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Abstract
A non-conservative scheme that guarantees exact mass conservation is proposed. Although 1t 1s
n a non-conservative form, the mass of each cell is employed as an additional variable that is
advanced in a conservative form. Some numerical tests are carried out to demonstrate the mass
conservation and the accurate calculation of the speed of a shock wave even without the viscosity

term.
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}.Introduction

There have been revolutionary progresses in
the numerical solutions of the hyperbolic equations
for the last two decades. Among them, the CIP
(Cubic-Interpolated Propagation) scheme[1,2,3]
1s developed by one of the authors almost 15 years
ago and has been applied to various multi-phase
flows like milk-crown formation{3], laser-induced
melting, evaporation[4], and so on. The CIP has
many characteristics that is suited for calculation
such as capturing surface, even with 1000 tunes
density ratio, and treating incompressible and
compressible fluids together. Since 1t uses
primitive Euler representation of equations, 1t 18
well sutted for multi-phase flow calculations.

In some special cases, however, there exist
subjects that require exact conservation of mass,
etc. One of the typical example is the black-hole
formation and emission of gravity wave[5]. In this
case, small fraction of mass is converted into
gravity wave and strict mass conservation is
essential. Another example 1s plasma simulation in
which Vlasov equation in six-dimensional phase
space must be solved and total density of particle
must be conserved, otherwise large electric field
appears. The CIP method can be constructed to
exactly conserve the total mass in Vlasov system
of equally spaced grid in phase space[6]. However,
the use of non-equally spaced grid or other general
grids can save the computational cost and is
worthy for investigation.

The CIP method belongs to a class of semi-
Lagrangian scheme[7,8], which employs the
separate treatment of advection term from other
terms and hence enables the advection calculation
with large time step free from CFL condition.

Although the semi-Lagrangian scheme has been
successfully used in short-term atmosphenc
problems, the loss of exact conservation makes the
scheme mappropriate for long-term problems and
oceanic problems. In this sense, the effort to
establish exact conservation in semi-Lagrangian
form would be a challenging task.

In this paper, we shall propose a non-
conservative scheme or a semi-Lagrangian scheme
that guarantees exact mass conservation.

2.Formulation

Before introducing the scheme, we had better
introduce the definition of mass conservation. We
discuss at first how to compute conservation law as
follows;

¥ ). (1)
o ox
Integrating Eq.(1) from Xy 1 X, gives an
equation
i ”de
[7r 2)

= [ ras- s Yo -G 1)
If we assume f bemng constant f, during spatial

integration and take the sum of both sides of Eq.(2)
over an entite domain, flux defined at cell
boundary (uf )m/l cancels each other leading to

the conservation of the total mass as follows;
Zf;_nﬂ =zj“n . (3)

under an appropriate boundary condition that
ensures mass conservation
However, as clear from the procedure leading



to Eq.(3), an accurate conservation condition isn't
that shown by Eq.(3), because Eq.(3) is derived
under the assumption that 1 is spatially uniform
between X and L The more accurate
expression for conservation should be given by the
integration like the following equation;
jf"”dx=ff”dx- (4)
In this paper, we use this definition of mass.
Introducing the mass of each cell as

Phn=[" 1, s)
then Eq.(4) can be put mto a form
DA WA (6)

The present scheme employs this p defined by
Eq.(5) as an additional variable together with 7 in
Eq.(1). In the scheme proposed below, 7 is

advanced in the non-comservative form, but
conservation is realized by p which is advanced

im a conservative form under the accurate
conservation condition of Eq.(4).

For simplicity, we shall start at first with the
following advection equation with velocity u(z 0)

being constant,

g‘i -+ g = O . (7)
ot ox
Therefore, the time development of £ in Eq.(7) is

calculated from the following equation;
f(x[,t+At)=f(xt. —uAt,t)- (8)
Here s is given only at the grid points
XpyXgyttry Xyyrr, Ko - WE MUSE COTIStIUCt a piecewise
interpolation function £ (x) on each interval
[IH , x,—] to represent f(x‘ —uAt, t), because if >0,
f(xi_um,t) is located between grids [xi_l, x,] in
the case of CFL=uAffAx<l. We use f and
f'(=0f/x), which is the spatial derivative of f,
as variables in the same way as the CIP method.
Furthermore, we add , defined by Eq(5} as

another variable. The ith function piece F(x) is
determined so as to satisfy the continuity condition

rF; (xi_1)= f (xi—l )

Fix)=f(x) ®
L OF] (XH )/ax = fr(xf-l)

af;(xl)/ax =f'(x:)

_-[j_, P:.(x)dx =Py -

In order to meet the above condition, fourth-order

polynomial can be chosen as an interpolation
function E.(x):
E@=ale-x) +bl-xf (10
relr—x )+ flx-x)+ £,
Here, each coefficient is determined from five

constraints, and taking into consideration of the
sign of the velocity, these are given as follows;

.15 S oo
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- 30
o) i

4 4
b = g (1fia+87) -5 A - (32)7)
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Ax, =X, —X%,
(11)
. i-1 ifu 20, \ +1 ifu’ =20,

iup = sgn(u[ )=
i+l ifu’ <0, -1 ifu’<0.
For constant velocity field, the spatial
derivative of Eq.(7) is given by

AR A (12)

ot &
which simply represents the advection of ¢ with

the same velocity as s in Eq.(7). Therefore, the
time development of s and #° is calculated
simply by shifting the interpolation function F£,(x)
by uA:r in the same way as the CIP method as
follows;

£ =Flx-urar) (13)
=@ 5+ e+ [ S
f;n = a]:: (x,. —u:'At)/ax (14)

=4q &’ +3BMET + 208+ 17,
where £ =-u’At, and each coefficient 1is
equivalent to Eq.(I1) at the time step #. The

problem left for us is to calculate the time
development of . Although there exists a variety

of possibilities, the simplest one is to calculate the
time development of p based on Eq.(1) to satisfy

Eq.(6). ply, 18 equivalent to the sum of f



contamed 1 a cell between

g-rlds[xrl’xil'
Therefore, if we define the flux passing through

x,_, and x, during [rr+Ar] as ap , and ap,

t-1
respectively, the time development of p 15
calculated by the following equation;

Plija = Plan + 801~ Bp]- (15)
With the aid of Fig.1, 1t 1s clear that ap" 1s defined
by the following equation;

apf = [ Fr(adx
AN L
—[5§+4§.+3§ éfJ

& =-u'At, and each

(16)

where coefficient is

equivalent to Eq.(11) at the time step n.
Therefore, the solution of Eq.(7) is given by
Eqgs.(13)}+(16). Conceming the initial condition of
7', we can adopt the following method, for
example, in the same way as the CIP method,;

o JARI A (17)

X, X

1+1
For the imtial condition of p, we may interpolate
grid interval{x |, x | with a straight line. Therefore,

the initial condition of p is defined by
pl—]J'Z f; : ( :_xxfl). (18)

3.Generalized One-Dimensional Scheme

Next, we discuss the generalized case in which
velocity # can change mn space and time. In this
case, a conservation law Eq.(1) is put into a form;

%Lui:_fﬁ. (19)
t
In order to calculate Eq.(19), we split it nto two
phases in the same way as the CIP method. One is
advection phase;

¥y, (20)
ot ox

and the other is non-advection phase;
o 2D
ot ox

The spatial derivative of Eq.(19) can also be split
into two phases in the same way as the above
argument. Therefore the advection phase is

ZiZ . (22)
ot
and the non—advectlon phase is
AN (23)
&t ox

If we can assume that the velocity » remains

constant during time mterval Ar, we can use the
same procedure as Eqs.(13) and (14) for the
advection phase.

Therefore Eq.(20) that corresponds to the
advection phase of y 15 calculated by Eq.(13),
and Eq.(22) that 1s for the advection phase of
1s calculated by Eq.(14). After 5 and s are
advanced in the advection phase, Egs.(21),(23) that
correspond to the non-advection phase are
calculated with a finite-difference approach in the
same way as the CIP method. These two phases
together with the development of , over one time
step given by Eq.(15) complete one time step of
the calculation.

It is i1mportant to note that the mass
conservation is recovered in a form of spatial
profile within a grid cell every time step when the
polynomial is constructed under the constraint of
Eq.(9), even if the separate treatment of Eq.(19)
may not guarantee the mass conservation in the
sense of Eq.(3).

4 Numerical Tests

In this section, we shall present some sample
calculations to test the procedure given by

Egs.(13)~(15).

I . One-dumensional linear advection problem
{u = const.)

Let us start at first with linear advection of a
square wave under a constant velocity field like
uw=1 m Eq.(1), and the following initial condition
is chosen.

f(OsX)={

where equally spaced grids points of Ax =1 and
CFL mumber of 0.1 are used.

Figure 2 shows the profile after 1000 time
steps. For comparisen, we also include the result of
the CIP method in Fig.3 and the first order upwind
scheme in Fig.4 with the same condition. The solid
line shows the initial condition that corresponds to
the exact solution.

Since we use the interpolation function of the
fourth order in Eq.{13), more accurate
representation of discontinuity is made possible
than the CIP method which uses the mterpolation
function of the third order. The over and under
shoots observed in Fig.2 never grow as well as the
CIP method.

1 f 40<x<60

0 otherwise,



Il . Generalized one-dimensional problem
{u # const. )}

Next, we slightly modify the above example
into variable velocity field and then Eq.(1) is
solved under a given velocity field;

u =1+ 0.5sin(2 /100)
with the following initial condition,

1 if40<x<60

f(o’x)_{o otherwise ,
where equally spaced grids points of
Ax=100/(N-1) and time step size of
Ar=10/(N -1) are used, N being the number of
grid points. In this case, the procedure given by
Egs.(20)~(23) and (15) is employed.

We repeated the calculation by changing the
total grid number to /¥ =101, 301 and 1001 to test
grid dependence for the present scheme, the CIP
scheme and the upwind scheme in Figs.5,6 and 7,
respectively. Furthermore, the result of the first
order upwind scheme with N =10001 is added in
Fig.7. All profiles are those after 10(¥ -1} time
steps that corresponds to =100. Since no analytical
solution is available, the result of the present
scheme with N =1001 is shown by the solid line
m Figs.6 and 7.

We confirm that the accuracy has been
improved at the discontinuity in this calculation as
well. It is important to note that the first order
upwind scheme needs 10,001 grid points to obtain
the same result as the present scheme or the CIP
method of 101 grid points, which already
converged to one soluticn regardless of grid size.
Furthermore, it has already been shown that most
of the modern schemes like TVD and ENO fail to
reproduce the result with 101 grid pomts[9].

Figure 8 shows the conservation error of f

and p in our scheme, and that of 7 in the CIP

method in the case of & =101. The conservation is
not always guaranteed with the CIP method since
it is non-conservative scheme, although the error is
extremely small. The present scheme, however,
guarantees the conservation of spatially mtegrated
mass p as proposed in the previous section,

Although the exact definition of mass p is
conserved as can be observed from Eq.(15), Z 7

is not always kept constant. This discrepancy
appears at the beginning of the calculation because
the initial profiles are not described by polynomial.
After the calculation proceeds, both , and Z f

give similar results.

1. Burger's equation without viscosity
The following one-dimensional Burger’s
equation 18 an interesting example of application to
a non-linear equation;
L 4

Since Eq.(24) does not have non-advection phase,
the time development of # is calculated only by
Eq.(13). In crder to calculate spatial derivative of
u , we differentiate Eq.(24), then

N

——tu =-u -

ot Ox
This equation is split into two phases:
Gu'for+udu'fox=0 (advection) and &uw//ot=—u"
(non-advection). We calculate the advection phase
with Eq.(14), and the non-advection phase with the
following equation applying a finite difference
method;

wt=u —(u,f')ZAt .
For the calculation of p{E judx), we transform

Eq.(24) into the conservation form as follows;

a def2) (25)
ot ox
From this equation, we update p by the following

equation;
Pi’ﬁ}z = Pzn—lfz +ApT —Ap]

apt= [ Fr

@ s B s G o2 ST .
= L& T+ L ET L E -+ s
het gt ly Ji}:,

where ¢ =—(uf2)'As, and each coefficient is
equivalent to Eq.(11).

The initial condition used here is

#(0,x)=0.5+0.4cos(2mx/100) ,

where equally spaced grid points of
Ax=100/(N-1) and time step size of
Az=10/(N+1) are used, ¥ being the number of
gnd points.

Figure9 shows the calculation result with
N =101 by the present scheme after 10(x —1) time
step that corresponds to t+100. For comparison, we
also include the result of the CIP method in Fig.10.
In order to check the exact speed of a shock wave,
we show the result of the calculation with the
conservative form of Burger’'s equation (Eq.(25))
by the first-order upwind scheme with N =1001 in
Figs.9 and 10.

In this calculation, wviscosity term is not
considered. Without viscosity term, we can not



correctly calcuiate the speed of a shock wave by
nan-conservative scheme Iike the CIP method mn
Fig.10, while the speed of a shock wave can be
exactly obtained by our scheme as shown in Fig 9.

V. Burger's equation with viscosity
Finally, we solve the Burger’s equation with
viscosity term as follows;
Su du . Pu
—tu—=A—
ot Ox axt
The wviscosity term is calculated with a finite-
difference approach. The initial condition 1s
f(OsX)={ AN
~0.1 if x>10,
where equally spaced gnd points of Axr=1.0 and
tune step size of Ar=0.10 are used. The
coefficient of the viscosity term is set to 1 =0.15.
Figurell shows the profile after 1000 time
steps that correspond to t=100 and the propagation
speed agrees well with the exact solution.
Although the example given in Fig.9 can be
treated by the present scheme without viscosity,
the shock wave in Fig.11 dose not propagates
without it. This reasomr is illustrated in Fig.12.
When the directions of the flux at the boundanes
x, and x, are opposite, then the total mass at the

cell B should increase. However, as seen from
Eqs.(11),(13) and (14), 7, and f, are solely
determined from the mass of upwind cells that are
A and C, respectively. Therefore, the increase of
mass at the cell B is not reflected on the changes of
f, and f,. This is the exceptional case and it
happens only when the velocity changes ihe sign at
the neighboring cells and compression occurs.

In the example of Fig.11, the information of
mass at the cell B is redistributed to the
neighboring cells through diffusion process.
Alternatively, there exists another method to
overcome this difficulty. That 1s to construct a
polynomual covering two ceils like

Ex —urar) 26)
=@} B} 2T+ Lt
Here, i comesponds to x for » >0, and idw
means the downward grid which 15 x, n Fig.12.

The polynomial Eq.(26) 1s defined over the domain
[x,up,x, de:[xo, x,]- Supposing the integrated value

of 7 coincides with g, +p,, we obtain

—n 15

5 . ,
a == A (ﬂuﬂ +fm..‘)+m(ﬂup —fm)

30
—-Sgﬂ(u:);x5 (P.,vz + p.-l/z)v

s 4 A . :
bl - Ax‘i (71‘::4:7 + an.dw) Ax'z (j;up (3/2)fm‘w) (27)

60
+ Sg'ﬂ(u,")zxﬁ (.p;fl,fz + pm/z)’

6 =y
e ORI A YN

- sgn(u:’ %(P:—l/z + pnl/z)’

Ax, =x, — X,

i-1 fu'=z20, i+1 ofu’ 20,
wp = dw =

i+1 ifu’ <0, i-1 ifu <0,
gn( ”) +1 ifu’ 20,
sgnlu |=

-1 et <0,

7;'! :x{ _xxdw_u(ﬂAr "
For u <0, 1 corresponds to x,, x, =x,.
Xy = Xy and the polynomial is defined over

[x - xij=[x”x3] satisfying the total mass of

Pyt Pe-

Taking into account of special care using F at
the point shown by Fig.12, the algorithm is slightly
changed as

. {f;(x,—uf'ﬁt) ifu! ul, <0,
-f: =
E(x, —uj’Ar) otherwise , (28)

P )
' oF, (x, —uf’At)/&x otherwise .

Figure 13 shows the result with 1=0 but
Eq.(28) is used. Although a slight undershooting is
observed, the propagation speed of the shock wave
has been correctly reproduced keeping a quite
sharp discontinuity. The use of rational function
CIP[10,11] to eliminate the undershooting would
be an interesting future problem.

5.Conclusion

We have proposed a new algorithm that
enables non-conservative schemes to be exactly
conservative. In the mass conservation law, mass 1s
used as an additional vanable and 1t corrects the
conservation error ongmated from a non-
conservative  formulation by  continuously
changing the shape of interpolation function. By
this method, the total mass, which is defined to be



the integrated value of s over the space, is
exactly conserved.

This scheme has been tested by Ilinear
advection with variable velocity field and Burger’s
equation. Although further investigation would
improve the result, the present scheme can provide
a useful tool to solve nonlinear equation in a non-
conservative representation which has been proven
to be quite stable for multiphase flow calculations.

The extension of the one-dimensional scheme
presented here to multi-dimensions may need a
little concern about the mtroduction of integrated
value of f and will be give in another paper

appearing shortly.
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Fig.1:The inflow and outflow of flux during Ar.
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Fig.2: Linear propagation of a square wave
after 1000 time steps (uAt/Ax=0.1) by the
present scheme (circles). The solid line
shows the initial profile.
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Fig.3:Linear propagation of a square wave
after 1000 time steps (uAz/Ax=0.1) by the
CIP method (circles). The solid line shows
the initial profile.

OO

80 100

Fig.4 : Linear propagation of a square wave
after 1000 time steps {uAs/Ax = 0.1} by the first
order upwind (circles). The solid line shows the

initial profile.
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Fig.5:Propagation of a square wave with a given
velocity field(u=1+0.5sin(2 = x/100)) by the present
scheme at +=100. The number of grids is 101{circle),
301(triangle), 1001 (solid line).
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Fig.7:Propagation of a square wave with a given
velocity field(o=1+0.5sin(2 = x/100)) by the first
order upwind at t=100. The number of grids is
101(circle), 301(triangle}, 1001 (square),
10001(diamond). For comparison, the result of the
present scheme of 1001 grids is shown by the solid
line.
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Fig.6: Propagation of a square wave with a given
velocity field(u=1+0.5sin(2 7 x/100)) by the CIP
method at t=100. The number of grids is 101(circle),
301(triangle). For comparison, the result of the
present scheme of 1001 girds 1s shown by the solid
line.
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Fig.8 : Conservation error of s in the

present scheme (circle) and the CIP method
(square) and p in the present scheme

(triangle) until 100 time steps.
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—— UPWIND(N=1001)
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X

Fig.9:The result of Burger’s equation without
viscosity by the present scheme with 101 grid
points at t=100. For comparison, the result of the
first order upwind scheme with 1001 grid points
at =100 is shown by the solid lme.

=== CIP(N=101)
—— UPWIND(N=1001)

Fig.10 : The result of Burger’s equation without
viscosity by the CIP method with 101 gnd points at
t=100. For comparison, the result of the first order
upwind scheme with 1001 gnd points at t=100 is
shown by the solid line.
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Fig.11 : The result of Burger’s equation with
viscosity by the present scheme at =100. The
exact solution is shown by the solid line.
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Fig.13:The result of Burger’s equation without
viscosity by the present scheme at t=100. The
exact solution 1s shown by the solid line.
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