R
ISSN 0915-633X

“NATIONAL INSTITUTE FOR FUSION SCIENCE

Reduced Drift Kinetic Equation for
Neoclassical Transport of Helical Plasmas in e
‘Ultra-low Collisionality Regime 1

S. Wang, H. Sanuki and H. Sugama

(Received - Oct. 4, 1999 )

NIFS-613 Oct. 1999

This report was prepared as a preprint of work performed as a collaboration
reserch of the National Institute for Fusion Science (NIFS) of Japan. This document is
intended for infomation only and for future publication in a journal after some rearrange-
ments of its contents. :

Inquiries about copyright and reproduction should be addressed to the Research

. Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi,
Gifu-ken 509-02 Japan.

RESEARCH REPORT
NIFS. Senes T

'NAGOYA, JAPAN

Iy
€ -



Reduced drift kinetic equation for neoclassical transport
of helical plasmas in ultra-low collisionality regime
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Abstract: Based on the origiral five-dimensional drift kinetic equation, a three-dimensional reduced drift kinetic
equation has been obtained to describe the neoclassical transport of helical plasmas in ultra-low collisionality regime
where the collision frequency is much lower than the poloidal bounce frequency of the super banana particles. The
reduced drift kinetic equation describes the evolution of the distribution function in terms of three independent
constants of motion. In contrast to the conventional neoclassical theory, this reduced drift kinetic equation includes
the effects of finite super banana width and the effects of finite aspect ratio. Therefore, this reduced drift kinetic
equation is suitable for studying the collisional transport of fast jons in helical magnetic confinement systems.
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1. INTRODUCTION

The plasma parameters achieved in the experiments
of helical confinement systems {1, 2] have demonstrated
that the helical confinement systems, in parallel to toka-
maks, is an important approach to realize the magnetic
confinement fusion reactors. In the reactor relevant he-
lical plasmas, an important component will be the fast
ions produced by either neutral beam injection or ther-
monuclear fusion reactions. To understand the influence
of these fast ions on the plasma behavior is one of the
major issues in fusion plasma physics research. Recently,
confinement of fast ions has attracted more attentions [3,
4, 5] in helical confinement fusion research community.
These works have discussed the effect of orbit loss on the
confinement of fast ions. In this paper, we will discuss
the neoclassical transport behavior of the confined par-
ticles; the direct loss which has been discussed [3, 4, 5]
is beyond the scope of this paper.

For the fast jons with high energy, both of their
slowing-down frequency and pitch angle scattering fre-
quency due to Coulomb collisions are much lower than
their poloidal bounce frequency. Therefore, fast ions in
helical confinement systems are well in the ultra-low col-
lisionality regime. In addition to the fast ions popula-
tion, the background plasmas in reactor grade helical
systems can also be well within the ultra-low collisional-
ity regime.

In the wtra-low collisionality regime where the colli-
sion frequency is much lower than the poloidal bounce
frequency of the super banana particles, the effects of
the finite super banana width may play an important
role in neoclassical transport. However, it is difficult
for the conventional neoclassical theory [6] to treat this
problem.

Generally, collisional transport is governed by the six-
dimensional Fokker-Planck kinetic equation. For neo-
classical transport, it is well-kmown that the problem
can be reduced to a five-dimensional one by averaging
over the gyro-phase angle; this results in the drift kinetic
equation. If the collision frequency is much lower than
the toroidal bounce frequency, the problem can be fur-
ther reduced to a four-dimensional one by averaging over
the toroidal angle; this results in the bounce-averaged
drift kinetic equation [6]. However, this four-dimensional
drift kinetic equation is still difficult to be solved, espe-
cially in the ultra-low collisionality regime.

It is well-known that & three-dimensional reduced drift
kinetic equation can be obtained to describe the neoclas-
sical transport of tokamak plasmas, with the effect of fi-
nite banana width taken into account {7, 8, 9]; and the
three-dimensional reduced drift kinetic equation can be
numerically solved {10, 11]. Therefore, it is of interest

to investigate whether we can obtain a similar three-
dimensional reduced drift kinetic equation to describe
the neoclassical transport of helical plasmas in the ultra-
low collisionality regime.

In this paper, we will develope a reduced drift ki-
netic equation in terms of three constants of motion; this
three-dimensional reduced drift kinetic equation can be
applied to investigate the neoclassical transport in ultra-
low collisionality regime in helical confinement systems.
The remaining part of this paper is organized as follows.
In Section 2, we present the derivation of the reduced
drift kinetic equation; in Section 3, we discuss the choice
of the constants of motion; in Section 4, we make some
brief discussions on the results.

2. DERIVATION OF THE REDUCED DRIFT KI-
NETIC EQUATION

A. BASIC EQUATIONS

‘We begin with the five-dimensional drift kinetic equa-
tion

B f O+ 9 8y fO+ 6 85O+ ¢ 8, £

=C (f(5)) , 1)

where f) js the distribution function in the five-
dimensional phase space, (¥, 8, o, E, p). C{(f®) is

1
the collision term. g = —mw? /B; m is the mass of the

charged particle; v; is the velocity component perpen-
dicular to ;,he magnetic filed; B is the magnetic field.
E=upB+ Emvﬁ +e®; vy is the velocity component par-
allel to the magnetic filed; e is the electrical charge of
the charged particle; ® is the electrostatic potential. (15,

8, ) is the magnetic flux coordinates; and the magnetic
field is represented as {12}

— 1
B=Vi x V8 + mw X Vo, (2a)

B=g (%) Voo + I (1) V6 + f. (4, 6,9) Vo,

where g is the safety factor. ¢ is the toroidal magnetic
flux within the flux surface; 6 is the poloidal angle; ¢ is
the toroidal angle.

It is well-known that Eq. (1) can be cast into the
conservative form in the generalized coordinate system,
(21, 22, 22, 24, 2%),

(2b)
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where J© is the Jacobian of the five-dimensional phase
space, (z!, 22, 2%, 2%, z%); and summation over repeated
indices is understood. The contravariant components of
the collision induced flux can be written as
; 1
i i 5 2 5
s :<A’>nf(}_§<DJ>n(—3:f() (4)

where the operator, {---)

gyro-phase angle, .
The dynamic coefficients used in Eq. (4) are given by

n’ denotes averaging over the

AL =V,2 A, (5a)

DY = v,z B NV, (5b)

i_.- :4: and D are known as the dynamic

v
friction vector and dynamic diffusion tensor in Coulomb
collision operator [13].
For the Hamiltonian system, we have

where V, =

1 2 ;
) i) =
J® 8z (J ‘ ) =0 ®)

B. FOUR-DIMENSIONAL
EQUATION

DRIFT KINETIC

Among the five variables, (1, 2%, 2%, 2%, Z°), we can

choose z° = ¢ . Using the fact that

8, F9)
~FE
and making use of the approximation that gM >» 1 (here
M is the number of the toroidal period of the helical
winding), we can drop the variable, ¢ , from the prob-

lem under consideration. Using Eq. (7), we obtain the
following lowest order form of Eq. (6),

7}55% (79 ¢) =o0. @®)
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(i=1,2,3,4), (")

With Eq. (8), in parallel to the previous work for toka-
mak system [%], we can prove two important properties

of the Jacobian, which are important when reducing the
drift kinetic equation. ¥rom Eq. (8), we obtained

5) (21122’23’54)71. (9)
@
Let J& (21, 2, 2%, 2%) denote the Jacobian of the four-
dimensional phase space , (2!, 22, 2%, z4). With the aid
of Eq. (9) it is not hard to show that

JE (21, 22,2%,2%) = Mchs) (z1,2%,2%,2) 7, (10)

7., is the toroidal bounce time in a single helical ripple.
At this point, we define the toroidal-bounce-averaging

JE (21,2228, ) =

operator, (-}, , as
1
(X}, = aj{dfﬁf (11a)
2 /M
(X}o= 2 EX, (11b)
Te Jo @

where Eq. (11a) is for particles trapped in helical ripples,
while Eq. (11b) is for particles which are not trapped in
helical ripples. In Eq (11), the integrals are performed
with (2, 22, 25, z%) held constant; this is valid under
the condition that gM > 1.

Clearly, the toroidal bounce time in a single helical
ripple, T, , is defined by

(1), =1. (12)
Now, with the two important properties of the Jaco-
bian [Eq. (9) and Eq. {10)], one can average Egs. (3-5)
over ¢ by acting (- - -}, on them. This procedure results
in the four—d.lmensmnal drift kinetic equation,

1 8 (J(4} (zi) f(4))
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Yo = <()7?

FU = £ (21,22, 23, 24) is distribution function in the
four-dimensional phase space. In order to derive Eq.
{13), we have made use of the uniqueness condition for
particles trapped in the helical ripple and the perdiodic
condition for particles who are not trapped in the helical
ripple, as is similar to what has been discussed in Ref. 6.
Of course, it is not hard to show that Eq. (13) is exactly
the well-known bounce-averaged drift kinetic equation
[6] widely used in the literature, provided that the four

variables, (z!, 2%, 23, z%), are chosen in the same way.

where (--- > was used for abbreviation.
@



C. THREE-DIMENSIONAL REDUCED DRIFT
KINETIC EQUATION

According to Ref. 14, this four-dimensional system is
also a Hamiltonian system. Therefore, we have

1 & 4} /o2
Eazi (J{ } (Zz>‘p) =0 (14)
Now, we choose
(z1,2%,2%,2%) = (¢', e, %), (15)

where ¢!, ¢ and ¢® are three independent constants of
motion. At this point, we assume that we can find three
constants of motion for charged particles in helical sys-
tems. The validity of this assumption will be discussed
in the next section.

Substituting Eq. (15) into Eq. (14), we obtain

ﬁ(% (J<4} (9')¢,) =0. (16)

Let J. denote the Jacobian of the three-dimensional
phase space of constants of motion, (¢!, 2, ¢*). Here,
we also can prove two properties of the Jacobian.

JB (2, 5,6) = I (¢!, &%) ”}‘*1 (17)
{6,

Jc (C1>02, C3) = Jo(é) (61,02,63) 78, (18)

where 7y is the poloidal bounce period.
At this point, we define the poloidal-bounce-averaging
operator, {---},, as

(X, = = f b x, (19)

where the loop integral is evaluated along the real
toroidal-bounce-averaged guiding center orbit over the
whole poloidal bounce period. The poloidal bounce pe-
riod is defined by

(L) = 1. (20)

In this four-dimensional phase space, the forcidal-
bounce-averaged drift kinetic equation is written as

1 &8 :
Bef ™ + 7@ 36 (J(4} 0y f(4))

1 8

‘ 1, .. @
(4) i — Z{D" 4)
7@ 3 [J (<A=>mso 3 (P& ac;')f ]

=0, (21)

where
AL =V, 4, (22a)
D;J = chz_ .B 'vvc?-} (22b)

Consider the ultra-low collisionality regime where

3tf(4) o4 (f(4))
RONEC)

Under the condition, Eq. (23}, we can expand the
distribution function as

f(4) (01’62’ '331 91 t) - fc (Clrczscza t)

<(6) - (23)

+f1 (cl,c2’c3,9’t) 3 (24)

with f1 as the perturbation term.
Substitution of Eq. (24) into Eq. (21) gives

1 6 (4_) i ]. 7] 3
Ut 7w e [“’ (<A°>w =270 3 ) ¢ }

-~ g (10 @ 5). (25)

Poloidal-bounce-averaging Eq. (25) [acting Eq. (25)
with the poloidal-bounce-averaging operator defined in
Eq. (19)}, with the aid of Eq. (17) and Eq. (18),
we obtain the following reduced drift kinetic equation
that determines the distribution function in the three-
dimensional phase space of constants of motion,

10

i Lo o
0t o 7 ()00 = 3P0 505) 7]

=0, (26)

where we have used the uniqueness condition and the
periodic condition when annihilating the right-hand-
side of Eq. (25) by poloidal-bounce-averaging. Also

{-- ‘)’71‘!9! = <( - n "’>e has been used for abbreviation.

: ) 1, .. a

Note that 5% = ((A;.)we = 5D 00 55

contravariant components of collision-induced fhuxes in
the (ct,c?,c*) space.

Note that Eq. (26) is a continuity equation in the

three-dimensional phase space of constants of motion,

fe are



and the form of the reduced drift kinetic equation is in-
dependent of the specific choice of the three constants of
motion. The toroidal-bounce-averaging operator defined
here only performs time-average along the guiding cen-
ter orbits, and the poloidal-bounce-averaging operator
defined in this paper merely performs the time-average
along the toroidal-bounce-averaged guiding center or-
bits.

3. CHOICE OF THE CONSTANTS OF MOTION

Having established the reduced drift kinetic equation,
which does not depend on the specific choice of the con-
stants of motion, we are in a position to discuss the
choice of the constants of motion in order to make it
convenient for us to apply the reduced drift kinetic equa-
tion.

In addition to E and g, we have to find the third
constant of motion that is necessary for our formalism.
Generally, this can not be accomplished in helical sys-
tems lacking of the azimuthal symmetry. However, it
is well-kmown {14, 15] that there exists an adiabatic in-
variant, I, in helical systems under the approximations
that 1/gM < 1 and £:/cpgM < 1 (here, g, is inverse
of the aspect ratio and e is the amplitude of the he-
lical ripple}; and fortunately, these approximations can
be applied to a large class of machines.

n
I, = j‘{ dxp%mv” + o e, 7

where o = (0 for particles trapped in helical ripples; o =
+ for particles who are not trapped in helical ripples.
wé:p is the poloidal magnetic flux, which is defined by
dpp

Of course, there are cyclic changes in this adiabatic
invariant; however, these cyclic changes in the adiabatic
invariant are not important for the transport behavior of
the plasmas. Therefore, we ignore these cyclic changes
in the adiabatic invariant and take it as an approximate
constant of motion.

At this point, we clarify the classification of particles
according to their guiding center orbits projected to the
minor cross section. Particles can be classified icto three
types. The first one is trapped particle that is always
trapped in the helical ripple during the entire poloidal
bounce period; the second one is passing particle that
is never trapped in the helical ripple during the entire
poloidal bounce period: the last one is transition parti-
cle that is trapped in the helical ripple during one part of
the entire poloidal bounce period but escapes from the
helical ripple during another part of the entire poloidal

bounce period. Transition particles can be subclassi-
fied in two groups: transition particles in trapping state
(trapped in the helical ripple} and transition particles in
passing state {not trapped in the helical ripple). For the
details of the theory of guiding center orbits in helical
systems, we refer the readers to Refs. 12-15.

Clearly, there is a jump in I; when transition particles
cross the de-trapping (retrapping) points. Therefore, it
is not convenient here to use I, as the third constant of
motion in addition to E and p.

One possible choice of the third constant of motion is
that ¢® = (3),; this is similar to the previous discus-
sions on the reduced drift kinetic equation for tokamak
plasmas (7, 9]. In helical systems, however, it will be a
very involving task to calculate explicitly V,¢® which is
necessary when evaluating the dynamic coeflicients used
in the reduced drift kinetic equation, if ¢® is defined in
this way.

For the present, we propose to choose the third con-
stant of motion as

&= . (28)

Determination of 15 will be described as follows.
Following Ref. 3 and Ref. 14, we specify the fields by

B =By [go{,0) +£1(¢,6) cos (20 — Me)], (292}

® =92, (¢), (29b)
where Bp is a constant. And we define

B o By =TI )

2[1.31 ’

where By =RBo £¢ (9,0), and B; =Bg £1(%,6). With
the model fields given above, analytical functions can be
found for

I, = I, (,6,E,u) . (31)

For the details of the functional form of I, (¥,0, E, 1},
we refer the readers to Ref. 3 and Ref. 12.

With the definition of &2 given in Eq. (30), it is clear
that when k2 < 1, particles are trapped in the helical
ripple; when k? > 1, particles are not trapped in the
helical ripple. And the de-trapping (retrapping) points
of the transition particles satisfy the condition,

K =1 (32)

Note that in addition to the model fields we adopted
here, there are alternative models for the fields [15, 18].
But this difference does not influence the method we
present in this paper.



For passing particles, trapped particles and transition
particles in their trapping state, v is determined by

IG (11[77 91 E} ,U-) = I; (‘wou E7 lu’) ) (333')

I; (¢0:E1 ,LL) =1 (d’o?ga E: .u')e:;- y (33b)

where & = 0 corresponds to the outside midplane.
For transition particles in their passing state, ¥y is
determined by

K2 (r, 07, B, ) = 1, (342)
IL ($7,0r, B, p) = I (4,6, E, 1), (34b)
If (7,97, E, ) = I3 (o, E, ), (34c)
I§ (%0, B, 1) = Io (0,9, B, ), - (34d)

Essentially, our choice of #g is the generalization of
Ref. 6 and Ref. 8. Clearly, ¥ is the value of ¥ when the
particle crosses the inner-side midplane (# = ). This
choice is valid for the model fields we have adopted here;
for different model fields, g can be chosen in the similar
way.

Now, we have chosen the three constants of motion

(c', ¢ ) = (B, p, o) . (35)

In order to calculate the dynamic coefficients used in
the reduced drift kinetic equation, we have to calculate
V¢ . Note that

VT,C3 = vv¢0 (71[’? 97 Ea .U.)

= VanE'dJO + vv”ay'ﬂboy (36)

we only have to calculate dzvjp and 9,9s. The math-
ematical manipulation is lengthy but straightforward.
Here, we only present the resulting formulae.

For passing particles, trapped particles and transition
particles in their trapping state, we have found

Opve = (9pls — Opl;) [0y, 13, (37a)

ajﬂ#’ﬂ = (auld - apI;) /a'ﬁu-[;' (37}3)

For transition particles in their passing state, we have
found

Oelf + OgyprOy IT + Orbrde, If — Opl}

Bt = ENE

(38a)

8#1’{ + an'd’Tatbrlg + 3#97’33,.[3" —0uly

oo = Ol
(38b)
where
dpyr = Dper /D, (39a)
Outpr = Dpor /A, (39b)
Oebr = Dpur /D, (39¢)
Bubr = Dy /A, (394)
with
| 8 IE B IE
o=| % 3| 09
_ | B6IE —8alf + 8als
Dap = ! @gk% —9, k2 » (40b)

where . = E, p; 3 = o, Or.

4. DISCUSSIONS

Based on the original five-dimensional drift kinetic
equation, we have established the three-dimensional re-
duced drift kinetic equation for neoclassical transport
of helical plasmas in ultra-low coilisionality regime; the
derivation of the reduced drift kinetic equation is based
on a plausible assumption that we can find an approxd-
mate constant of motion, in addition to energy and mag-
netic moment. The reduced drift kinetic equation is a
continuity equation governing the distribution of con-
fined particles in the three-dimensional phase space of
constants of motion. It is clear that the effects of finite
super banana width and finite aspect ratio have been
included in this equation.

Although the reduced drift kinetic equation derived
in this paper is independent of the specific choice of the
three constants of motion, we have discussed a. con-
venient choice of the three constants of motion for the
potential application of the reduced drifi kinetic equa-
tion. And we have presented the necessary formulae for
calculating the dynamic coefficients used in the reduced
drift kinetic equation.

One of the potential applications of the reduced drift
kinetic equation is that it may provide an altermative
way to numerical simulations of neoclassical transport of
helical plasmas in ultra-low collisionality regime. Since



the reduced drift kinetic equnation is a three-dimensional
continuity equation, it will not be difficult to numeri-
cally solve it. It is being under consideration to devel-
ope a computer code to numerically solve this reduced
drift kinetic equation. Once the equation is solved for
the distribution in the three-dimensional phase space of
constants of motion, the macroscopic physical quantities
can be found immediately.

(Generally, there are two ways to obtain the transport
Auxes in real space from the reduced drift kinetic equa-
tion {Eq. (26)]. In the first way, using f., we can ob>-
tain the distribution function f (3,6, E, p); then we can
obtain the macroscopic transport fluxes by taking mo-
ments of f {3, 8, E, 1) in the conventional way. In the
second way, the transport fluxes can be obtained di-
rectly by transformation from the {(c?, ¢, ¢*) space to the
conventional {3, 8, E, ;) space; the velocity-dependent
collision-induced transport flux in the direction of V¢ in
the conventional (%, 8, E, ) space, T¥, can be obtained
by using the general theory of coordinates transforma-
tion, since we know S, the contravariant components of
the collision-induced flux in the (c!,c?,¢®) space; then
we can obtain the macroscopic particle (energy) flux by
integrating TV (T¥mv?2/2) over the velocity space and
averaging the results over the magnetic flux surface.
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