ISSN 0915-633X -

NATIONAL INSTITUTE FOR FUSION SCIENCE_ i

Gyrokinetic Field Theory S _,_:‘5 .

H. Sugama

(Received - Aug. 3, 1999 )
NIFS-609 Aug. 1999

This report was prepared as a preprint of work performed as a collaboration |R
reserch of the National Institute for Fusion Science (NIFS) of Japan. This document is - |2
intended for infomation only and for future publication in a journal after some rearrange-
ments of its contents. ‘ :

: Inquiries about copyright and reproduction should be addressed to the Research
- Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi,
Gifu-ken 509-02 Japan.

' RESEARCH REPO
. NIFSenes

NAGOYA, JAPAN




Gyrokinetic Field Theory
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The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the
particles’ dynamics as well as the self-consistent behavior of the electromagnetic fields The gy-
rokinetic equation for the particle distribution function and the gyrokinetic Maxwell’s equations
for the electromagnetic fields are both derived from the variational principle for the Lagrangian
consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian
formulation, the energy conservation properiy for the total nonlinear gyrokinetic system of equa-
tions is directly shown from the Noether’s theorem This formulation can be utilized 1 order to
derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy

for fluctuations with arbitrary frequenctes.
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§1. INTRODUCTION

The gyrokinetic theory'™ is a basic framework to
describe microinstabilities, turbulence, and resultant
anomalous transport observed in magnetically confined
plasmas. Basic equations for the gyrokinetic theory are
the gyrokinetic equations for the particle distnibution
functions and the Maxwell’s equations for the electro-
magnetic fields The gyrokinetic theory ireats the fluc-
tuations with perpendicular wavelengths on the order of
the gyroradius p and frequencies on the order of the dia-
magnetic frequency w. ~ (p/L), and it employs the ra-
tic p/ L as the perturbation expansion parameter, where
L s the equilibrium gradient scale length and 9 is the
gyrofrequency

Twao types of methods to derive the gyrokinetic equa-
tion are known. One of them is the recursive tech-
nique,! "> which is also used for derivation of the drift
kinetic equation.!® ‘The recursive method is combined
with the ballooning representation,!'’'?) and vields the
gyrokinetic equation, in which the distribution function
is separated into equilibrium and perturbed parts

Another modern derivation is based on the Hamilto-
nian and Lagrangian formulations ) The resultant gy-
rohinetic equation describes the total distribution func-
tlon as an invariant along the particle motion. This
formulation was first utilized by Littlejohn to denive
the equation for the guiding center motion ' '*) There,
the motion equation is derived from the gyrophase-
independent Hamiltoman, which automatically ensures
the conservation of the phase space volume and the mag-
netic moment even in the approximate expressions oh-
tained by truncating the perturbation expansion up to
the fimite order. Also, the Hamiltonian 1s regarded as
the conserved energy for the particle 1n the static elec-
tromagnetic fields

In the gyrokinetic theory, the particle Hamiltonlan {or
the particle energy) is not an invariant since the fluctuat-

mg electromagnetic fietds are treated Instead, the con-

served guantity i1s the total energy of the system, which
is given by the sum of the kinetic energy of the particles
and the energy of the electromagnetic fields However,
the proof of the total energy conservation'® is not trivial
i1 the conventiona} Hamillonian or Lagrangian formula-
tion, where only the particle dynamics are described by
the Hamiltoman or Lagrangian. Then, it seems natural
that the formulation should be extended in order to de-
rive governing equations for both the particles and the
electromagnetic fields from the first principle. The pur-
pose of the present work is to present such an extended
formulation of the gyrokinetic theory.

In this paper, the gyrokinetic equation for the parti-
cle distribution function and the gyrckinetic Maxwell’s
equations for the electromagnetic fields are hoth de-
rived from the variational principle using the Lagrangian,
which consists of the parts of the particles, fields, and
therr interaction. This generalhized Lagrangian includes
the single-particle Lagrangian as a part, which has been
used for the conventional Lagrangian derivation of the
gyrokinetic equation. In order to treat the variational
principle for the electromagnetic fields, the techuique of
the classical field theory'™1®) is useful. Since all the
governming equations for the system are derived from the
generalized Lagrangian, we can directly show the con-
servation of the total energy of the system with the help
of the Noether's theorem.!®) This seems to be the most
natural and easiest way to prove the energy conservation.

The conventional gyrokinetic theories assume that
w € ), where w 15 the characteristic fluctuation fre-
quency and € is the particle gyrofrequency The lin-
ear gvrokinetic theory. which can describe fluctuations
with arbitrary frequencies including w ~ €, was pre-
sented by Chen and Tsai'® %! based on the recursive
method  Also, recently, the Lagrangian formulation of
the gyrokinetic theory for arbitrary-frequency fluctua-
tions was given by H. Qin. ef al?22 They have used
the fact that. origimally, the Lie perturbation method

Q
the Lagrangian formulation'® ¥ depends only on small-
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ness of the Auctuation amplitude with no assumption on
the uctuation frequencies. However, their work is also a
linear theory. The formulation presented in this paper is
useful for derivation of the nonlinear gyrokinetic system
of equations with the rigorously conserved total energy
for the fluctuations with arbitrary frequencies.

The rest of this work is organized as follows. In §2,
as a preliminary for the generalized Lagrangian formmu-
lation of the gyrokinetic theory, the variational principle
is presented based on the Lagrangian, from which the
Newton’s motion equations for the discrete particles, the
Poisson’s equation, and the Ampere’s law are derived.
There, the conservation of the total energy is shown from
the Noether’s theorem. The Lagrangian formulation for
the collisionless (or Vlasov) plasma is also given. In §3,
the gyrokinetic theory for w < € is formulated based
on the generalized Lagrangian formulation. From the
Lagrangian variational principle, the gyrokinetic motion
equations for the discrete particles and the gyrokinetic
versions of the Poisson’s equation and the Ampére’s law
are derived. The Lagrangian formulation, which gives
the gyrokinetic equation for the distribution function for
the collisionless case, 15 also shown. The gyrokinetic
version of the rigorously conserved total energy is de-
rived. In §4, the generalized Lagrangian formulation is
extended to the case of arbitrary-frequency fluctuations
and the nonlinear gyrokinetic system of equations with
the conserved total energy are derived, which are valid
even for w ~ €. In §5, several imiting cases, in which the
gyrokinetic equations are simplified, are considered. The
small electron gyroradius limit, the quasineutrality, and
the linear polarization approximation are treated as ex-
amples. The simplified gyrokinetic system of equations
are given, which can describe the high-frequency elec-
trostatic plasma fluctuations (such as the ion Bernstein
waves) in the uniform magnetic field. Finally, conclu-
stons are given in §5. Appendix gives brief explanation
of the variational principle and the Noether’s theorem
for systems including field variables.

£2. LAGRANGIAN FOR PARTICLES AND
ELECTROMAGNETIC FIELDS

In this section, we present the Lagrangian, from which
the equations for particles’ motion and for self-consistent
electromagnetic fields are both derived through the vari-
ational principle.

2.1 Newton-Powsson-Ampére system

The variational principle to yield the governing equa-
tions for the system considered here is written in the
well-known form,

ta
6156/ Ldt = 0. (1)
t

Here, I is called the action integral and 8 represents the
variation. The end points for the Integral with respect
to the time ¢ are fixed to #; and #2. The Lagranglan to
describe the Newtoun-Poisson-Ainpeére system is written
as

L:Lp+L,F+Lmt~ (2)

where the parts of the pariicles, electromagnetic fields,
and field-particle interaction are defined by

L= 3 m, (vor 50 = 3hl). @

a j=1
1
Ly = o y d3x (]Vé(x,t)[z - |V x A(x, t)|2) . (4)
and
ok 1
LGt = Z Z €a (¢(xaj: t) - Eiaj N A(xajyt)) ; (5)
e j=1

respectively, where x,; and v,; are the position and ve-
locity of the jth particle of species @ with mass m, and
charge e,, N, denotes the number of the particles of
species a, ¢(x,f) and A(x,t) are the scalar and vector
potentials, respectively, at the position x and the time
t, and ~ = d/di represents the time derivative. Here,
following the phase-space Lagrangian forrnalisin used m
the conventional guiding-center and gyrocenter theories,
8,9,15} the particle velocities v,; are regarded as indepen-
dent variables as well as the particle positions x,;, Then,
the relation x4; = v, is obtained as a result of the vari-
ational principle as shown later. The field Lagrangian
Ls defined by Eq. (4) is slightly different from the one
found in standard text books'™'® in that A /3¢ is not
contained in Eq. {4)}. Consequently, the variational prin-
ciple vields the Ampére’s law instead of the Faraday’s
taw. It implies that, 1 the present work as well as i
the conventional gyrokinetic theory, we do not treat the
electromagnetic waves with the speed of light. Also, the
particle Lagrangian in Eq. {3) is only for the nonrela-
tivistic case.

The particle variables are contained only in Ly + Lip,,
and we can write

N,
c .
Lp + Lint = Z Z [(mava}- + —:"A(Xaj, t)) - Xaj

a j=1

- (Gmatval? + cotla0) |

N N,
EZZ(DG_{'J-(GJ_HGJ}EZZLGJ' {6)

a i=1 a j=1

Here, pgj, Lqj, and Ha, 1epresent the canonical momen-
tum, Lagrangian, and Hamiltonian for a single particle,
respectively. The conventional Lagrangian and Hamil-
tomian formulations of the guiding-center and gyrocen-
ter theonies for the particle dvnamics are based on the
single-particle Lagrangian L., and Hamiltonian H;. In
the present work, we consider the field Lagrangian part
L; as well, in order to dertve the governmg equations for
the fields and show the energy conservation for the total
system, directly.

In order to treat the vartation with respect to the fields
¢ and A, it is convenient to use the Lagrangian densities
L and L,p;, which are defined by

1 ] 2
L;= = (IVo(x. 1)} — |V x A(x.1)]7) . (1)

_— 2 —
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and

N
- . 1
,C”u = —ZZFQK‘A(X*XGJ) (C}(X,f) - ;Xa_; A(X,t)

a 3=t
(8)
Then, we have

Ly :/‘ Lydx  and L :/v Lomd®x,  (9)

where 17 denotes the volume of the systemn

When we take the variation of functions of £ and x,
we fix their values at the end poinis ¢ = {;,¢» and on
the boundary surface of the volume ¥ according to the
conventional rule for the vanational principle (see Ap-
pendix A). Then, with the help of partial integral, the
variation of the action integral 1s written as

2 dLa, d 3L,
i [T (SN (G o
1, aj

pulye dt axaj

aLaJ d E)LaJ
v, T dt Bva} 8¥ay
S —
0
aL a L L
-i—[dsx ft__7_ fr ff 5
Wi de¢ dt dg oV
0
oLy, _ ﬁ 8Ly, _ ILy, SA
dA gt SA VA
0 J
4 N,
2 &1 ]
= di ( bx, &v )
/ 22 5, et gy, B
+f >x (—<5¢+—5i 6A)], (10)
v b

where 8/bxa,, 8/6va,, 8/6¢, and §/6A represent the
functional derivatives, and L;, = £; + L,

The vanational principle written by Eq (1) implies
that each of the functional derivatives in Eq (10) should
vamsh Then, the nonrelativistic Newton’s particle mo-
tion equation 1s derived from the Euler-Lagrange equa-
tion 87 /bx,, = L, /0%,y ~d(OL,, /0%, )/dt = 0, which
15 rewrliten as

MyVa, = &g [E(x[,],i) + %J-(aj x B{xg;,1) (11}
Here. the electromagnetic fields are wnttenr by E =
—Voé - c"1dA /3t and B = V x A. Next, we find f{rom
81 /v, =0 that

(12)

The Poissan’s equation is derived fiom 61//6¢ = 0 as

VBC’J(X,f):—4nZFGZ(‘? (X «1_,!

Xay = V-

IH

N 1" TrETe o
A fally

a

[
-

HEYET D

where nj represents the microscopic nuiber density

Also, 6I/6A = 0 gives the Ampére’s law,

N
Ty
3
— €q Xa, 0
[o4 4 (
a =1

4-‘T-mco
= e 14
.. , (14)

for species a

Vx [V xAxt)= X — Xg;)

where ™77 represents the microscopic current density

Ve find from Egs. {2)-(5) that the Lagrangian L
has no exphat time dependence, which means that ihe
time dependence of L appears oaly through the variables
Xa, (1), Xa, (1), va, (1), 6(x,t), and A(x,t}. Then, we can
apply the Noether's theorem (see Appendix A) to derive
the conservation of the total energy of the system,

%Etog =0.
Here, the conserved total energy (or the total Hamilto-
man) Fp. 1s given by the Legendre transformation of the
Lagrangian L By noting that our Lagrangian includes
both the discrete particle variables and the continuous
field varables, we find that E,, is given by

(13)

N
Yl aL, L.,
Eto: - ;z:l Xajg 8)(::_1 + Va; 3
J:

vy,
0
8Ly, . 9Ly,
fd?x PRt LAY Wil LI N §
i q& A
N S——

0

= ZZ[ mafvaji + ea (%, 1 )} — L

= Z :lna|va_,|
=
1
57 ) eVl )+ [V x A 0F) . (16)

where Eq (13) 15 also used. The total energy Eyp in Eqg
(16) Las the well-hnown form, which is given by the sum
of the kinetic energy of the particles and the energy of

the electromagnetic fields.

2.2 Vigsov-Poisson-Ampére system

In the previous subsection, we have treated the dis-
crete particles’ motion and the microscopic electromag-
netic fields Therefore, the effect of Coulomb collisions
is included in the governing equations (11)-(14} and in
the total energy conservation given by Eq (15} with Eq
{16}. Then. the next natural question s how the col-
lisionless (o1 Vlasov) plasma is described by the gener-
alized Lagrangian formuiation, wlich is considered here
For the Viasov plasma we neglect the discreteness of the
patticles and desciibe the particles by the distribution
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function fy(x.v,{} for species @ i the phase space, from
which the statistically averaged (or macroscopic) density
and current of the particles are calculated. The use of
{x,v,t) as the independent variables for f, corresponds
to the Bulerian picture for representing the state of the
particles’ ensemble. On the other hand, in the previous
subsection, the orbit of each particle labeled by the in-
dex aj is pursued, which corresponds to the Lagrangian
picture. In order to bridge the gap between these two
different pictures, we perform the following replacement
for the particle part of the Lagrangian,

Ne
Za/dsx{)/davafa(xo,va,tc):
=1

xﬂ}(t) - ra(xﬂ: Vo, tO’ t);
(17)

Here, fu(xq,vo,fp} is the distribution function at an
arbitrarily specified initial time ¢p, r.{xo, vo,%p;¢) and
u,(Xq, Vo, la; £} represents the position and velocity, re-
spectively, of the particle, which satisfy the initial con-
ditions,

v“}(t) - ua(xﬂz vﬂrtﬂ; t)

u,(xg, vo,tp;20), = vo.

(18)
The functional forms of r (%0, vo. to; 1) and ug(xq, vo, to; t)
are determined by the variational principle with the La-
grangian as shown later. Once that they are obtained,
the distribution function f, for an arbitrary time ¢ is
given by

fafx,v,t) :/dsx,;./dsv(,és[x—ra(xo,vo,to;t)]

x53[v — ua(x0, vo. tos t)] falxo, vo. ta).  (19)

ro(xo, vo, to; o), = xa,

Using Egs. (6) and (17), the Lagrangian for Vlasov-
Poisson-Ampére system is given by

L=Ly+ Line + Ly

-y / #xo j o fu(X0, Vo to)

x La{ra(%o, vo,to:t), ua(xo, vo.to, 1), Fa(Xc, Vo, t5;t)]
1 9
=+ & /dsx (iVé(x,1)° — IV x A(x,)]*), (20

with the single-particle Lagrangian L, for species a de-
fined, in the same way as in Eq. {6), by

. e .
La(re,ug,Fp) = (maua + ?GA(ra,t)) Ty

i
- (ama]ud2 + eqd(rs, t))

H,, (21)

=Pq Ta—

where p; and H, represents the canonical momentum
and Hamiitonian for a single particle, respectively. Now,
the governing equations for the sysiem are derived from
the variational principle in Eq. (1) with the Lagrangian
in Eq. (20} In the same way as in Eqgs. (11} and (12),

we obtain from &1 /ér, = &I /6u, = 0 that
g = U,. {22)
and

. _ 1
Mg, = €q [E(ra,f) -+ Eua X B(ra:t) (23)

Then, we easily obtain the incompressibility condition in
the phase space,

9 s+ a0
ar, T B, 2TV

From Egs. (19}, (22}, (23), and (24), we find that the
distribution function f, satisfies the Viasov equation,

(24)

&

a €q 1 )
el v A hl .2
[81& +v + — {E(x,t) + cv X B(x,i)} Bv} Jel(x, v, 1)

=0

In the same way as in Egs. (13) and (14), §I/6¢ = 0
and 87/6A = 0 give the Polsson’s equation,

Vie(x,t) = —4WZea[fa(x,v,t)d3v = —4#2 Ealtg.
23 a

(26}
and the Ampeére’s law,
ar 4w
v v = a a 3 = —j
x [V x A{x,t}] - ge ]f (x,v,)vdv o3
{27)

respectively. Here, n, and j represent the macroscopic
particle number density for species @ and the maero
scopic current densily, respectively. Thus, all the govern-
ing equations (25}, {26), and (27) for the Vlasov-Poisson-
Ampére system are derived from the Lagrangian given by
Eq. (20}. Then, the Noether's theorem ensures the total
energy conservation as written in Eq. (15). Here, the
conserved total energy is obtained as

. 8l
Eyo = Z/dsxﬂjdsvofa(xmva,io) A T
3Ly . 8Ly
+/d3x —Lt LA ) g
v 3¢ dA
N =~
c

(25)

dL,
i,
——

= zﬂ:/d3x/d3vfa(x,v,t) [—;-ma|v|2+ eqp(x, i} — Ly

= zﬂ:fdsx/d‘?’vfa(x,v,t)émdvlz

s [@x(ae0F +19 x AG.0F),

where Eq. (26) is also used. Again, the total energy has
the well-known form, although here the kinetic energy
part is evaluated from the distribution functions and the
field energy part 1s for the macroscopic electromagnetic

fields.

(28)
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23. LAGRANGIAN FORMULATION FOR
THE GYROKINETIC-POISSON-AMPERE
SYSTEM

Here, we proceed to the generalized Lagrangian forinu-
lation of the gyrokinetic theory based on the framework
given v the previous section. In the gyrokinetic sys-
temn. the electromagnetic fields are assumed to consist of
equilibrium and perturbation parts Following Brizard’s
terminology,?) we refer to the phase-space variables de-
fined from the equilibrium and perturbed fields as the
guiding-center and gyrocenter coordinates, respectively.
These coordmates are relevant to the independent vari-
ables for the single-particle Lagrangian. Qur general-
1zed Lagranglan for the gvrokinetic theory is expressed
10 terms of the gyrocenter coordinates of all particles and
the electromagnetic fields First, let us consider the ex-
pansion of the Lagrangian with respect to the amplitude
of the perturbation fields.

31

The electromagnetic fields and the corresponding
scalar and vector potentials are assumed to consist of
equilibrium and perturbation parts.

Perturbalion erpansion of the Lagrangian

E = Eo{x) + AE(x,1), B = Bg{x}+ AB;(x,{),
6 = Go(X) + Ady(x,1), A = Ag(x)+ AA(x,t).{29)

Here, A represents the order of the perturbation ampli-
tude, which 1s used as an expansion parameter in the
gyrokinetic theory The canonical momenium of a single
particle for species @ is written as

e €a
Pg = MyV, + ‘f(AD + AAI} = MaVgp + _A0> (30]
C

where Ag and A, 1s evaluated al the position x = x,,
and the zeroth-order particle velocity v,p is defined in
terms of the cancnical momentum p, and the zeroth-
order vector field Ag as vy = mI {(pe — e.Ag/c). In
the present work, we assume that the equilibrium E x B
drift velocity is O{evr), where ¢ ~ p/L is the drift or-
dering parameter and vy is the thermal velocity. Then,
we put Ey = ¢g = 0 and consider By and ¢4 to mnclude
the fluctuation part as well as the equilibrium part corre-
sponding to the Olevy ) E x B drft velocity. This causes
no inconsistency in the results derived in this work. [The
gulding-center and gyrocenter theories for the case of the
O(vr) E x B drift velocity are found in Refs. 14 and 24~
28 The extension of the general Lagrangian formulation
in the present work to this large E x B case 1s possi-
ble although it 1s not treated here for simplicity] Here,
we also neglect the induction field —8Ay/8¢, since it is
O(€?) according to the conventional transport ordering

and its effect on the fluctuation dynamics is negligible
Using Eqs. (29) and (30). the single-particle La-
grangian defined in Eq. (8) is rewritten as
L, = L50+ALaI+A2La‘2\ (31)

with

Ca i 9
Lan = ("'navau + TAO) Xa— :2‘”1(1tva0|- = Pa X~ Hao,
(32)

/ 1 3
La] = -1, (G')l - ;Va(l A!) =g, = —J!](ﬂ]‘ (33)

\
and
el i
Lan = ‘WIAH'E ~Hea, (34)

where L., and H,, {(n = 0,1,2) denote the n-th or-
der single-particle Lagrangian and Hamiltonian in A for
species a, respectively [the subscript j for labeling each
particle m Eq {6) 1s omitted here] By using v.q as the
zeroth-order vartable instead of v,, all the perturbation
parts of the Lagrangian given by Eqgs. (33) and (34) are
confined 1n the Hamiltonian part, and they do not de-
pend on x.. This enables the variable transformation
from the guiding-center to gyrocenter coordinates to be
symplectic, as shown later

3.2  Guiding-center coordinates

The single-particle guiding-center coordinates Z, =
(ZL)=1, &= (X4, Ua,ta, &) for species a are defined by
taking account of the eguilibrium electromagnetic fields
First, we consider the preliminary transformation,

(Xa:Va0) = 2o = {z3):=1, 6 = (Xa, Vaoi|, Hao.0a) (35)
Here, Vaolls Hao and @, are defined by
2
maev
- . b, — _"27a0l 36
Vg0l = Vao Had 5B, (36)
and
Va0l = Vao— Vaojb = —ug01 (5112 0, @) +cosb, ea), (37)

respectively, where (e, es, b = Bg/Bg) are unit vectors
which form a right-hand orthogonal system at x,

In order to remove the gyrophase dependence from the
equilibrium part L,g of the single-particle Lagrangian
given by Eq. (32), we introduce the guiding-center trans-
formation of the phase-space coordinates,

Zg = (xaa UaD”sﬂuOsgaJ s Z«: = (Xas Ua: ﬂavga)a (38)

This gmdmg-center transformation is the near-identity
Lie transform !4 23)

Xo =Xg—€Pgq + (9{52); U, = Vag)| T Ofe),
e = fiao + Ofe), £ = 6, + Ofc),

where p_p = b X v/, and Q, = e, By/(myue). De-
tailed expressions for the O(¢) and O(e?) terms are found
in Ref. 14. In terms of the guiding-center coordinates
(Xe,Us, pra, &), The Lagrangian Lo 1s written as

(39)

mgc -
iafa

Loy = €_1€_GA;(Xc=Um.“'a) 'Xa + ¢
C €a

— Hop(Xo, Tla pa). (40)

Here, the definitions of A%, and Hgy are written, up to

the third lowest order 1n ¢, by

— 1 o 1 T
H(IO(XCM Ua~ﬂa) = ;771aivu0(za)|i = 57”6[;3'*'/"&80()(!1):
) (41)
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and
My c

A;(Xa: Ua:#a) = AO(X-G} + €

U b(X,)
€q

4, TgC?

62

a

HaW(X,), (42)

—¢
respectively, where
vao(Ze) = Uab(Xa) - {2HEBU(Xa)/ma]U2
x [sin &y e1{Xa) + cosa ea(Xa)], (43)

and

W(X,) = [Vel(Xa)]-eg(Xa)+%b(Xa Tb(X.0)-[V xb(X)]-

(44)
The single-particle Lagrangian in Eq. (40) determines
the symplectic structure, which is represented by the
differential 2-form w, and the Hamiltonian flow in the
single-particle phase space.®>>2%) Taking the inverse of
the matrix (w;;) with w;; being the components of the
symplectic structure w, the Poisson brackets for pairs
of the guiding-center coordinates are obtained. Conse-
quently, the nonvanishing Poisson brackets are given by

(X, X,} =¢e——bxL (45)
Ealy
(Ko, U} = 22, (45)
mGBa”
(Xo 6o} =e—=bx W, (47)
2=l
B: W
{UE) fd} = * (48)
Ma g
—1 €a
{fa:ﬂa}zf 1_: (49)
meC
where
B, =V xAj B =B;b, (50)

and I = eje; + eze; + bb represents the unit dyadic.
The quantities in the right-hand sides of Eqgs. (45)-{47)
are evaluated at Z, = (Xq, U, pa,£s), and V = 8/5X,
in Eq. {50). It should be noted that the Poisson bracket
{-,-} written here is relevant to the symplectic structure
in the particle phase space only. The notation {-,-} does
not represent the Poisson bracket in the phase space for
the total system, which requires to treat the electromag-
netic fields as part of the phase-space coordinates.

We find from Egs. (40), (41), and {45){(49) that, in the
guiding-center coordinates Z; = (Xq, Ua, fta, &a), depen-
dence on the gyrophase &, disappears from the equilib-
rimin part of the single-particle Lagrangian Ly, Hamil-
tonian H,y, and Poisson brackets. Therefore, if there
are no perturbed electromagnetic fields, the gyromotion
is completely decoupled from the equations of motion,
and the magnetic moment g, is a constant of motion.
However, for the turbulent sysieni. the gyrophase de-
peudence appears through the perturbation part of the
Lagrangian, which is removed by transformation from

the guiding-center to gyrocenter coordinates, as shown
in the next subsection.

3.3 Gyrocenter coordinaies

As mentioned at the end of §3.1, owing to the use of
vqo, the perturbation parts L, and L. of the single-
particle Lagrangian given by Egs. (33) and (34) change
only the Hamiltonian part, although the other part (or
the symplectic part}) of the equilibrium Lagrangian Lgq
are not perturbed. As shown in Eq. {40}, the symplec-
tic part of Ly has already taken a desited form in the
guiding-center coordinates, which gives the gyrophase-
independent Poisson brackeis in Eqgs. {45)-(49). Then,
by the gyrocenter transformation from the guiding-center
to gyrocenter coordinates,

Z, = (Xaa Ua; I—Lasfa) - Za = (Xa:aa1 ﬁuyga): (51)

we remove the gyrophase dependence of the perturbed
Hamiltonian without changing the symplectic structure
or the form of the Poisson brackets for the guiding-
center coordinates. This is done by the symplectic Lie
{or canonical) transform,?®) which is associated with ap-
propriate generating functions [see Eq. (57)]. The re-
sultant expression for the single-particle Lagrangtan in
terms of the gyrocenter coordinates Z, = (Z%)i=1, s =
(Xa,Uay ﬁa:f—a) is given by

Ly=La+ ALy +A2La2
1€a e mee_ -
=€ 1f‘Aa(Xa;Ua;ﬂa}’Xa+f'e—ua€a

a

_Ha(ia:[jmﬁaaf)a (52)

where the gyvrophase-independent Hamiltonian is written
up to O(A?) as
ﬁa(j{a;ﬁa,ﬁmt) :ga0+Aﬁai+A2Ea2‘ (53)

The zeroth-order Hamiltonian Eag(f(a, U, fia,t) is given
by Eq. {41) with (X, Uy, pza) replaced by (X, Ug, fia),
and the first and second-order Hamiltonians are written
as

Hal(ia: [7011 ﬁa:t) = €a (¢G(Z’t)>éﬁ

e _ 1 = = _
=eg{ 01Xy +ep, t) — —vao(Za) A(X; +€p,,t) )
- )

£a
(54)
and
2
& 7 - €q 7 = 2
Haz(Xa, Uu, ey ) = 85 (180X + 00, ),
€a /(= s ~ =
- E’({Sai(za)t): U')a(za;t)}>£_a 1
(55)
respectively, where p, = p,(Zs) = b{X,) x
voo{Z. )}/, (X,). Here, the gyrophase-average and

gyrophase-dependent parts of an arbitrary periodic gy-
rophase function (£,) are defined by

_ fda

(Qe, = P o QUEe) and Q=Q—(Q),,

(56)

— 6 —
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respectively The Poisson brackets {77, 77} for the
gyrocenter coordmates have the same forms as thowe
for the guiding-center coordmates, which are given by
Eqs (45) (49) with Z, = (X,. U, e, E) replaced by
Zo = (Xo Vg g, &)

The relations of the gyrocenter coordinates Z,
{Xq, Ug, g, &2) to the guding-center coordinates Z,
(X, Ug, pta.&,) are written as

Zo =20+ A{S,1(Zo,t)

il

Za} 4+ O(AY (57)

Here, the first-order generating function S,; 15 deter-
mined as the solution of

8S51(Za,t - o
Eetller) 4 {5 (Bert). HoolRe, O int))

= ota{Zy, 1) (58)

Using the conventional gyrokinelic assumption that
Q;'0/0t = O(¢), and neglecting higher order terms m ¢,
Eq. (58) reduces to (‘1Qa8§a1/3ga = e, the solution
of which is given by

§al(za={) = (59)

£q ~ = .
= EQG(XG) /Iba(za,t}dfa,
where the integral constant is determined from the con-
dition (Sz1)¢, = 0. [The case, in which the fluctuation
frequencies are allowed to be on the order of the gyrofre-
quency, 1s considered m the next section.] Then, we find
from Egs (57) and (59) that X, = X, +O(A¢, A%} Fol-
lowing Brizard.®? for the particle position x, as the argu-
ment of the perturbation fields, we put x, = X, + (p, by
neglecting OAe, A ¢?) terms. This approximation has
already been used to evaluaie the fluctuations ¢; and A,
at the position x, 1 Egs. (54) and (55)

From Eqs (4) and (52), the total Lagrangtan for the
system is given by

L:Lp+Lln1+Lf

- S MaC . =
—ZZ[ ALKy, Uy i) Ry + 2,
a

a 3=1
1 a 2o . 2
+ g- d x (A [Va(x)|

o(x) + AAl(X)]I') :

_Ha(XajaGajaﬁaJ; )]

-V x[A (60)

Using this total Lagrangian L, the variational princi-
ple, Eq. (1}, yields the gyrocenter motion equations,
the gyrokinetic Poisson’s equation. and the gyrok:mnetic
Ampere’s law. The gyrocenter motion equations are de-
rived from 81/6Z,, = 0 as

ey o o oo o
‘?}‘ = {Xy, He (Xay, Uaz, fa; }Z”
= g | (T r 2 B g

B my,  8U,

af| X

+ech x (‘;“’ VBy + AVE,(Z,, )H L (61}
dl, A = -
#:{(a] H::J(an«(’a;u“aj)}zﬂ

and

13 , e .
J”d“:“'l‘ {l"u)‘—B() T+ A’.:\Tq’(ﬂza) J] ((u2)
dit, .
d{J = {,U-a_',n h’ﬂ](xa;- L"a;a#ﬂ])}zn =0, (63)
d, T S
d Haj = {EGJ aJ(Xaj, Ua;;ﬂa])}zc”
2a dX., A el 3V¥.(Z,
e L w . e _&_ﬁigz_i)7 (64)
¢ dt € mac Bt

where the effects of the fluctuating electromagnetic fields
are included m the potential ¥, defined by

W, (Z

= ('g‘,ﬂa(z,t)>éa + A [gia—@ (iAl(Xa + (f-)a\ t)lZ}ga

_é<{§ﬂ,(za,t)ﬁa(za‘“}u

(65)

The right-hand-side terms in Egs (61)-{64) are all evalu-
ated at Z,, in the single-particle phase space. The nota-
tion {f, g}Z is used to clearly represent that the Pois-
son bracket operates on functions f and g defined on the
single-particle phase space associated with the coordi-
nates ZQJ

Frem é61/6¢,

= 0 and &I/6A; = 0, the gyrokimetic

Poisson’s equation and the gyrokinetic Ampére’s [aw are
derved as

N,

AV (x 1) _HﬁZeaZ(ﬁ (Xay +¢py, — %)

=1

A {§a1(za,,t), 8%(Xa; + P,

= 4w g Calta s
a

— x)}zu>§a

(66)

and

respectively, where p,

VGU(ZGJ )/Qa(XaJ )

V x [V x [Ag(x) + AAL(x, )]}

2 <[Vao(za;) -A

x 53(Xa1 +ff)a; - X)

e}

z)]
x)}2~>eﬂ
47

__‘"'fiucro’ 67
c Jg (67)

ﬁA{ual agys b VaO( ) (XGJ + fPaJ -

PaolZe;) b(Xa,) x
Here, nZl7° and jB*°"* represent

the gyrokinetic expressions of the microscopic density
and current, respectively

In the same way as in Eq {18) the conserved total

energy is obtained with the help of Eq (G6) as

E(mn - Z Z

2 =1

) -

( ;)
+Sa; N
anJ 9,
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ﬁZZH

a]a/—ttz_; t) - Lf

- ZZ( m, [vao(zaj) - (Kes + <hez0) 2
o
+ 'éﬁ%(;j_)ﬂﬁ [{/(al)ajdéaj;(‘gl)aj}z

a3

1 r— _ —
7{/(‘(0 ’Al)ajd‘faj:(vo 'Al)aj}_ ]>
C Zu; Eg]

+if $Bx (A2[Véi(x, 1))
87

+HV % [Ag(x) + AA (x, D]F) (68)

where ($1)a; = é1(Xg; + ff)aj=t) and (vo - Ai)e; =
vo(Zaj) - A{Xg; + €pgj, t). Here, it should be recalled
from Eq (30) that vs = vao — Aeg Ay /(mgc) represents

the true particle velocity.

3.4 Gyrokmeiic Vlasov-Poisson-Ampére system

In the previous subsection as well as in §2.1, we have
described the discrete particles’ motion and the mi-
croscopic electromagnetic fields, in which the effect of
Coulomb collisions 1s ncluded. In this subsection, the
gyrokinetic system of equations for the particle disiribu-
tion function and the macroscopic electromagnetic fields
in she collisionless {or Vlasov) plasma are derived by the
generalized Lagrangian formulation.

In the same manner as in §2.2, we perform the follow-
ing replacement for the particle part of the Lagrangian
in Eq. {60),

N,
Z _ fdﬁzo Do(Zo) Fa(Zeo, to),

a](t) (69)

where Za‘;, = (XaJ,Uu;;Na;sfaJ) (:X‘r Uaga”ai&Z):
ZG = (XO,UO,HQ,SO and IdSZQ = fV d3XU fm dﬁo
fo diig fn t_ifg. Here, D:(Zs) = a”(Zo)/ma is the Ja-
cobian, Fy(Zg,ty) denotes the distribution function for
species a at an arbitrasily specified initial time tq, and
Z:(Zyg, tg; t) represents the gyrocenter coordinates of the
particle, which satisfy the initial condition,

2% (Zo,toite) = Zy

- L Zo, tai 1),

(70)

The functional form of Z;(Zg, tg;t) is determined by the
variational principle with the Lagrangian as shown later.
Then, the distribution function Fy(Z,¢) for an arbitrary
time { 1s deternnined by i

Do (Z)Fy(Z, 1)
= fdGZQ Da(ZQ)Fa(ZQ,iQ)ﬁs[Z—Z:{iu,t();t)}, (71)
where 8%(Z —Z7) = 83(X - X0)6(0 — U7 )i —

£z {mod27)].
Using Eqgs. (51

o o[ —

) and (69), the Lagrangian for the gy-

rokinetic Viasov-Poisson-Anipére systen is given by

L:Lp+Lint+Lf

- Z/dﬁzo Do(Zo) Fa(Zoo. to)

Lali(Zo, 1) BB ti8) )+ 5 [ 4% (82199500

—|V x [Ao(x) + AAL(x, O)])

with the single-particle Lagrangian L, for species a de-
fined by

Lo(Z%,25,1) = ‘IE“A (X3, US ) X

— H(X UL 0 0), (73)

where the single-particle gyrocenter Hamiltonian o, is
defined by Eqgs. (53)-(55) and (41). We obtain from
S§I/8Z, = OLfIZ;, — d{BL/dZ*)/dt = ( that

dZ;,

= ={Z; Hu(Z;, )} 7. » (74)

(72)

where H,(Z%,t} is a simphfied notation for H (X3, U st

and {-, }Z- represents the Poisson bracket with the sane
structure in Z as shown by Egs. (45)-(49). The right-
Irand sides of the motion equations (74) are given by
those of Eqgs. {61)-(84) with Z,, replaced by Z3. Since
the right-hand side of Eg. (74) is independent of the
gyrophase £, it is easily found that X3(Zo.to - 1),
U*(Za, Lo © t), and p5(Zg, 1o : t) are independent of the
initial gyrophase £ . The Jacoblan D, is also gyrophase-
independent. Then, we find from Eq. {71) that, if
F, is initaally gyrophase-independent, it is gyrophase-
independent at any time. Hereafter, we assume with-
out loss of generality that I, is gyrophase-independent,
8F,(Z,t)/8¢ = 0. We also obtain the gyrocenter phase-
space conservation law,

%' [DG(Z) {Z,Ea(z,t)}zl = 0. (75)
From Egs. (71) and (74), we have the gyrokinetic Vlasov
equation in the conservation form,

3
gt
=0,

[Du(Z)FL(Z,1)] + [DG(Z)FG(Z,t) (2,1,

2
a7

which is rewritten with the help of Eq. (75) in the con-
vection form,

[ +{Z,H.(Z,1)} 5 ,3 ] F(Z,t) = (77)

From §1/6¢) = 61/6A, = 0, the gyrokinetic Poisson’s
equation and the gyrokinetic Ampeére’s law are obtained

as

AVipi(x,1) = —47 Z €a / PPLDLZ)EHX + ey — X)

x [F(Z,0)+ A {5a@, pa(z‘f)}z}

= —4x E €aNias
a

(78)

(Z.1)}g)
(76)
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anedd

Vox [V ox {A(x) 4+ AA (%, 1)]]

f%Zea/a’ ZD, |

(a7
+Ava0(2) {5a(2.0). FulZ.0)}, )

47,
= —JG,
C

(X +efr, — X}

UX +ep,. )] F,(Z.1)

(79)

respectively, where [ d°Z = fv AX [°
and p, = p,olZ) = b(X) x vao{Z)/Q.(X,) Here,
nge and Jg represent the gyrokinetic expressions of
the macroscopic density and current respectively It
should be noted that the distribution function F§< 1n
the guiding-center coordinates 1s related to the distri-
bution function F, 1n the gyvrocenter coordinates by
F35(Z.1) = Fu(Z. i)+A{501(2,1),Fa(z,t)}z+om?)
Thus, the right-hand sides of Egs. (78) and (79} represent
the velocity-space integrals of F§(Z,1) and v, F¥°(Z.1).
respectively, with O(A?) terms neglected. Then. we
find that the motion equations (74) are accurate up
to O(A?) [see Eq. (51)] while the gyrokinetic Poisson-
Ampere equations (78)-(79) are accurate up to O(A).
This combination of unbalanced orders of accuracy 1s a
direct result of the variational principle based on the La-
grangian (72) and is necessary for the existence of the in-
variant total energy Thus. the orders of accuracy for all
the governing equations are determined more systemati-
cally in the present formulation than in the conventional
Lagrangian or Hamiltoman gyrokinetic theories

The conserved total energy 1s written with the help of
Eq. (78) as

EGtot

= Z/dﬁzo Da(Ze)Fa(Zy, 602, Ml

Z*
_Z/d"ZD VA2 ) (Z,1) — L
= Z]d‘fz D (Z)F(Z, 1)
1 = €a
X (—ma [vao{Z) - A
2 Mgl

s smesar[{ ] @ (B |
_C_z{/(VTAl)“dE‘(V(TA‘)“}zD
i

x (A% Vé(x,1)?

2

AI(X+eﬁa,t)]

o0

x. )], {

Ay = va(Z)
The toral ewergy Eqror in Eq. (R0) [see

IV x [Ag(x) + AA( 03

where (61), = o1{X 4 ¢ep,.t) and (vq -
A(X +epy 1)

als By (68)] contanms the O{A”) ters rewrnttten by

o . - -
TN [{/w:)ad&(ol)a}z
_cl_? {/(VTA‘)“""S‘("?MG}Z]

- ot {8u0,G+ ToaTa. )
- 2u(X) 0301(2.1)
=A {Sal(Zi 2¢ 8{ _(VO A]) }Z
~ A2 {Eal(z,:), S ve Ar)a
C
-I—%{gal(i,t),%maivag(i]]z}z}z, (81)

which coincide with the residual terms occurring in rep-
resenting the particle kinetic energy in the gyrocenter
coordinates Z associated with the generating function
S21.57 The energy related to the ion polarization 1s
shown {0 be included in these terms.®) The conserva-
tion of the total energy (80) is a direct result of the
Noether’s theorem applied to the Lagrangian {72) while.
in the conventional Lagrangian or Hamiltoman gyroki-
netic theories, it is more troublesome to prove the en-
ergy conservation from the gyrokinetic Vlasov equation
and the Poisson-Ampére equations.

4. GYROKINETIC THEORY FOR
ARBITRARY FREQUENCIES

In the previous section, the characteristic frequencies
w of the fluctuations are assumed to be much smailer
than the gyrofrequency @, In this section, the general
Lagrangian formulation of the gyrokinetic theory is ex-
tended to the case of arbitrary fluctuation frequencies
The gyrokinetic system of equations derived here are ap-
piicable even for studying high-frequency fluctuations in
the gyrofrequency range.

In the following subsections, we find arbitrary-
frequency gyrokinetic descriptions for the discrete-
particle system and for the continuous Vlasov systein,
which reduce to the results in §3.3 and §3.4, respectively,
in the tow-frequency lirmit.

4 1 Dhscrete-pariicle system

For the case of arbitrary fluctuation frequencies, Eq
(59) 1s no longer valid, since the time derivative term
in Eq. (58) can not be neglected. Then, the generating
function S, is not determined by the fiuctuation field 4,
at the instant time ¢ but takes the form of the time inte-
gral of ¢,. If §;, in the Lagrangian L is regarded as the
time integral of the fluctuation field, the action integral
I contains the double time integral and the conventional
variational principle s not applicable directly. Instead,
we tegard 5, as an independent variational field and uti-
lize the method of Lagrange undetermined multiphers to
derive Eq (58) as a result of the variational prineiple

Now, Iet us write the totai Lagrangian for the
arbitrary-frequency gyrokinetic system consisting of the
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discrete particles and the clectromagnetic fields as

L:Lp+LG£+Lf+Lc

Ng
= ZZ [f_l_A*(XG]1&G}|uG]) Xa_; +f !-‘a;fa,_-,

a 1=]
e 1 [ 5
“Ha(XaJ,Uaj:ﬂaj:t)] + = d
ST v

—|¥V x [Ag(x) + AA; (x,1)]]*)

+ZZ/J6ZA

e j=t1
3 Q(X)EN = ~
el — 1 5(2,8) - Z,t). (82
[0 -]

The Laﬂranglan n Eq {82) contaius the constraint
part L. 3 Z d5Z (L.)e; where (LI Joj =
A (Z XGJ,Uaj,uaj,t)[(afat—}—e_lﬂ (X)38/3€) SalZ, ) —
eazj)a(Z t)]. Here, S,1 and Au(Z;Xo,, Uy, fiay;t) are re-
garded as new mdependent variational fields for the vari-
ational principle 61 = 6f Ldt = 0. The field A, plays
the role of Lagrange multlphers Then, from 81 /64, = 0,
the constraint on Sz is obtained as

(E 4 e EX) 335) Sa1(Z, 1) = eavial(Z, 1),

which corresponds to Eq. (58) with the time derivative
term retained but higher ¢ order terms neglected. Equa-
tion {83) is solved with the condition {S,ﬂ}g = 0. The
equation to determine A, 15 derived from 61/6501 =0
as

x (A?[Véy (x, £)|%

aJsUaj:ﬁaj;t)

(83)

2,(X) 8 o
(5t e € 8{) (Z X a;,#a_,,t)
_?“ <{¢“(2“?’t)’53()—(01‘ - X)6(0,; — U)
x8(fa; — BYB[Ea; — é(mOd%)]}Z,)g (84)

We find from comparison between Egs. (83) and (84)
that A, can be given by

Aa(z; Xaj: 0«] 2 Baj; t)

1 i~ -
= 72 <{SGI(ZEJ’
xé(fray — ﬁ)é[f_al - ‘S_(mOde)}}ZH>§

1), 63Xy — X)o(Us; — 0)
(85)

The same form of motion equakions as Fgs. (61)-
(64) are obtained from §I/§Z,, = 0 with Eq. (83).
Also, the same form of gyrokinetic Poisson’s equation
and Ampére’s law as Eqs. (66)—(67) are derived from
8I/6¢1 = 0 and §1/6A, = 0, respectively, with the help
of Bq. (85). Thus, the gyrokinetic theory for discrete
particles and arbitrary-frequency fluctuations is given by
the motion equations {61)-(64), the gyrokinetic Poisson’s
equation {66), the gyrokinetic Ampére’s law (67}, and
the generating-function equation (83).

The conserved total energy 1s denived from the total

Lagrangian i Eq. (82) as

EGtct
dL
zz( L g, 2L )
a j=1 aXGJ a‘faj
+Z/d62 Se 8(%):11 L
[ 8831

Na
= Z Z [Hﬂ.(xarﬁas l—_"as t)

e j=1
agal(zajrt)} >
it _ — L
Z.,/ ¢

1 ~ _
2 <{Sa1(zajat)l
&ay

vzz< e [vaste) &

a j=i

2

‘e A (X, + ef)aj,t)]

Qa(Xa;) 85a1(Zoj, 1)
2e 35&!1'

e —_— 1
+2(vo Ardas ), > +—
oo Adeify fas

8

+ Ag {gal(zaj;t):
x (A Veri(x, 1))
v

+HV % [Ao(x) + AA(x,1)]7)
where Eqs. (66) and (83) are also used

(36)

4.2 Continuous Viasov system
The total Lagrangian for the continuous Vlasov system
with arbitrary-frequency fluctuations s given by

L=Lp+Lin+Ls+ L,
= Z /dSZQ DE(ZQ)FQ(Zu,iQ)
x Lg[Z; (Zg,to,t) Z*(Zg to;t),1]
+ 8_71'/‘, d3x (A2}V¢1(x,t)|2
—|V x [Ao(x) + AA(x, t)][Q)
+Z/dﬁzo DG(ZD)FG(ZU,tU)/dSZ
X Ag[Z; X5(Zo, t0;1), US{Zo, to: t), 13(Zg, Ta; )5 2]

< [(-a% 4 2K ;%) SulZ0t) - ema(z,t)] . (57)
where L,[Z7, i;,t] is the single-particle Lagrangian de-
fined by Eq. (73) and L, is the constraint part given
by L, = fdGZa (ZO)FG(Zg,tO)fdGZ (L£:)q with

(Leda aLZ X Us s il870t + e102.(X)8/3¢)
SGI(Z 1) —eqtha(Z, t)] The same constraint on Sg1 as in
Eq. (83) is derived from 61/6A; = 0. From 51/6551 =0,
we have

8 QX)) 8
(e

-5 ({hz

) Al Z; X3, U5, ug5t)

1),83(X5 —Xys(l'r - 0)
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X b = pjelss - E(‘“(NUT}”Z;>£. (¥8)
the solution of which 15 given by
Nl T X5 U 1)
=z <{551 1), 68X~ X)AUI - 1)
x 8(us — a)olEs — mod?v)]}zz>£. (89)

Again, the same form of motion equations as Egs. {74)
are obtammed from é1/6Z7 = 0, and the saine form of
the gyrokinetic Vlasov equation as Eq (77) is derived.
Also, the same form of gyrokinetic Poisson’s equation
and Ampére’s law as Eqs. (78)-(79) are derived from
81/6¢; = 0 and 61/86A; = 0, respectively, with the help
of Eq (89) Then, the gyrokinetic theory for the con-
tinuous Vlasov system with arbitrary-frequency fluctua-
tions 15 given by the gyrokinetic Vlasov equation (77),
the gyrokinetic Poisson’s equation {78). the gyrokinetic
Ampére’s law (79), and the generating-function equa-
tion (83)

The conserved total energy derived from the total La-
granglan m Eq (87) is written as

EG:ot

= ZfdGZg Da{Zo)Fa(Zo, tc) {z; :
/dSZS‘al (£Le)a
aSaI

= Z/dﬁz D Z)F,(Z,t) [Ha(Z,t)
. {gﬂl{z‘i),%} } _1,

Z
= Z/dﬁz DAZYFL(Z,1)

1 = €a
X (Ema [VQO(Z) - Am .

+A? {§a1(z,z), Q“éfx) 35“:9{;’” + %“(VFAI)Q} )
Z

BLL(Z%, 22 t)
Az

- L

2
Al(Xa + fﬁa:t)]

1 .
— | &% (AT Ve (x, D)
-5 [ Fx (@]

)+ AA(x, 0]
where Eqs (78) and (83

HV pd [AO(X
) are also used.

5. LIMITING CASES

In this section, we consider several Iimiting cases, in
wlhich the gyrokinetic system of equations presented in
the foregoing sections can be simplified. It is emphastzed
here that all simplifications or approximations should be
done on the level of the orniginal total Lagrangian. Once
a simphfied total Lagrangian is specified, a simplified
gyrokinelic system of equations with the invanant total
energy are sttaightforwardly denved fiom it Therefore,

i thes section, we maily show the ways of sunphfving
the total Lagrangian rether than the resultant simplified
gyrokimetic system of equations  These simphfied system
of equations, which retain the rigorous energy conserva-
tron. are considered to be useful for numerical simulation
of plasina turbulence and anomalous transport.

5.1 Neglect of W

Neglect of the O(e?} term 1n A% siuplifies the mo-
tion equations (61)—{64) and (74) This corresponds to
putting W — 0, and mives {X,,&} = {U,, &} =0 in
Egs (47) and (48)

In the case of uniform equilibrium magnetic fields
By = const, W = 0 1s rigorously obtained, and more
sumplifications of the motion equations are given from
B: = B, and B;“ = By
32 Small electron gyroradn

When, the electron gyroradil are negligibly small com-
pared to the fluctuation scale lengths, we can put

p,—0 (91}

Then, the particle, guiding-center. and gyrocenter vari-
ables are regarded as equivalent to each other, z, = Z, =
Z,. The single-electron Lagrangian is given by

Le=—=A{Xe Vs ) Koo D28, - Hu(Xe O, ),
(92)
where
- _ . me.c
ATX, U, i) = Ap(Xe) - U b(X ), (93)

_ 1 _ - _ _
Ho(Xo Uoljr) = §mcU3 + e Bo(Xe) — ey (X, . U, 1)
ez
Zmect

+ AL(X. P, (94)

and

eolXe, e t) = 61(Xe ) = Ucdiy(Xort)  (95)

Here, the O{¢”) termy in A is neglected. Here and here-
after, the drift-ordering parameter ¢ and the perturba-
tion expansion parameter A are suppressed in the equa-
tions.

3.3 Quasmeutrabiy

The simplhfications considered in the previous subsec-
tions are applicable to both the discrete system and the
Vlasov continous system given m §3 and §4. In this
subsection, we consider only the Vlasov continuous sys-
tem stnce the quasineutrality eondition is valid only for
macroscopic scales larger than the Debye length. The
guasineutrality approximation corresponds to putting
= i @xIVo(x)]* — C m the field Lagrangian part
Then, we have

1
B

Ly =-— [ PxIV x [Ao(x) + AA(x, D)% (96)

the left-hand-side term
Tré1(x. ) m the gyrohmetic Pomsou’s equation (78)

Using this field Lagrangian,
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reduces to the quasineutrality conditton e nga =
0. Under this approximation, the electric field en-
ergy o fy @x|éi(x, t)|? disappears from the total en-

ergy {80) [or (99}].

5.4 [ILmnear polarization

In this and next subsections, we consider the Vlasov
continuous system, in which the distribution function
F.{Z,t) is assumed to be given by the sum of a time-
independent equilibrium part Foe{Z) and a small devi-
ation from it. Here, Fo(Z,t) and Fuo(Z) are both inde-
pendent of the gyrophase €.

The right-hand stdes of the gyrokinetic Poisson’s equa-
tion {78) and the gyrokinetic Ampére’s law (79) contain
the nonlinear polarization terms, which are given by the
Poissor brackei between the generating function 55; and
the distribution function F;. These nonlinear polariza-
tion terms originate from the {A?) terms in the La-
grangian,

3% [ €20 D220 t0)

X <{§a1(ZZ(zo,to; f):f):&a(Z;(Zorfo;f)J)}Z;>

&
(97)

The hnear polarization approximation is done by replac-
ing the above terms in the Lagrangian (72} with

Z i'J:ZE/GIGZO Do{Zg) Fan(Zo) {gal(in,i),ifjaizoyt}}z

{for nonlinear polarization).

(for linear polarization). (98)

In fact, from the variational principle using the La-
grangian with this replacement for the linear polariza-
tion, the Poisson bracket terms {h o1, Fao} appear 1n-
stead of {SaI,F } as the polarization terms in the re-
sultant gyrokinetic Poisson’s equation (78) and in the
gyrokinetic Ampére’s law (79). Also, the O(A?)} part

—J-<{Sa1,¢ }>E_ of the single-particle Hamiltonian

is not involved in the resuliant motion equations (74).
Thus, the terms associated with gal disappears from
the gyrokinetic Vlasov equation (77). Then, the O(A?)
terms in Eq. (81) are connected not to F,; but to Fyq in
the total energy (80).

The resulis described above are still vahd when the
linear polarization approximation is applied to the the
arbitrary-frequency case in §4.2. For that case, the
linear polarization approximation 15 done for the La-
grangian (87) by the replacement of Eq. (97) to Eq (98)
and by replacing the constraint part L. with

Lin-pel Z/dﬁzo Da(Zo) Faol Zo)

X[dsz AG(Z;XD,ﬁO,ﬁU;t)

2 ayN -~ - -~ -
x [(a +Qa—€) smz,t)—ema{z,r)] (9

A detailed example of the linear polarization approxima-

tton ts given in the next subsection for the electrostatic
casge.

5.5  High-frequency electrostalic waves . the uniform
meagnetic field

The approximations given in the foregoing subsections
are applicable to the gyrokinetic theory for arbitrary-
frequency fluctuations shown in §4. In this subsection,
we present a simplified gyrokinetic system of equations,
which are valid even for high fluctuation frequencies
in the ion-gyrofrequency range. Here, for simplicity,
we consider only electrostatic fluctuations in the uni-
form magnetic field By = const, although more general
cases can be freated straightforwardly by the formula-
tion given in §4. The resultant equations can describe
the lon Bernstein waves. [In fact, the rigorous disper-
sion relation for the ion Bernstein waves is immediately
derived from the linearized version of Eqs. (103)-(105)
and (101).22)] We also take the small p, limit for elec-
trons, and use the linear polarization approximation for
multi-species ions. Then, the total Lagrangian is written
as

L= /dﬁzo D.Fu(Zo,to) [(—%AO(X§)+:neU;‘b) X

wifs — (1me(U*) +y;BOe¢1<x;,t))]

+ Z /dﬁzo D,,Fa(zn,:o)K‘%“Ao(x;)marf;b) x:
afions)

i, C

* .* 1 £ - *® *
+ e—“uacfa — (ima(Ua)2 + 1y By + e {1 (X, + pl, i))f:)]

2
‘s ] &#Z D,
2mge
a(ions)

+_/ d3X|V¢51 %2 z /deOD Fa.() Zo}

a{1ons}

aFaU(Z) Bgal(ia ﬁ:é) t)
au 3

¢1(X + ﬁavt)

/d3Xdud§ Aa(X, 2,6 X0, poit)

[(a +Q, 85) §a1(i,ﬁ,é,t)'eaéa(ima,t)], (100}

where D, = By/m., Dy = Bg/m,, p, = plZ,),

Z; = (X5, U 45, 65) = Z7(Zo, to; ), and p, = pao(Z)-

Here, we have used the llnear polarization part of

the Lagrangian —Za(lons) g S L Do[0F0(Z)/04]

[0S.1{X, t,£,1)/0E161(X + P, t) which is a electrostatic

version of Eq. (98) with higher e-order terms neglected.
From 6I/6A, = 0, we obtain

(sthQ 88&) al(x E_ )—eaﬁglii"}'baii)' (101)

The equation for A, is derived from 51/6§a,1 =0, which
is solved with the help of Eq. (101) to give

X, i€ jto)
At X, 2.5 X, poit) = drm (:63( )%
a
884X . E,
X —-——-}-r(w-—-:ff-—g—i}_ (102}
a¢



Giyviokirtete Paeld Theory

It should be noted that, mr the «lecriostatic case, Sg
and A, are both imdependent of the paraliel velocty.
85,,/0U = 0A,/OU = dA faly =

The motion equations for clectrons and ions are de-
rived from 81/6Z% = &1/827 = 0. and the kinetic equa-
tions for the electron and 1on distnibution functions are
given by

& [ ¢ )
- 7 _ - ]
[& + (Db+ R vm(x,:))

+—b Vei(X. t)ai]Fe(X,U,,&,t):O, (103)

and

a
I:ai (Ub+'§bXV(¢1( + a,i))g) Vv

€ e -
‘““ib v(@](x + paa

] i) =0, (104)

("‘ |

respectively. From é7/6¢; = 0. we obtain the Poisson’s
equation,

Vig(x) = 4re/d52 DX — x)F(Z,1)

—ar Y ec/dSZD (X +¢p, — x)

afions)

eq 9Fa0(Z) BSal(X 26,1
[F (Z.6+ % mee  du at }

(105)

The closed nonlmear gyrokinetic system of equa-
tions (103)-(105) and (101) describe the high-frequency
electrostatic plasma fluctuations in the uniform magnetic
fields. They rigorously conserve the total energy, which
15 given hy

Ecior = /fZD}wzn(—m +ﬂ&>

+Z/dﬁipa[ (Zt)(% n,0? + pB )

afions)
- 2
85(X, 1.€.1)
635

1 3 3

+ SKLd xIVeé{x)|*.

It should be noted that, in deriving the conservation
of Egtror, the fluctuations on the boundary surface are
assumed to make no contribution [see Egs. (A-13) and
(A-14) in Appendix A]. If there are any external energy
sources or sinks, Fgior 15 not conserved. When g 1s
assumed to take the Maxwellian form in the velocity
space perpendicular to the magnetic field, we can write
BF (7)) 81i = ~ByFao/T, with the perpendicular tem-
perature T,.

As shown in §5 3, from the variational principle using
the Lagrangian (i00) with the term —f‘ x|V o(x)|*
negiected, the quasineutrality condition [Eq (105) with
the left-hand side term vanishing] 1s derived Then. the

QF §F,0(2)
2By Odu

(106)

clectric field energy ¢
the total energy {IOU_I

Further simplification 15 given by the adiabatic-
electron approximation That corresponds to the follow-
g replacement of the electron Lagrangian part in Eq.
{100),

& fi o’ xle{x 1)]7 dsappears from

]dszo Do Fu(Zos o) Lo (22, 23, 1)

__:Ldﬁw¢ﬂmﬂndx) —— i (x,1)

?7’( }

{for adiabatic electrons), (107)

where ng 1s the equilibriun electron density and T, 1s
the equilibrium electron temperature. In fact, 1t is eas-
ily confirmed that the variational principle for the La-
grangian using Eq. (107) makes changes in the gyroki-
netic Poisson’s equation (105} and in the conserved total
energy (106}, which are written as

/dﬁz DX — x)Fu(Z, 1) — ng(x)[ T :)}

{adiabatic electron density),
(108)

and

/dGZD F,(Z,t) (—m U? +,uBg)

3

. d°x ng(x)zT )
respectively. In this approximation, no equation for the
electron distribution function like Eq. {103} is derived or
required for the closed system of equations.

The difference between the high-frequency gyrokinetic
theory and the conventicnal low-frequency one is that,
for the high-frequency case, the generating function 5a1
can not be determined instantly from the fluctuation ¢
due to the time derivative term retained in Eq (101}
Let us write the electrostatic potential in terms of the
Fourier components with wavenumber vectors k,

=3 gpln)ek X,
k

Then, the solution of Eq. (

l61(x,2)]%, (109)

(110)

{101} is explicitly written as

ZZ :kX ’ﬂ(f Q’k 7 (klpa

n#Q

X/ dilc_mﬂ“(t_t’)qsk(t’), (111)
ig

Sa(X, iE.1)

where the initial condition §a1(5(,;7,f,t0} = 0 is used
Here, k = kyb — ki{sinay e + cosoy ez), pa =
(e/en)(2mgji/Bp)?, n = £1,42,--- (n # 0), and J,
is the nth order Bessel function. in the low-frequency
limit, f:ﬂ d(’e‘inn“("")ék(i’} in Eq. {111} s replaced by
(inQ,)~ lék(f), which reproduces the generating func-
tion given by Eq. {59}
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£6. CONCLUSIONS

In this work, the generalized Lagrangian formulation
of the gvrokinetic theory has been presented. The to-
tal Lagrangian, which consists of the parts of particles,
electromagnetic fields, and their interaction, is shown to
derive the gyrokinetic particle motion equations, Pois-
son’s equation, and Ampére’s law. Owing to the use of
the total Lagrangian, the total energy, which is rigor-
ously conserved, is directly derived from the Noether’s
theorem. The Lagrangian formulation is given for the
discrete-particle systern and for the continuous Vlasov
system. In the former case, all the particles’ phase-space
variables and the microscopic electromagnretic fields are
described, while, tn the lafter case, the one-body dis-
tribution functions and the macroscopic electromagnetic
fields are treated.

The nonlinear gyrokinetic system of equations for the
case of arbitrary fluctuation frequencies are also de-
rived from the generalized Lagrangian formulation. The
high-frequency properties of the fluctuations are included
in the generating functions for the gyrocenter-variable
transformation. The rigorously conserved total energy
for this arbitrary-frequency nonlinear gyrokinetic system
15 also shown

Several limiting cases are considered, in which the
gyrokinetic equations are simplified and more easily
tractable for numerical simufation. The small electron
gyroradius limit, the quasineutrality, and the linear po-
larization approximation are treated as examples. All
the sunplifications, which are applicable to the arbitrary
Auctuation frequency case as well, are done on the level
of the original Lagrangian. Then, the variational princi-
ple automatically yields the simplified gyrokinetic equa-
tions for the particles (or the distribution functions) and
the fields, for which the conserved total energy is de-
rived. The simplified gyrokinetic system of equations are
written in detall to describe the high-frequency electro-
static plasma fluctuations in the uniform magnetic field.
They are useful for studying the fluctuations in the ton-
gyrofrequency range such as the ion Bernstein waves.
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VARIATIONAL PRINCIPLE
AND NOETHER’S THEOREM

In this appendix, the Lagrangian variational princi-
ple annd the Noether’s theorem are briefly explained m a
partly modified way from the standard text books.?? 3%

Appendix:

The action integral is given by

3
I:f Ldt.
t1

The total Lagrangians L considered in this work are all
written in the form,

L = L{(ns). (M)}

where the field variables 1, are functions of (x4,¢), @ is a
labet to specify the field, and - = &/t is the time deriva-
tive. Here, x, denotes a I -dimensional vector variable,
Xe = (%ai, ", Tal, }- When I, = 0, 5, represents a
function of the time ¢ alone like the particle’s position
X, (t} and velocity v;(¢) in §2.1. The electromagnetic
potential fields é(x, t} and A(x,¢t) correspond to n, with
{, = 3. Also, [, = 6 is given for v(xq, vg,t0;%) {where {5
15 a fixed parameter) in §2.2, and I, = 7 for A, in §4.2.

The Lagrangian L is a functional of the fields (or x,-
functicns) n, and f,. We note that the part of the La-
grangian associated with 7, and 7, for specified o are
written in the form

(A1)

(A2)

:/dz"xaﬁa[na(xa,t),fia(xa,t):va’?a(xant),' 'Ir (A-3)

where V, = 8/0x,, and --- represents possible de-
pendencies on x, and on the other fields 5z (3 #
@). For example, in the case of §2.1, Laj(x,,;, %) =
MgV, (1) Xy (1) —ea[d(Xq; (£), 1) — ™ %05 (2)- A(x4, (£), 8)]
and L, = [d®xLy, where £, = £|Vé(x,)}? -
Y. Z;.V:“leagé(x,t)és(x — Xq;{t)). In this case, L,; and
Ly share part of the interaction Lagrangian L;,; in Eq.
(5). Thus, as shown by this example, we generally have
L#Y Lo

The variaticnal principle is written as

ta AL & fac
o [n & = &
=3 ) afa =[5 5 (7
ar
_vﬂ" = 6 a — U,
(avanﬂ):l & 0

where the variation én,(x,,t} is taken to be zero at the
temporal endpoints ; and {2 as well as on the boundary
surface of the integral [ d'>x,. We obtain from Eq. (A-4)
the Euler-Lagrange equations

81 9L, & {BLq4 o \ _
fnn  Bm. B (W) Ve (avc.n) =0 (a4)

Next, let us consider the following infinitesimal trans-
formations of £, x,, and 7,(x,,?) simultaneously,

{A-4)

t—t' =14 8,
X, — Xb = Xq + 6X,,
DafXa, 1) — 0L (X5, 1) = Pa(Xa, £) + Ena(x,, ). (A6)

Here, 8t and dx,, are generally funciions of (x,,t), and
1a(xq,f) consists of the variations in the functional
form of 5, aud in the variables (x4,1),

E1pa(Xa . {) :gna(xaai)+6t N + 0Xo - Vaiy, (A-T)
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where O27) trims are neglected, and by, (x,.8) =
AR ) X )
i kg {A 6) also causes the vanation i the action inte-
gral.

The infimtesial transfonmations

:

:2
I—1 :/ L'dt’,
i

where, as 1in Eq (A-3) the part of L' associated with 7,
and 5), = 37, /0t for specified a is given by

(A 8)

L= [ dx Ll (i), A (e ), Vi, (.00,

{A-9)
Using the Euler-Lagrange equations (A 5) the vana-
tion 1n the action integral under the transformations in
Eq (A 6) 1s written as

=11

i
- f dt
141
where

ac
— o : o
G = E /d xan&_@fya ~L

+ Z/draxc’ (6xoc \7&77& (.}L:a - 67)0%) , (A 11)

4G
Ei—+2“:]d’°x0vo Jol (A1)

dn, Iy
and
8L, L,
Jo =6t Nao——— + 6%Xs Vallaro— — bx,L
! 8vo"7a T ! ava’?a x «
oL
— bty —— A12
7 Vo { )

When the action integral  1s invarant under the trans-
formations in Eq (A -6), we obtain from Eq (A 10) with
arbitrariness of {; and 1.,

G 1
—_— - v, - =0
7 + Eﬂ /a’ XV, -J. .

which is the main conclusion of the Noetlier’s theorem.
If J, vamish on the boundaries of the integral regions
[ d'x,, G is conserved,

d£—0 A 14

The Noether’s theorem is widely applicable to deriva-
tion of the conservation laws. For example, when £, 1s
independent of 5, for &« = &, the action mntegral [ is
obviously mnvariant under the transform given by

6 =0,

(A-13)

bx, =0, éng = €bag. (A-15)

wlere ¢ Is an infinitesimal constant parameter Then, we

find from Eqs (A 11} and (A-14) that
AL

/’di"‘xc—, "% — const
(9175

The conservation of the magnetic moment for the
gy rophase-independent Lagrangian is regarded as a spe-
clal case of this example

(A 16)

The total Lagrangians considered w s work have no

explirit timp dependence, which means that ther tnne
dependencs ate only through the functions n,{x, !}
Thus. the action integral 7 s mvariant under the -
funtesunal transformation given by

bt = ¢, bx, = 0, bn, = 0. (A-17)

Then, from Eqgs. (A-11) and (A 14) we immediately ob-
tamn the total energy conservation,

8L,
Eg = E /dr°xanaa—_ — L = const. (A-18)
- Tl
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