of anomalous transport in high tem-
perature plasmas. Most linear analyses of these microin-
stabilities® ) have shown the dispersion relation oniy for
the case of positive growth rates, mainly because the
anomalous transport is driven by unstable modes and
partly because calculation of negative growth rates is
sometimes more complicated due to treatment of ana-
Iytic continuation in the complex-frequency plane. How-
ever, since stable modes with negative growth rates play
the role of an energy sink for turbulence in order to re-
alize a steady state. they would seem to aflect the sat-
uration amplitude of the turbulence and the resultant
anomalous transport. For example, gyrofluid simula-
tions”) produce steady-state turbulence even in the col-
lisionless limit by successfully modeling kinetic stabiliz-
ing mechanisms such as Landau damping and finite Lar-
mor radius (FLR) effects. Thus, in order to consider the
balance of fluctuation energy, 1t 1s useful to obtaln the
complete dispersion relation including both stable and
unstable modes. Also, if we can calculate both positive
and negative growth rates, the critical condition for the
marginal stability can be determined more accurately by
interpolation.

In the case of parallel transit resonance, which occurs
between waves and particles moving along field lines, it
15 well-known how to draw a Landau contour for ana-
lytic continuation of the plasma dispersion function.®

For toroidal systems, the magnetic ¥ B-curvature drift
modifies wave-particle resonance and therefore compli-
cates how to analytically continue the dispersion func-
tion. Under the local approximation, where the inho-
mogeneity in the direction parallel to the field line is
neglected to enable us to specify the parallel wavenum-
ber k| as an independent parameter, several studies have
been done of the analytic continuation of the disper-
sion function for the ITG mode driven by these mag-
netic drifts, in order to evaluate damping rates of stable
normal modes 911} An interesting aspect of the toroidal
magnetic resonance, which is absent from the parallel
transit resonance, is that the analytic continuation for
the toroidal mode requires a branch cut to be taken in the
lower-half complex-frequency plane. Kuroda, et al'') in-
vestigated an initial value problem for the toroidal ITG
mode in the local approximation and found that com-
ponents with complex frequencies along the branch cut
vield a continuum mode which shows power-law decay
oscillation.

The present work is an extension of that by Kuroda, et
al. to the nonlocal case where the mode structure along
the field line remains to be sclved for by taking account of
the parallel inhomogeneity. Here analytical continuation
for the nonlocal problem is properly treated to calculate
the growth rate, real frequency, and eigenfunction for
stable modes. We will find for the nonlocal case that a
branch cut alsc appears and that a general solution of an
initial value problem of the torcidal ITG mode for the
nonlocal case consist of normal modes and a continuum
mode which shows a different power-law decay from that
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for the local case.

The rest of this work is organized as follows. In Sec.
II. a linear electrostatic ion gyrokinetic equation and its
Laplace transform are presented. The ballooning rep-
resentation is used to treaf the monlocal structure of
perturbations in a toroidal sysiem. The temporal be-
havior of the ballistic response in the presence of the
toroidal magnetic drift is elucidated. In Sec. III, an ini-
tial value problem for the toroidal ITG mode is formu-
lated as a Laplace-transformed integral equation for the
electrostatic potential perturbation. It is shown how to
analytically continue the integral equation into the lower-
half complex-frequency plane. The temporal evolution of
the potential perturbation is written as the sum of the
normal modes and the continuum mode, for which the
long-time asymptotic behavior is determined. In Sec.
IV, following the prescription for analytic continuation
given in Sec. III, the homogeneous version of the inte-
gral equation is numerically solved to obtain the depen-
dences of the normal modes’ growth rate, real frequency,
and eigenfunction on 7; (the ratio of the ion tempera-
ture gradient to the density gradient), ks (the poloidal
wavenumber), § (the magnetic shear parameter), and §;
{the ballooning angle corresponding to the minimum ra-
dial wavenumber) for both stable and unstable cases. Fi-
rally, conclusions are given in Sec. V.

§2. ION GYROKINETIC EQUATION

In this section, we first consider the Laplace transform
ofthe 10n gyrokinetic equation in order to include the ini-
tial condition of the perturbation. Using it, the ballistic
response of the ions in the presence of toroidal magnetic
drifts is described.

2.1 Laplace transform of the gyrokinetic equation

The ion distribution function in the (x,v) phase space
1s divided into the equilibrinm and perturbation parts as
fo = npFar + 6F; where ng is the equilibrium density,
Fpy = 77342 v{nf exp(~v?/v&,) is the Maxwellian distri-
bution function, and vy, = (27;/m;}!/? is the thermal
velocity for the ions with mass m;, temperature T}, and
electric charge e. In the magnetic field B, the perturba-
tton part é f; with the perpendicular wavenumber vector
k; is written as

§f, = _;—¢n0FM +hekLp (1)

where ¢ represents the electrostatic potential, p = b x
v/ (b = B/B) denotes the ion gyroradius vector,
and Q, = eB/f(m,e) is ihe lon gyrofrequency. Here,
the first and second terms in the right-hand side of Eq.
(1) represents the adiabatic and nonadiabatic parts, re-
spectively. The velocity vector v is written as » =
ybtvi{e; cos§+easinf), where £ is the gyrophase and
(€1, €e2,b) are unit vectors which form a right-handed or-
thogonal system at each point. The ion nonadiabatic
distribution function % is independent of the gyrophase
and is described in the linear, collisionless, electrostatic

case by the gyrokinetic equation!® 3}

3 v d ) _[{a . £Q
(E + R—q% + z.uD) h = (a + hme) TJO(’CLP)”OFMr
(2)

with

2
wp = @p [cos b + 3{f — ) sin ] vy} (% + vﬁ) (3)

WaT == Wi [1 + { (v;i) 2 - g}} ; (4)

where Jg is the Bessel function of order zero, g is the
safety factor, 3 = (r/g)(dq/dr) is the magnetic shear
parameter, r and £ are the minor and major radii, re-
spectively, n; = dIn T; /dIn ng is the ratio of the ion tem-
perature gradient to the density gradient, &p = 2e,w.;
1s the characteristic ion VB-curvature drift frequency,

and

Wai = —T5 Lwye 1s the ion diamagnetic drift frequency,
€n = Ln /R is the ratio of the equilibrium density gradi-
ent scale length L, = —(dlnng/dr)! to the major ra-

dius R, =, = T, /T; is the ratio between the electron and
lon temperatures, w,, = cke1./(eBL,) is the electron
diamagnetic drift frequency, &y = ng/r is the poloidal
wavenumber, and n is the toroidal mode number. In
Egs. (2} and (3), we have assumed a large-aspect-ratio
axisymmetric toroidal system with circular, concentric
magnetic surfaces, and used the ballooning representa-
tton to regard the poloidal angle # as a coordinate along
the magnetic field line which forms a so-called covering
space {(—o0 < # < oo).t415)
Using the Laplace transform

h(w) = Aw dt h(t)e', (5)

Eq. (2) is rewriiten as

[;—li}% — iw — wa)] h(w)

. e )
= —t(w— w*T)%)JO{kJ.P)ﬂoFM + (6f:(t = 0)eFr Py,
k3

(6)

where (---} denotes the gyrophase average.

Throughout this work, following Dong et al?) and Ro-
manelli,?) the toroidal effect is considered only through
the poloidal-angle-dependent magnetic drift given by Eq.
(3) which causes the ballooning structure of the I'TG
mode. The trapped ions and the poloidal-angle depen-
dence of the parallel velocity vy are neglected here since
mainly the passing ions drive the ITG mode.

2.2  Ballistic response

Here we consider the ballistic response to the initial
perturbation in the presence of the toroidal resonance,
which is determined by the propagator on the left-hand
side of the gyrokinetic equation (2). A similar prob-
lem was treated already by Kim, et a/'®) and Kuroda,
et al' for the case of the local approximation which
specifies the parallel wavenumber ky. They showed that,



[amping of torodal won temperature gradent modes

under the local approximation. the asymptote tempo-
ral dependence of the ballistic response 15 characterized
by 12 exp(—rwprf) where wp = —kl'"’l';fr,/u-JD)- In
the problem considered m this work, tlhe fluctuations’
structure along the field e is not generaily represented
by a sinusoidal wave corresponding to a single parallel
wavenumber, which cannot be a linear eigenfunction due
to the toroidicity of the magnetic dnft.

Lot usg ronsider the case in which d =0 1n order to ne-

glect the right-hand side of the gyrokinetic equation (2).
Then, the solution of Eq {2) is given by

h(6,w) = {

with

()

]
5(0,6) = /9' dé"(Rg/lvyl)lw — wp(87)]. (8)

Here, as noted before, only the passing ions have been
considered in deriving Eq. (7). Then, using Eq. (2}, the
Laplace transform of the ion density perturbation is writ-
ten as

fn(w) = /dsif Jo(kLpth(w)

:2‘3’/ 'U_Ld’UJ_j dv“[ dﬁ'(Rq/‘b‘“)
0 3l —o0

x (88" )sen(6-6" p ! 4 — (), (9)

Here, we assume the initial distribution to have the
form

h(B i= 0) Chjo(ntu_!_p)Fﬁ{éﬂ(lg t = O) (10)

where C} is a constant. From the condition that én(f =
0) = fdstg kLp)h(t = 0), we have C) = lll‘o(b)
where b, = k2 p,/2, p, = 17-,/(2 = 2¢*m;T, /(e* B?),
To(d.) = Io(b;)exp(—b;). and Iy is the modified Bessel
function of order zero. The above form of the initial
distribution is taken in order to simplify comparison
to the case of the imitial value problem including self-
consistent potential fluctuations considered in the next
section. Substituting Eq. (10} into Eq. (9), we obtain
+oo 400
dre’’

\/_ 4K Var1+a)
xl“g(k_]_,k’l)én(k’,t = 0).

e—(k—F /4
n(w) =
(11)

Here, following Dong ef al.,2) we have used variables de-

fined by

r= Rl — |/, (12)

=2 § 2
A= - —€n w2 13
TeQ (qf ) " (13)
_1 T wo 9“ . 14
a +z(3 6’)/ d8”wp(6") (14)
k:ékg(g—gk), k":ékg(g’—gk). (15)

w

Fothy A7)

N S
“\raea, M\ o)

{16)

(17)
where the wavenumbers kg, &k, and k are normalized by
1

pyl with ps = /2T, /m,/Q,. In the ballooning repre-
sentation, the radlal wavenumber k 15 directly related to
the poloidal angle # as the covering-space coordinate by
Eq. {15), which implies that the radial mode structure
is given by the Fourier transform of the poloidal mode
structure. The integral parameter 7 in Egs. {11) and

o

ko= ki + k7, KE =k + k"7,

ffw d@’(Rq/ivHE)e“ﬂw's”h(ﬁ’.t =0) (v} > 0) (14) has the opposite sign to that in Ref. 2.
27 a8’ (Rgfluy e @F0R(0" 1 = 0) (v < 0),

The form of Eq. (11) directly shows its inverse Laplace
transform for the density perturbation as a function of
time to be given by

C —(k—k")? /4)\
h 1 To(kL. kL )sn(k = 0).

\/_ ¢ \/_l—i-a
(18)

Here, A and a are regarded as functions of ¢ which are
obtained by replacing 7 with f in Eqs. (13) and (14},
respectively. By using Eq. (18) with a specified initial
density profile én{k, ¢t = (), we can completely determine
the spatio-temporal behavior of the density perturbation
&n(k,t). If we neglect the magnetic shear (5 = 0) and
the § {or k) dependence of wp in Eq. (3) and assume
that the initial perturbation has the sinuscidal form x
exp(ikj RRg#t) with a parallel wavenumber ky,

) bn(t = 0)

£ Yew ("H
+a)) 4a
(19)

2C;, ( F
Va(l + a) (14
which is the same result as given by the local analysis
in Refs. 10 and 11. Here, @ = 1 + iwp?. Then, we find
from Eq. (19) that, in the presence of the ¥V B-curvature
drift, the ballistic mode shows the power-law decay os-

énit)

on(t) =

cillation x t‘slz‘exp(niwb,t) [wir = —kﬁ’!}%z/(4f;‘p)}. in
the asymptotic lmit.
However, the sinusoidal form assumed in deriving

Eq. (19) does not satisfy the boundary conditions
limg_ +o0 én(#) = 0 which is required by the ballooning
representation. Thus, we consider a more appropriate
initial profile for a toroidal system, which is given in the
Gaussian form

bn(t = 0) = én(f = 0,7 = 0)exp[—(Rg6/L)*]. (20)
Then, substituting Eq. (20} into Eq. (18) gives
bn(t) = én(f = 0, = 0) ffh ((vp,t/L)* + ciL)Al/2
a

a( Rg8/L)? ) |

k3
*o (n(l ¥ a)) =P (_ (vrt/L) +a
(21)

We find from Eq. (21) with a = 1+i&pt that the asymp-
totic behavior of the ballistic mode is governed by the
power-law decay

20, L _,
sn(t =0)=én{f = 0,t =0)—1t"?  for

ILUD L’Tz

i — 0.

(22)
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Comparing this expression with Eq. (19), the oscillation
part exp(—iwp,t) is replaced by ¢=%/2. This is considered
to be valid for general perturbations satisfying the bal-
looning boundary conditions himg.. 1., 6n(f) = 0, since
such perturbations are expressed as a continuous spec-
trum consisting of sinuscidal waves in the form of Eq.
{19}, and the parallel wavenumber integral of the oscil-
lation part gives

o0

f dky F (k) ) exp(—iwsrt) o t1/2 (23)

—0Q
where F(k;) is the amplitude of the Fourier component
with the parallel wavenumber &y [F(k) has a Gaussian
form for the case of Eqs. (20)-{22}]. and we recall that

2.2 -

Wy, = —k“vTa/(lle).

§3. TIME EVOLUTION OF THE TOROIDAL
ITG MODE

The ballistic mode behavior considered in the previous
section does not take account of a self-consistent elec-
trostatic field. Here, in addition to the ion gyrokinetic
equation, we use an adiabatic electron response and the
quasineutrality condition to self-consistentlv solve an ini-
tial value problem for the toroidal ITG mode.

3.1 Formulation of the torowdal ITG mode as an nitral
value problem

In the presence of the electrostatic perturbation ¢, the
Laplace-transformed gyrokinetic equation (6) is solved
under the same approximation as in the previous sub-
section to give the ion density perturbation én,, and we
assume the electron density perturbation én, to satisfy
the Boltzmann relation én./ng = e¢/T,. Then, using
the quasineutrality condition én. = &n;, we obtain an
integral equation

“o0 dk'
e V27

where ¢ = e¢ /T, is the normalized electrostatic potential
and the integral kernel R is defined by

oo fwT
K(k k) = —i/ w,.edrﬂ-\/z-e—
a Veai(l +a)
7
XFg(kJ_, k‘J_) [w

w
27;
+ 1
(1+a) (

(1+7)o(k) - K(k,K)$(K') = I(k),

(24)

E-(k-k’)’/cz,\

3 mk—k)?
rodl— g+ BETEY
tl=gmt+ =7

k2 + k2
21+ a)m

(25
Here, the initial condition
(68,1 = 0)eF Py = € Ty(kyp) Frén(d,t = 0) (26)

with C; = —7 + (1 + 7.)/Te(b;), is used to write the
right-hand side of Eq. (24) as

+o0 . +ea —(k—&")f4x
=L [ e [ aw
= Jo —o veAl+a)

xTo(kL, ¥, )on{k' = 0) (27)

ky k) 11)]
+ — .
(1 + G)Te Iy

)

which has the same right-hand side as Fq.(11).

Equation (24) is in the form of a Fredholm integral
equation of the second kind!® and its solution can be
formally written as

i = () i +

-0

+oo
dk’ Mk, k—’)I(k’)]

= (LI)(k) (28)

where £ denoctes the inversion operator.

Then, the time evolution of the electrostatic potential
is given by the inverse Laplace transform of ¢{k,w) in
Eq. (28) as

Bk, 1) :] g—fq%(k,w)e-mt,
L "

where L is a contour which lies above all of the singular
points of ¢(w) in the complex w-plane. In order to eluci-
date the asymptotic behavior of the perturbation in the
limmit ¢ — oc, we need to know how to choose a contour
L and how to analytically continue the functions of w in
Eqs. (25) and (27), which is considered next.

(29)

3.2 Analytic confinugfion n the complez-frequency
plane

We see that the mintegral in Eq. (25) does net con-
verge for w, = v = Im(w) < 0. Here. we find how to
evaluate the analytic continuation of the kernel K into
the region w, < 0. We regard the integral valuable r
as complex-valued and we change the integral path from
the positive real v-axis to those in the complex r-plane
as shown in Fig. 1. In Fig. 1, the curves €y and C_ both
start from the origin = = 0 and are tangential to the real
-axis at 7 = 0. The curve C approaches © = ¢ + i0c
{¢: a positive real constant), satisfying Re{r) > 0 and
Im(7) > 0, while the curve C_ approaches 7 = ¢ — ioco,
satisfying Re(r) > 0 and Im(7) < 0. Let us define a new
kernel A, by Eq. {25}, using the curve C for the path of
the r-integral. We should note that, when continuously
changing the original path along the positive real raxis
to the curve Cy, any singular points of the integrand
in the complex 7-plane are crossed. We also note that,
if we consider the integral along a curve connecting the
end points of these two paths r = ¢+ f00 and v = +oc,
it contributes nothing. Thus, we find that, as functions
of w, A and A, have the same value on the quarter
plane defined by the w, = Re(w)} > 0 and w, > 0. By
noting that the new kernel K, is a well-defined analytic
function of w in the right-hand-half plane w, > 0, we
conclude that K gives the analytic continuation of A
into the lower right-hand quarter-plane defined by the
wy > 0 and w; < 0. In a similar way, we can use the
curve C_ to define a kernel K._ which gives the analytic
continuation of A into the lower left-hand quarter-plane
defined by the w, < 0 and w; < 0.

Now, we observe that K; and K _ defined in this way
approach different values as w approaches a branch cut
Cyr which is defined as a straight line from w = 0 to
w = —io¢ (see Fig. 2). The jump on the branch cut is
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Wiittenn as

Ny—- K_o = AR (30)
where AR 1s given by Eq (25) with the 7-integral per-
formed along the path CL connecting 7 = ¢+ 7 and
7= ¢ —ioc {see Fig. 1). In a similar way to Ay, A_,
and AR, we can define ;. I_, and Al by using C., C..
and Cy, as the T-integral paths in Eq. (27}, respectively.

MTha cemnley vnlued sivantalnes o (o — 1.9 .
LT CUINPICA- VAL ULl LIgLa Yoiiss wn (e — 4, o

.\ are

} are
defined as the w’s which allow nontrivial solutions ¢{w) of
the homogeneous version of the integral equation {24) ob-
tained by puitmg the right-hand side to zero. It is well-
known that the real and imaginary parts of these eigen-
values describe the real frequencies and growth rates
of so-called normal modes, respectively. The same ho-
mogeneous mtegral equation was numerically solved by
Dong. et al. for the cases of positive growth rates.?’ As
shown later by numerical examples. we can calculate
these eigenvalies not only for positive growth rates but
also for negative ones with proper analytic continuation
using Ay and K _. Then, we observe that, as a function
of w, the inversion operator £(w) in Eq. (28) has these
eigenvalues as singular points or poles and that . can
also be regarded as a branch cut for the analytic contin-
uation of £{w) and I{w).

3.3
Now, we take the integration contour L for evaluating
the inverse Laplace transform in Eq. (29) as shown in
Fig. 2. Then, for t > 0, &(¢) is written as the sum of the
contributions from the poles and the branch cut

o(t) = @,{t) + osr(t).

Here, the pole contribution, which are from the normal
modes, 1s given by

—i > e Res[(LT)(k,wa )],
T

where Res[(LT)(k,wy)] denotes the residue of (£7)(k, )
at a pole w = w,. The eigenvalues (or complex-valued
normal-mode frequencies) w, in Eq. (32) are numerically
calculated in the next section including the case of neg-
ative growth rates.

The contribution from the branch cut, which is called
a continuum mode, 1s written as

sty = [ St [0, 7))~ (LI (k)]
Cor 27

(33)
where the subscripts + (—) for £ and I represent their
values on the branch cut defined by the limit of the ana-
lytical continuation in the right-hand (left-hand) lower-
half plane for w, — 40 {w, — —0). The asymptotic
behavior of ¢4, (¢} for { — 400 is dominantly determined
by the behavior of the integrand of Eq. {33) in the limit
w, — —0 Forw, — —0, the jumps AL= L, — £_ and
Al = I, — I_ become so small that we have

(LT )k w = tw;) — (L_I_Yk,w = fw,)]
~ [Llw = 0AIk,w = iw,) + [AL{w = iw,) I}){k.w =0}

Normal modes and confinuum mode

(31)

Sp(k.t) = (32)

Ladient modes

for o, — —I(

{34)

Here, AL{w = /wy) & written as

Al(w = iw,) = Llw = 0)AK(w = 1w, }o(w = 0).  (32)
where the operator AK
trary function g(k) by

(w = tw;,) 1s defined for an arbi-

) +oo dk"
[AK(w = ix,)g](k) = ——AK(k, k' w = iw; (k")
S0 \/d?‘l’
3 VTe
B€nue

-1
i / : 1 1 Lt
x/_m dk ((9 7 / df"”wp (9 ) g(k")

for w, — =0 (36)
We also have
ALk, w = iw,) = 2/Tke, }iCy sﬁq
e o)z
for w, — —0 (37)

From Eqgs. (33)-(37). we obtain

Gur(ke, 1)

t”" VTed

£ =0)

\/;

j ((9_ef f de" (6”))*1
d

nF,t=0) (1 - %m) [£(w = 0)I}(K,w = 0)

(38)

S€ﬂ.;.’*e

for # — +oc.

Noting that én,/ng = én./ny = & and comparing Eq.
(38) with Eq. (22), we see that. for the initial value prob-
lem for the toroidal I'TG mode, the potential and density
perturbations derived from the branch cut integration
show the same form of asymptotic behavior o< ¢72
the density perturbation for the ballistic mode withont
interaction with the potential. [When £ = 1. AL = ¢,
wp = const, and the initial density perturbation profile
in Eq. (20) are used, the ballistic mode result in Eq. (22)
is reproduced from Eq. (38).] This power-law decay is
difficult to describe using the gyro-fluid medel, since it
approximates the dispersion function by a rational func-
tion of w which never requires any branch cut for its
analvtic continuation.!™

From Eqs. {31}, {32), and {38}, we arrive at the conclu-
sion, which is similar to the result of the local analysis, '
that the long-time asymptotic behavior of the potential
and density perturbations for the toroidal ITG mode are
determined by the normal mode with the largest positive
growth rate for the unstable case, while it is dominated
by the continuum mode for the stable case in which all
normal modes decay faster than the continuum mode,
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although the power law o {77 of the decay for the con-
tinmum mode is different from ¢ 3/Ze ™ot in the local
case.

Ii should be remarked here that we can also make dif-
ferent branch cuts in the w-plane from the one consid-
ered here. Different branch cuts make differences in the
definitions of ¢,(t) and () because of changes in the
complex-frequency regions where the analytic continua-
tion of K(w), I{w), and L£{w) are defined. However, the
total perturbation ¢{t} = ¢,(t) + ¢s-(t) and its asymp-
totic behavior given by Eq. (38) for the stable case are
independent of the way the branch cut is made. In our
choice of the branch cut along the negative imaginary
axis of w, the integrand in Eq. (33) quickly decays along
the integral path, so that the continuum mode part of
the total perturbation s hikely to be smaller than that
obtained by some other choice of the branch cut. There-
fore, for the stable case, the normal mode part defined
in our case is likely to decay slower than in other cases.

Kuroda, et al1?) showed a numerical example of tem-
poral evolution of the I'TG mode for the local stable case,
in which the continuum mode is perceived only after the
normal modes, which are dominant in the early stage, are
well damped. So if large collisional effects are included,
they may prevent the continuum mode from being clearly
seeq.

§4. NUMERICAL SOLUTION FOR STABLE
AND UNSTABLE NORMAL MODES

In this section, the homogeneous version of the inte-
gral equation {24) is numerically solved to obtain real
frequencies, growth rates, and eigenfunctions of the nor-
mal modes. In order to treat the case of negative growth
rates, we follow the prescription shown in the previous
section to evaluate the analvtic continuation of the inte-
gral kernel as a function of w. For the numerical results
shown here, we actually calculate the kernel by using the
integral paths in the complex r-plane defined by

-

where 5 (0 < s < 00) is a real parameter. These integral
paths work for the analytic continuation as well as Cy
and C_, described in the previous section.

Figures 3 (a} and {b) show the numerically obtained
normalized growth rate vkyp,/w.. and real frequency
wrkyps fwae of the toroidal ITG mode, respectively, as
a function of the normalized poloidal wavenumber kg p,
for 7o = 1, ¢, = 0.2, 3, = 2, § = 1, 8, = 0,
and ¢ = 1,2. Here the normalization unit frequency
waef(keps) = /Te/2m.fL, is independent of ks. We
see that the growth rate and real frequency are smoothly
continued into the stable regions where the growth rate
18 negative, which shows that our procedure for analytic
continuation works properly. Stable regions are found
for both small and large poloidal wavenumbers, which
was also observed in the calculations using the local ap-
proximation. For all curves shown in Fig. 3 (b), the real
frequency is negative, which corresponds to the direction
of the ion diamagunetic rotation. The eigenfunctions ¢(#)
for kgp, = 0.3, 0.8, 1.6 and ¢ = 2 are shown in Fig. 3 (c),

for w, >0
for w, <0,

(1+ thols)s

(1= ilwis)s (39)

where the other parameters are the same as in Figs. 3
(a) and (b). Here. the real and imaginary parts of the
eigenfunction are shown by the solid and dotted lines, re-
spectively. For smaller poloidal wavenumbers, the eigen-
function becomes wider and more oscillatory along the
field lLine.

Figures 4 (a) and (b) show the normalized growth rate
7 /.. and real frequency wy fu., (bottom) of the toroidal
ITG mode, respectively, as a function of o; for 7, = 1,
€n = 0.2, kgp, = 075, § = 1,6 = 0, and ¢ = 1,2.
Since we are able to calculate both positive and negative
growth rates, we can clearly identify the critical values
of n; where the growth rate vanishes. The eigenfunctions
() for iy = 1.1, 3 and ¢ = 2 are shown in Fig. 4 {(c),
where the other parameters are the same as in Figs. 4
(a) and (b). For ; = 1.1, the growth rate is negative
{(but close to marginal stability} and the eigenfunction
is slightly wider and more oscillatory than the unstable
eigenfunciion for 5, = 3.

The effects of negative magnetic shear on ITG modes
have been theoretically investigated by several au-
thors'®1%) in relation to improvement of core plasma
confinement observed in large tokamaks ?*2*) However,
the results in these works only showed the dependence
of positive growth rates on the magnetic shear. In Fig. 5
(a), the normalized growth rate v/w.. and real frequency
wy fw.. a8 a function of 5 for 7, = 1, e, = 0.2, ; = 2,
kaps = 0.75, 6, =0, and ¢ = 1. In this case, the growth
rate has a peak at § ~ 0.4. Comparing the growth rates
at the same absolute value |§], the negative shear § < 0
gives smaller growth rates than the positive shear 5 > 0
within the range |$| < 1.7, which is the same tendency as
found in other works.'® %) However, the critical values
of &, which give ¥ = 0, have almost the same absolute
value |3| ~ 1.7. We should note that validity of the bal-
looning representation is lost in the limit § -~ 0 although
the growth rate and real frequency for 5 = 0 is plotted
in Fig. 5 {a). The eigenfunctions ¢(#) for § = 10.8 are
shown in Fig. 5 (b) where the other parameters are the
same as m Fig. 5 (a). We see that the imaginary parts
of the eigenfunctions for the positive and negative shear
cases have different signs, which implies that the phases
of these eigenfunctions change differently along the field
line.

Up to this point, we have examined only the cases
with 8, = 0, in which the mode structures are symmet-
ric in # and are localized around the outermost in the
torus. However, in order fo treat the ballooning-type
mode structures in rotating toroidal systems,>® 2% it is
important to take into account effects of 8y # 0. Fig-
ure 6 (a) shows the normalized growth rate v/w.. and
real frequency w,/w,. as a function of §; for o, = 1,
€, =02, =2, 5=1, kgp, = 0.75, and ¢ = 2. In this
case, the toroidal ITG mode is stabilized for 8 > =/2
where the growth rate is slightly negative and the real
frequency changes little. Results for negative 8; are not
shown in Fig. 6 {(a) since the growth rate and real fre-
quency are even functions of 8. The eigenfunctions ¢{#)
for #x = 0, 0.45x are shown in Fig. 6 (b) where other
parameters are the same as in Fig. 6 (a). The symmetry
property of the eigenfunction for §; = 0 is broken for
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g, = 0-4hw
tion for &, = € 457 1= contamed 1 the good curvature
region 8 > x/2 (8 -~ §; > 0057} the growth rate for
f. = 0457 1s much reduced from that for 8, =0 It s
obhserved that, as 8, increases, the eigenfunction changes

Since a sizmificant part of the eigenfunce-
= [

its shape contmuously from the symmetric function of 9
for 8, = 0 to the antisymmetric function of § — = for
#, = 7. The growth rate for a slowly rotating system is
given by the #,-average (27)~! §d8; ~ (8:).2%2%) For the
case 1t Fig. 6 (b), the §;-averaged growth rate is about
40% of the growth rate for 6y = 0.

§5. CONCLUSIONS

In this work, the temporal evolution of the toroidal
ITG mode has been studied by examining its damp-
ing behavior specifically. The kinetic integral equation
including the initial condition is denived from Laplace
transforms of the ion gvrokinetic equation. the electron
Boltzmann relation. and the quasineuntrality condition, in
order to investigate the initial value problem. We have
shown how to evaluate analytic continuation of the inte-
gral kernel as a function of a complex-valued frequency,
which is useful in calculating asymptotic damping be-
havior of perturbations analytically and numerically.

We have found that, in the presence of the torowdal
%V B-curvature drift, the temporal dependence of the
density and potential perturbations consists of normal
modes and a contintum mode. The normal modes
show exponential time dependence, with frequencies and
growth rates determined by the dispersion relation, and
they correspond to poles of the Laplace-transformed po-
tential function in the complex frequency plane. The
continuum mode is given by the integration of the
Laplace-transformed potential function along a branch
cut, which appears due to the toroidal VB-curvature
drift. The long-time asymptotic behavior of the con-
tinuum mode is characterized by the power law decay
o 1%, which is the same as that of the ballistic response
obtained with the propagator of the gyvrokinetic equation
without taking account of interaction with the potential.
In the case where the system is unstable, the normal
mode with the largest growth dominantly describes the
long-time behavior. However, in the stable case where all
normal modes have negative growth rates, the continuum
mede survives a longer time than the normal modes.

The efficacy of the analytical continuation method
shown in this work is shown by numerically obtaining
the dependences of the normal modes’ growth rate. real
frequency, and eigenfunction on the lon-temperature-
gradient parameter 7,, the poloidal wavenumber kg, the
magnetic shear parameter 5, and the ballooning angle
parameter #; for both stable and unstable cases.
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FIGURE CAPTIONS

Fig. 1. Curves C3, C_, and €4 in the complex 7-plane. The
curve Cj (C_} is used as the r-integral path in Eq. {25) to obtain
the analytical continuation of the kernel K (K_) into the lower
right-hand (left-hand} complex w-plane defined by w, < © and

wr > 0 (wr < 0). The curve C4 gives the m-integral path to lm(T)
obtain the jump AK = K — K_ on the branch cut Cj {see Ctico
Fig. 2). 4

Fig. 2. The integration contour I in the complex w-plane for
evaluating the inverse Laplace transform Eq. (29). The domi- s+ C +
nant contributions to the integral are made by poles wy, and a
branch cut Cp,..

Fig. 3. {(a} Normalized growth rate ykpps fwee and (b} real fre-
quency wrkgps fwee as a function of kgps for 7. = 1, €, = 0.2,
m =2, 5=1,8; =0, and ¢ = 1,2. (c) Eigenfunctions #(8}
for kgps = 0.3, 0.8, 1.6 and ¢ = 2 with other parameters be-
ing the same as in {a} and (b). The real and imaginary parts C-ico
of the eigenfunction are shown by the solid and dotted lines,
respectively.

Fig. 1

Fig. 4. (a) Normalized growth rate v /w,. and (b} real frequency
wrfuye as a function of n, for 1. = 1, €, = 0.2, kgp, = 0.75,
§=1,% =0, and ¢ = 1,2. (c) Eigenfunctions ¢(#) for n. =
1.1, 3 and g = 2 with other parameters being the same as in {a)
and (b). The real and imaginary parts of the eigenfunction are
shown by the solid and dotted lines, respectively.

Fig. 5. (a} Normalized growith rate ~v/ws. and real frequency
wrfwse as a function of 3 for 7. = 1, ¢ = 0.2, 5; = 2, 0

kgps = 0.75, §; == 0, and ¢ = 1. (b) Eigenfunctions ¢(6) for
5 = +0.8 with other parameters being the same as in (a). The
real and imaginary parts of the eigenfunction are shown by the poles
solid and dotted lines, respectively.

L)
= el == e = e e = o

Y

Fig. 6. (a} Normalized growth rate ~fw.. and real frequency .
wrfuwse as a function of & for 7o = 1, ¢ = 0.2, 7, = 2, Cbr
§ =1, kyps = 0.75, and ¢ = 2. (b) Eigenfunctions ¢{¥4) for branch cut
6 = 0, 0.457 with other parameters being the same as in {a).
The real and imaginary parts of the eigenfunction are shown by
the solid and dotted lines, respectively.

Fig. 2
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