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One Dimensional Simulation on Stability of Detached Plasma

in a Tokamak Divertor

Shinji NAKAZAWA, Noriyoshi NAKAJIMA, Masao OKAMOTO ,
and Nobuyoshi OHYABU

National Institute for Fusion Sctence, Orosh: 3282-6, Toki, Gifu 509-5292, Japan

The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a
one dimensional Auid code; the time-dependent transport equations are solved in the direction
parallel to a magnetic field line. The simulation results show that stable detached solutions exist,
where the plasma temperature near the divertor target is ~ 2eV. It is found that whenever
such stable detached states are attained, the strong radiation front is contact with or at a small
distance from the divertor target. When the energy externally injected info the SOL is decreased
below a critical value, the radiation front starts to move towards the X-point, cooling the SOL
plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor
chanmel are observed in our parameter space. This qualitatively corresponds to the results of
sokamak divertor experiments which show the movement of radiation front.
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§1. Introduction

In the next generation fusion reactors, it is one of the
most important issue to reduce the heat Joad onto the
divertor target. As a method to reduce the heat load to
technically feasible level (~ SMW /m?), the detached di-
vertor was proposed, and it has been intensively studied
by theories,!® simulations,*® and experiments. 2 &%

When the edge plasma is detached from the divertor
target, the particle and heat fluxes decrease strongly,
and the plasma pressure drops significantly along the
magnetic field line in the divertor region. Hence, the
detached plasma is considered to be an important can-
didate for reducing the heat load on the divertor target.
Such an edge plasma condition has been demonstrated
experimentally in a number of tokamaks. like JT-60U,
Alcator C-Mod, and Doublet I11.5%)

The experimental observations, however, show that
the location of detachment front {or radiation front) is
unstable. For example, it was observed in the Doublet
111 divertor that when the edge plasma near the diver-
tor target starts a transition from an attached state to
a detached one, the cold and demse plasma near the
target flows into the SOL region surrounding the core
plasma. As a result of this influx, the SOL plasma is
cooled and small disruptions occur.?) This characteris-
tic is, of course, considered to be a disadvantage for the
core plasma confinement. This result implicitly indicates
that it is not easy to use a detached plasma from the view
point of thermal stability of the front.

On the other hand, simulations on divertor plasmas, in
which the various atomic processes are important, have
been done by many authors. 3%’ In most cases, the sta-
tionary states of SOL plasma are treated, and as for the
dynamical behaviors of plasma detachment, little work
has been done.

The purpose of this paper is to present the results

obtained from a one-dimensional fluid simulation on the
detached plasma in a tokamak SOL. In particular, this
simulation study is focused on the problem of whether
the location of detachment front is stable or not.

This paper consists of four sections. In sec.2, the sim-
ulation model is described. In sec.3, the numerical sim-
ulation is performed. ¥ is shown how the edge plasma
changes from an attached state to a detached state as
the heat injected into the system is decreased. Sec.4
gives Qur SUIMIMAary.

§2. Simulation Model

2.1 Plasma fluid equations

We apply a one-dimensional model to the divertor
plasma. This model uses a simplfied geometry, and it
treats a region between the midplane and the divertor
target, as illustrated in Fig. 1.

Let us consider the hydrogen plasma. In order to sim-
plify our analyses, we assume the charge neutrality and
ambipolar condition, i.e. , n. =n, =n and v, = v, = v,
where n. (n,) is the electron (ion) density; v. (v,) the
electron (ion) velocity parallel to the magnetic field live.
In addition, we assume that the ion temperature T; is
equal to the electron temperature T,. We can thus re-
gard the SOL plasma as a single-fluid with density n,
velocity v, and temperature T.

By denoting the coordinate along the magnetic field
line by z, the one-dimensional transport equations are

given as follows:*?)

continuity
In O (nv)
- = 8n, 1
ot + oz d (21)
momentum:
(mnv) O(mnv® + P)
ot - oz = Se (2.2)

— 1 —



energy

=0
z

(2.3)
Here, the plasma pressure P is related to the density n
and the temperature T through P = 2nT; k°) is the elec-
tron heat conductivity parallel to a field line of magnetic
field; s,, s,, and @ are the particle, momentum, and en-
ergy source, respectively. These sources are defined as
follows:
particle source:

a 1 5, O 1
ETt(Z}nT + gmnv T+ £(5nTU+ =

mny® — 5E)
2

sn = nnu{ov),,, — " ((ov),,, + (ov)s..), (2.4)

where n,, is the density of neutrals {hydrogenic atoms);
(o), (o¥)..., and {ov},, _ are the ionization.'!) radia-
tive’?) and three-body recombination®) rate coefficient,
respectively,

momentum source:

8y = —mnv{n,(ov}),,, + nllov),,. + (ov);..)} (2.5)
where {ov}___ is the charge exchange rate coefficient.'!}
energy source:

Q=W,h(z—a)

- (%mvz i 3T) n*({ov),,, + (o))

- (%mvz + g.T) e {ov), .

~ Ejoniftn {00}

(2.6)

Here, the constant W, is the heat which is externally
injected into the system. The function h{z — a) is a step
function: A{z —a) = O for z > a and h(z ~a) = 1
for z < a. In other words, the heat source is uniformly
distributed in the region from the midplane (at z = 0) to
the X-point (at £ = a). The constant £,,,, is the electron
energy loss due to the ionization and excitation {g;,, =
30eV). The last term W,.,, is the radiation cooling rate
of impurity ions. In Fig. 2, the rate coefficients of atomic
processes included in this simulation model are shown as
a function of T. The curve of three-body recombination
rate coefficient is for the plasma density of 1.0x109m 3.

The modeis for neutrals and impurity ions will be dis-
cussed later.

— Wimp-

on

2.2 Boundary conditions

As shown in Fig. 1, the computational domain con-
tains two boundaries: the surface of the divertor target
(at £ = L) and the midplane (at z = 0}. At the diver-
tor target, we have imposed the Bohm condition for the
plasma velocity:

2Ty
vg = 4/ —, 2.7
== (2.7)
i.e, the plasma fluid flows into the target with the sound
velocity, where the subscript d denotes the quantities at
the surface of the divertor target (Throughout this paper,
this notation will be used).

Also. the heat flux to the target is prescribed as

i oT

5n4T, — Pk —

Tegd U4 + 2mndvd (IC I E

where v is the sheath energy transmission factor. Ac-

cording to the sheath theory,'*) if no secondary electron
at the target is considered, v is given by

2T 1 m;/m,
1n -
1= 2t (21r(1-i—T/T))

In our cases for hydrogen plasma with T, = T,, the factor
7 is approximately 6.5.

At the midplane, assuming the symmetry with respect
to the midplane, we have employed the following condi-
tions:

) = 'yndevd, (28)
d

(2.9)

on

5r 0, {2.10)

or

5= 0, (2.11)
v=0. (2.12}

2.3 Neutral gas model

We evaluate the neutral density n,, by using a diffusion
model. In this model, it is assumed that the neutrals,
which are emitted from the wall, are diffusing across
the background plasma through charge exchange pro-
cess. Then, the neutral flux is decreased by ionization
and increased by recombination process. The diffusion
equation for neutral density is given by

Onn 9 (0. _ _ {ov)
Bt Bz \ 0z ) mien

+n2({ov),,. + (oV)5..), {2.13)

where z is the length of magnetic field line projected
onto the poloidal plane, as shown in Fig. 3. The relation
between the length z and the coordinate z along the field
line is given by dz = drsin®, where 8 is the angle at
which a magnetic field line intersects the divertor target.
The diffusion coefficient D due to the charge exchange is

p= L _ (2.14)

mn{ov) ..

The equation (2.13) requires the the boundary condi-
tion. At the divertor target, we adopt the condition

Bnn = —ngvgsinf
32 J - dld 3

that is, the z component of neutral flux is set to be equal
to that of plasma flux. (This physical meaning is that
100 percent recycling at the wall is assumed). Using the
continuity equation (2.1), the diffusion equation (2.13),
and the above boundary condition (2.15), we can eas-
ily confirm that the condition (2.15) also guarantees the
conservatlon of the total particle number in the system:
fo {n + n,)dz = const.. This gives a realistic boundary
condition. In fact, when the SQL plasma becomes unsta-

(2.15)
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ble, the detachement front can move rapadly (The tane
scale of this frausport can be of the order of ~ Tuisec)
In this case we should assume that the sum of plasma
particle number in the SOL and neutral particle number
in the SOL is conserved.

2.4 Impuriy model

The coronal model is used to compute the energy loss
due to the impurity radiation W,m,p. which is given by

W,np = nny L(T). (2.16)

where ny is the density of impurity ions, L(T)} is the
impurity cooling rate and depends only on the plasma
temperature.'® Carbon is the only impurity species con-
sidered in our simulations. The density n; is given by
using a fixed fraction model:

(2.17)

ny = énw

where the constant £ is the impurity fraction. In Fig. 2,
the cooling rate L{T') for carbon is shown as a function
of T.

§3. Simulation Results

Using the fluid model described in the previous sec-
tion, we carry out numerical simulations. A semi-implicit
method is employed to carry out the time integration;
Only diffusion parts are solved using implicit scheme and
the others are explicitly solved with the Runge-Kutta
scheme. Fixed simulation parameters are as follows: The
system length is L = 50m; The distance between the
midplane and the X-point is ¢ = 35m; Carbon is the
only impurity species, and its fraction is & = 0.05; The
field line intersects the target at an angle § = 5.0°. By
carrying out the simulations with different values of heat
source W, the change in plasma parameters are ob-
served from the attached states to the dettached states.
The values of W scanned in simulations are in the range
1.0 <« W, < 22MW/m?.

In our simulation code, all lengths and velocities are
normalized to the system length L and the velocity vro,
respectively, where vrp is ion thermal velocity given by
vro = +/To/m, and where Ty = 10eV. The total grid
number is 2048. The grid spacing is A ~ 0.48 x 1073,
The time step is 6t = 1.0 x 107°. The Courant-number
is ebt/Az ~ 0.02, where ¢ is the typical plasma flow
velocity.

Before giving the simulation results, let us evaluate the
gsize of the total energy externally injected into the sys-
tem. For the case of a tokamak with the major radius
and the SOL width d, the energy flowing into the SOL re-
gion would be estimated by Qotar ~ 27 RAW 1 2a8. Using
typical tokamak values of R = 3m, d = 2 x 10" ?m, and
simulation parameters of W, = 1L.OMW/m%8 = 5.0°,
a = 35m, we obtain Qiuar ~ 2.3MW, which will be a
reasonable value as tokamak parameter.

First. we show stationary solutions for an attached

Cise with W = 2Z0MW it o Fig. o
the mndplane 1 at r = 4. and the divertor target s at
+ = Dl

In the figure.

The vertwad dotted line at r = 35m rep-
resents the X-point where the heat source distribution
ends. Figure 4 (d) shows that neutrals are localized at
the target. and so the particle sources due to jonization
also localized at the same point (Fig. 4(f)}. The edge
temperature is at around 15eV, at which the impurity ra-
diation and recombination is not large, so that the dom-
inant process of energy loss is the ionization (Fig. 4(h})).
This causes a rapid fall in the energy flux near the target
(Fig. 4{g))-

Figure 5 shows profiles of plasma parameters for a de-
tached case with W, = 1.3MW/m®. In comparison with
the attached case. the edge plasma with the lower tem-
perature can be obtained; the edge temperature is ob-
served to be ~ 2eV. The energy loss due to the impurity
radiation is comparable to that of ionization and charge
exchange (Fig. 5 (h)). The = position at which impurity
radiation, charge exchange, and ionization phenomena
takes place are superposed at nearly the same location.
The energy flux rapidly decreases to around 10% of input
power as one move to the divertor target (Fig. 5(g)).

The detached cases are different from the attached
cases in that the impurity radiation region exists near
the target. For all the detached cases where the solution
is in statiopary state, the impurity radiation region is
contact with or very close to the target: the z position
of the peak is 49 < z < 50m.

As previously mentioned. parameter scans are carried
out with the various values of input power W,. In the
range of 1.3 < W, < 2.2MW/m®, we can obtain sta-
tionary solutions. However, for lower values of the heat
source (W_ < 1.3MW/m?), the detachement front be-
comes unstable and the stationary solution is no longer
observed.

We show such an example in Fig. 6. This figure shows
the time evolution of profiles of density n and temper-
ature T for the case with W, = 1.2MW/m®. Here, as
the initial profile. we put a stationary solution of the de-
tached plasma with W, = 1L.3MW/m®. It is found that
both the density and the temperature profile are moving
nearly steadily from the target to the X-point, extending
a region of cold and tenuous plasma.

Figure 7 shows snapshots at ¢ = 4.75ms of moving
detachment front for various plasma parameters. A low-
density and low-temperature region is in the range 43 <
z < 50m (Fig. 7(a) (b)). The density falls sharply at z =
43m. At this time, the temperature in front of the target
is observed to be ~ 0.1 — 1.0¢V. Fig. 7(f) shows that
the recombination is occurring at the detachment froant.
Expanded views of several energy loss rates are shown in
Fig. 7{h). In this figure, the value of energy loss for each
atomic process is given in parentheses. The sum of the
energy losses {Total energy loss) is ~ 51IMW/m” and this
value is larger than total injection power of 42MW /m?.

The dependences of edge density ng, edge temperature
Ty, and energy loss rates for various atomic processes,
on the total injection power W, are shown in Fig. 8.
where W,,, is giver as W,, = Woe. As Wy, is decreased
from 78MW/m? to 65MW/m”. the temperature Ty falls
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from 20eV to around 10eV. Then, the impurity radiation
loss W,.,,,, increases rapidly and it causes a steep drop in
Ty of 10eV at W,,, ~ 62MW/m?2. Tt is found that the
cold and dense plasmas with a strong impurity radiation
are produced near the divertor target in the parameter
range 42 < W,,, < 60MW /m?, while the ratio of energy
flux at the target to injection energy W;,, ynTv/Wi,,
is substantially decreased to below 10%. In the figures,
such plasmas are designated by a word ‘detached’. In
the cases with W,,, < 42MW/m?, it is observed that the
detachment front moves to upstream region, and then
stationary solutions are not obtained.

§4. Summary

We have studied the stability of detachinent front in a
tokamak divertor with a one dimensional fluid code.

First, we have presented the simulation model; The
piasma fluid is described with the time-dependent trans-
port equations based on the single-fluid theory, where
ionization, charge exchange, and recombination effects
are taken into account in those equations. They are
solved in the direction parallel to a magnetic field line.
The neutral gas is approximately treated by using a dif-
fusion model. The fixed fraction model and the coronal
approximation are used to give the impurity density and
radiation loss.

Next, we have carried out numerical simulations. The
simulation results show that when detached stationary
solutions are observed, the heat flux onto the target is
significantly decreased to around 10% of the input power.
However, whenever such detached states are attained,
the strong radiation front is in contact with or at a small
distance from the divertor target. Probably, such a con-
dition will not be favorable, because the target will be
subjected to an amount of radiation {about one-half of
total radiation power). When the input power is de-
creased below a critical value in magnitude, the radia-
tion front moves towards the X-point, cooling the SOL
plasma. For such cases, no staionary solutions are ob-
served. This result implicitly indicates that it is not easy
to use a detached plasma from the view point of the
location-stability of detachment front.

In our discussions, there is one point we should note.
We have carried out simulations using one-dimensional
model. However, in a actual tokamak SOL, two-
dimensional effects are important. For instance, if we
consider the cases where the SOL plasma is detached
from the inner section of the target, while the plasma
attaches to the outer section of the target (what is
called ‘partial detachment’), we have to treat a two-
dimensional model to discuss the stability of detachment
front. Therefore, there is a doubt whether our one-
dimensional interpretations on the detachment front is
directly applicable to the actual problem. It seems that
our results is valid only for the cases of ‘full detachment’.

In this paper we have ignored the transports for im-
purity species. If we consider those transports, our sim-
ulation results will be modified. For example, since the
thermal force between the plasma fluid and impurity ions

proportional to the temperature gradient l:ave an effect
on pushing the impurity ions o the core, the force will
probably lead to further destabilization of detachment
front. This problem will be discussed elsewhere.
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Fig.1 Schematic of one-dimensional simulation model
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