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Abstract

Pfirsch-Schtiter (P-S) current is an inher-
ent property of a finite pressure toroidal equi-
libritm of tokamak and stellarator. However.
it was pointed out recently (V. D. Pustovitov.
Nuclear Fusion 36 (1996) 533} that the P-5 cur-
rent would be suppressed completelyv if the ex-
ternal vertical field could be adjusted to satisfy
the condition € = {Q) in an { = 3 stellara-
tor. Here @ = {B”)/BZ — 2¢cosf. | is a pole
number. | B| the vacuum helical magnetic field.
B the toroidal field. ¢ the inverse aspect ra-
tio. # the poloidal angle and (...} denotes the
average over the toroidal angle. An example
of such a stellarator equilthrium is presented in
this paper. For this stellarator equilibrium. be-
havior of rotational transform and Boozer mag-

netic spectrum is clarified when the pressure is

increased. Both fonmanon of helical magnetic
axis and reduction of toroildal curvature are 1in-
portant ingredients to reduce the P-S current.
However, the collisionless particle confinement

is not improved in this example.
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1. Introduction

Recently a potential freedom for design-
ing a stellarator magnetic configuration is
widely recognized. and new types of stel-
larator are constructed to investigate physics
of stellarator plasmas. Large Helical De-
vice (LHD} [1] started experiments at 1.5T
in 1998. TJ-IL [2] also showed initial ex-
HSX [3] and

Heliotron-J [4] experiments will start soon.

perimental results in 1998.

The optimized stellarator W7-X [5] is un-
der construction. In these ten vears under-
standing of stellarator physics is significantly
progressed for equilibrium. stability, trans-
port and heating [6]. Although confinement
properties are shown comparable to tokamak
plasmas. the obtained highest heta, 5 ~21%
in CHS [7], is fairly lower than 3 ~ 30% in
START [8]. where 3 is a volume average beta
value.

The beta limit depends on both the equi-
librium and stability properties. Here our

concern is MHD equilibrium of stellarator.



It is known that the equilibrium beta linit.
Py 1s related to the Shafranov shift. One
practical way to define 3., is to take it equal
to the 3 value when the Shafranov shift be-
comes a half of minor radius [6, 9, 10]. This
estimation i1s useful when existence of flux
surfaces is assumed in calculating stellara-
tor equilibria.

The Shafranov shift is directly related
to the Pfirsch-Schliter (P-S)} current which
produces a vertical magnetic field to shift
the equilibrium position. Since the Shafra-
nov shift is roughly proportional to 3/3,,.
reduction of the Shafranov shift and corre-
sponding increase in 3., is favorable to ob-
tain high beta equilibria. Recently Pustovi-
tov presented methodology to suppress the
P-S current completely in large aspect ra-
tio conventional stellarators {11]. This ap-
proach is valid to explain the Heliotron E
experimental results obtained by Besshou et
al. {12, 13]. In conventional stellarators, the
key ingredient to suppress the P-S current is
the vertical field. It is noted that the MHD
equilibrium without the Shafranov shift co-
incides with the zero P-S current equilib-
rium. since an additional vertical field due
to the finite beta effect is not generated.

In this paper we show stellarator equilib-
ria without the P-S current or the Shafranov
shift. As Pustovitov pointed out {11, 14],
stellarator equilibria with negligible P-S cur-

rent have been presented in old papers [15.

N

16]. Since these interesting but scarce old re-
sults have been neither discussed nor devel-
oped theoretically, there is an evident lack
of information on MHD equilibrium with-
out the P-S current. Here we will discuss
our new examples of MHD equilibrium with-
out the Shafranov shift based on newly de-
veloped theoretical models. The important
data are the magnetic spectra in the Boozer
coordinates [17] for various beta values. The
variation of rotational transform due to the
finite beta effect is also examined.

It is interesting that in the Boozer co-
ordinates our example ! = 3 configuration
has both the | = 1 and ! = 0 (satellite of
[ = 1) components dominantly, and a rela-
tively small component corresponding to the
toroidal effect, where ( is a pole number.
These results have similarity to the W7-AS
and W7-X configurations [18, 19]. It is re-
minded that the W7-AS was firstly designed
to reduce the P-S current compared to stan-
dard stellarators. In W7-X, the collisionless
trapped particle confinement is not good at
zero beta, but its confinement is improved
when the beta value is increased. It is noted
that the collisionless trapped particle con-
finement is not improved in W7-AS [19].

One difference between our example con-
figuration and the W7-X configuration is re-
lated to the magnetic well. There is no mag-
netic well in our configuration. Probably we

need a trade-off between the reduction of P-



S cuirent (o1 Shalranov shift) and the for-
mation of magnetic weil.

In Section 2. the condition to eliminate
the P-S current is shown. In Section 3. a
coil configuration for the £ = 3 stellarator is
introduced for studyving the zero P-S current
equilibrium. In Section 1, it is demonstrated
that the Shafranov shift due to the P-S cur-
rent is completely suppressed in finite beta
stellarator plasmas. The properties of these
MHD equilibria are also shown. Finally. col-
lisionless particle confinement is examined.

In Section 5. concluding remarks are given.

2. Condition for Zero Pfirsch-Schluter
Current MHD Equilibrium

Let us recall some theoretical arguments
on P-S current suppression in conventional
stellarators [11. 14]. The general expression
for the P-S current in conventional stellara-
tors with planar circular axis and helical mag-

netic field can be written as
Je= RPN (). ()

Here, R is a major radius, P is a plasma
pressure, ¥ is a poloidal flux, 2 1s a quan-
tity characterizing the inhomogeneity of the

magnetic field.

where B is the vacuum helical magnetic field.
By is the toroidal field at the geometrical
axis. Here (p. 8, () are quasi-cvlindrical

coordinates. In Eq. (1) the prime denotes

the dervative with tespect to oo Also (L)
stands for averaging over the torotdal coordi-
nate (. It is noted that expression {1) 1s valid
for any shape of magnetic surfaces. From
Eq. (1) for the P-S current. its right hand
side becomes identically zero if @ = {Q).

This is equivalent to the condition
O =) . (3)

In conventional stellarators the ¢ dependent
magnetic field is given by

1
B,,:‘)—V{L‘—m-)xvc . (4)

iy

where B, is the axisymmetric component of
the poloidal magnetic field. and v is the
poloidal flux of the helical magnetic field B
given by

rrs

mﬂ&f&&y (5)

Uy =

Here (r, =) are components of cylindrical co-
ordinates. and r corresponds to the major
radius. In all expressions here. the function
v does not depend on (. This allows the

condition (3} to be written as
Ve x V-VQ =0, (8)

Finally. using Eq. (1). we arrive to an equiva-
ient differential formulation of the condition.

Voo -
(BP_FL_‘X_Yi)‘VQ—o_ (

2%

-1

For analyzing this condition, 1t is sufficient
to substitute the vacuum field for B, into

Eq. (7) because there 1s no additional poloidal



magnetic field in the absence of a P-S cur-
rent. Another attractive feature of Eq. (7},
as compared with the initial condition {3), is
that it is written in an invariant form, which
facilitates its use in analytical or numerical
calculations.

According to Pustovitov {11], Eq. (T) can
be written for stellarators with vy = Uy (p)
as

)

2Bopun + BJ_T =0, (8)

where the prime denotes the derivative with
respect to p, and m is a pitch number in
the toroidal direction. This equation is given
by using the relation between vi-(p) and the

vacuum rotational transform u,{p).

Uy = "*QFBD/ﬂﬂh(P)dﬂ (9)
and
Viy x V(¢ P
EZ—T -V = QBU,uhﬁsmH , (10)

where the first term Qy in Eq. (2) is also as-
sumed to be a function of an average mi-
nor radius p. In Eq. (8) B, denotes an ad-
ditional vertical field in the vertical or z-
direction on the equatorial plane. whose con-

tribution into Eq. (7} is given as

4 ?
Bie.VQ = Bie. V0, = B, i) g

(11)

Equation {8) has a solution expressed as

pn = ppop” Y, (12)

where g is a constant and g the dimension-

less radius and ¢ = 2IB,/{(m B, ). Equating

—{C +4) =2{! —2) based on the analytical
expression of py, as py, = ppep =% [20] leads

to the relation,

This expression is valid for shearless (or in
the region close to the magnetic axis in) [ =

2 stellarators and for stellarators with { 2 3.

3. Coil Configuration of { = 3 Stellara-
tor for Suppressing Shafranov Shift

In Ref. [16] the MHD equilibrium was solved

numerically with a prescribed pressure pro-
file for an { = 3 large aspect ratio stellara-
tor with R/a = 16. where « is a radins of
piasma column. It was shown there that at
3 = 2.5% the magnetic configuration was ge-
ometrically the same as the vacuum config-
uration if a vertical field with an amplitude
of |B.|/By = 0.05 was applied to shift the
magnetic axis inward. Since m = 20 for this
example. Eq. {13} gives B consistent with
the numerical result. This { = 3 stellarator
seems more realistic compared to the other
mentioned numerical example of interest for
I = 2 stellarator with an extremely large as-
pect ratio Bfa = 100 [17], where the pitch
number was also too large. m = 100. Here
we pick up an { = 3 stellarator similar to
that given in Ref. [16]. The coil parameters
are shown in Table 1. Overview of the coil
system described in Table 1 is demonstrated
in Iig.1. In Iig.1 all coils have finite cross-

sections: however. for the numerical calcula-



tion of vacuum flux suttaces shown w Fig.2
(a). hlamentary colls are emploved for sun-
plicitv. Three cross-sections of flux surfaces
at { = 0. { = 2x/tm and ¢ = 27/2m are
shown here. It is noted that the average
minor radius is 12cm. which corresponds to
an aspect ratio of 3.6 (compare with 16 in
Ref. {16]). and the magnetic axis exists at
3.12m which is already shifted inward com-
pared to the geometrical major radus. Fig-
ures 2 {b) and 2 (¢) show corresponding ro-
tational transform and maguetic well (hill)
depth given by (V/(0)—V7{x)}/V7(0). where
i* 1s the toroidal magnetic flux and 1 is
the plasma volume within a v = consf sur-
face. Unforiunately, the magnetic configu-
ration shown in Fig.l and Fig.2 may not be
suitable for high beta plasma coafinement.
since the rotational transform in the central
region is fairly small and the whole plasma
region belongs to the magnetic hili. How-
ever. fromn the point of view of collisionless
trapped particle confinement. this configura-
tion has a good property that the minimum
of |B| in the ripple field along the magnetic
field line does not depend on the toroidal
angle, which is favorable for the collisionless

particie confineinent [21].

pube numles oo

priich number |y 18

major tadius of helical coil 10 (m)

minot tadius of helical roni 127 ymj

tmajot radius of vertical conl 6 36 (m)
height of vertical coul + 21& (mi
{rom honzontal plane

major radius of toroidal ceal 40 (m)

minor radiues af terondal coaf 218 (my

+5%0 x 107 {4)
40 x10% (A)
30 x 107 (A)

helical co1l current

vertical eonl current

toraidal coil current

Table 1 Coil parameters of { = 3

Stellarator

4. Properties of Zero Pfirsch-Schluter
Current MHD Equilibrium

Finite beta MHD equilibria of the £ =3
stellarator given i Table 1 are calculated
with the VMEC [22] by changing the vertical
magnetic field. Here the pressure profile 1s

assumed as
P =Pl —s), (14)

where s is the normalized toroidal magnetic
flux. The vacuum outermost flux surface is
fixed during the MHD equilibrium calcula-
tions. Here we will pick up three cases of
the vertical field for adjusting the magnetic
axis position; case (1) R,.. = 3.42m with
B, /By = 2.46x10 7, case (II) Ryz,s = 3.19m
with B1/By = 2.45 x 107% and case (I)
Rims = 3.17Tm with B, /By = 3.20 x 1072,
where £,,., denotes the radius of magnetic
axis. It is noted that case (1) corresponds to
the configuration shown in Fig.2 (a).

The Shafranov shift for these three cases
is shown in Fig.3. The origin of the Shafra-

nov shift is the P-S current which generates



the vertical field. It is seen that the Shafra-
nov shift is almost completely suppressed
for the case (II). Also the Shafranov shift
is over-compensated by the vertical field for
the case {ll): the shift is inward in this case.
As mentioned in Sec.3, the case (I) has a sig-
nificantly large Shafranov shift even for low
beta equilibria due to the fairly small rota-
tional transform. The almost complete sup-
pression of Shafranov shift in the case (1) is
also valid for the different pressure profile,
which 1s understood from Eq. (13) without
the pressure profile dependence.

The vacuum flux surfaces of the case (II)
are shown in Fig.4 {(a). The shape of the
outermost flux surface is quite different from
that in Fig.2 {a) (case (I)). The rotational
transform and the magnetic well {or hill)
are shown in Fig.4 (b) and Fig.4 (c), respec-
tively, for 3 = 0%. It is noted that the as-
pect ratio is about 13 for the case (). This
example demonstrates that the stellarator
equilibrium without the P-S current is re-
alistic. It is noted that the W7-AS stellara-
tor was designed to reduce the P-S current
compared to a standard stellarator,

It is interesting to check whether the re-
duction of P-S current correlates with the
improvement of collisionless trapped parti-
cle confinement or not. For the case of WT-
X, the particie confinement has a tendency
to be improved by reducing the P-S cur-

rent; however, it is not significant in W7-

AS. The largest five magnetic spectra (ex-
cept Byg) in the Boozer coordinates for the
case (II) are shown in Fig.5 (a) and Fig.5 (b)
for 3 = 0% and 1.46%, respectively. Here
it is noted that the line for Byg denotes the
difference. Byolr/a) — Boo(0), and all other
components are normalized by Byg{0). The
toroidal mode number is normalized by the
toroidal pitch number, m. It is interesting
that the magnetic spectra do not depend on
the plasma pressure. This is also an indi-
cation that the P-S current which change
a magnetic configuration with a finite pres-
sure 1s negligibly small. It is noted that the
bumpy component Bg; and the £ = 1 he-
lical component B,; are large. As a refer-
ence, vacuum magnetic spectra for the case
(I) are shown in Fig.6. It is noted that B,
and By components are large at the edge
region; however, the contribution from By
and By components increases at inner re-
gion. Figure 7 shows the variation of rota-
tional transform due to the finite beta effect
for the case (If). The central value of rota-
tional transform increases also in this case.

In order to examine the efliciency of col-
lisionless particle confinement. particle or-
bits are followed for the three cases (1), (1}
and (I}. The case (I) shows the best con-
finement as shown in Fig.8. Although the
toroidal effect corresponding to the magnetic
component B; g in I'1g.5 {a} is reduced. there

exists still several fairly large helical com-



ponents which mav degrade the collisionless
particle confinement. It 1s interesting that
the local minimum values of B 1s almost 1n-
dependent of the poloidal angle for the case
(I). although the cases {II) and (Ilf) do not
show such a tendency. Since these is no
alignment of the local minimum of B in the
case (II), improvement of trapped particle
confinement is weak, although the P-S cur-

rent has been suppressed.

5. Concluding Remarks

The stellarator configuration without the

P-S current or Shafranov shift has been demon-

strated successfullv. It is also shown that
the magnetic spectra do not depend on the
plasma pressure. However, from the point of
view of collisionless trapped particle confine-
ment. the complete suppression of P-S cur-
rent{ is not always favorable. Thus it 1s 1m-
portant to design a stellarator by optimizing
three points of view: reduction of P-S cur-
rent. collisionless trapped particle confine-

ment and formation of magnetic well with

subtle trade-offs.
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Figure Captions

Fig.1 Coil configuration of ¢ = 3 stellarator

for studying reduction of P-S current.

Fig.2 (a) Vacuum flux surfaces, (b} vacuum

rotational transform and (c¢) vacuum
magnetic well (hill) defined by {17(0)—
V'(3£))/V'(0) for the £ = 3 stellarator
corresponding to parameters shown in

Table 1.

Fig.4

Fig.5

Fig.6

Fig.8

Fig.9

Shafranov shift of { = 3 stellarator as
a function of average beta for different

vertical fields, cases (1), (1) and (I).

{a} Vacuum flux surfaces, (b) vacuum
rotational transform and (c) vacuum

magnetic well (hill) for the case ().

Magnetic spectra for the case {II) at

(a) 3 = 0%, and (b) 3 = [.46%.

Magnetic spectra for the case (I} at

3 = 0%.

Variation of rotational transform pro-
file for the case (II) due to the finite

beta effect.

Collisionless particle losses in the three
vertical field cases (I}, {I) and (I) as a
function of the time of flight. Particles
(protons with p,/a = 1.5 x 1073) are
started at r/e = 0.5 and 0.75, which
are uniformly distributed in both the
real space and the velocity space. Here
p. 1s an ion Larmor radius, ¢ is a plasma
minor radius and 7 denotes a radius

defined by the toroidal flux function.

Magnitude of |B{ along the magnetic
field line on the flux surface at r/a =
0.5 for three vertical field cases (I). (1)
and ().
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