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Sparseness of Nonlinear Coupling

Susumu GOTO ' and Shigeo KIDA

National Institute for Fusion Secience, Oroshi-cho 322-6, Toki-shr, 509-5292, Japan

Abstract

It is not weakness of nonlinearity but sparseness of nonlinear couplings that plays a key role in the direct-
interaction approximation (DIA), which is an excelient moment closure theory for nonlinear dynamical systems.
Homogeneous Navier-Stokes turbulence is an example of dynamical systems in which nonlinearity is strong in
magnitude but sparse in coupling. In order to clarify the importance of sparseness of coupling, we formulate DIA
for a model equation which has three parameters coupling density, strength of nonlinearity and the number of
degrees of freedom. By the help of numerical simulations, it is shown that DIA is applicable when the coupling
density is much smaller than the square root of the number of degrees of freedom, even if the strength of nonlinearity
is infinitely large. This implies that the applicability of DIA has nothing to do with the Gaussianity of a dynamical
variable, although DIA is often explained as a theory based on it.
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1 Introduction The flow is assumed to be periodic in three orthogo-

nal directions with period L {see Chap.V of Ref. [1] for
Nonlinearity of a dynamical system is characterized by  derivation). The Reynolds number is defined by the
two parameters: strength and coupling density. The for-  ratio of magnitude of nonlinear and linear dissipative
mer represents the ratio of magnitude of nonlinear and  t{srms on 1the right-hand side of (1), which is much larger
linear terms, which corresponds to the Reynolds number  than unity in fully developed turbulence. The coupling
in the Navier-Stokes system. The latter is defined by the  density is the number of direct interactions between
number of direct interactions between two modes. Let  two modes, say u, (k1) and u,(k2), and is exactly equal
us consider the properties of these two parameters in  to unity. To observe this, direct interactions between
homogeneous fluid turbulence described by the Navier- u,(k;) and other modes are schematically depicted in

Stokes equation, Fig.1. There is only a single direct interaction between
any pair of modes owning to the constraint k+p+g = o0

uz{k t) Z Z Moy (K) in summatigns w.it.h respect to p and g. In genera.l. there

=1 m=1 are O(N) direct interactions between a pair of modes in

an N mode quadratic nonlinear dynamical system. Note
that the number of active modes is extremely large in
fully developed turbulence. Hence, homogeneous tur-
bulence at large Reynolds numbers may be regarded as
where u,(k,t) is the Fourier component of velocity, K is  a dynamical system of strong nonlinearity with sparse

X DD w(=pt) uml~g.8) ~ vk uilk, ), (1)

(k+p+q=0)

the wavenumber, and coupling.
i (2 . . .
Mm(k) = 5 \7 A nonlinear term causes an infinite hierarchy of mo-
ment equations. Closure theories of nonlinear dynamical
ke & 4k & — Zkiky R, (2) systems are after all to truncate this hierarchy, and to
X m 1} + 7 i kz * . . .
obtain a closed set of equations for a finite number of
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moments. Traditional perturbation theories based on
Reynolds-number expansions are not useful for a sys-
tem at large Reynolds numbers. Fortunately, however,
if nonlinear couplings are sparse as for the Navier-Stokes
equation (1), there is a possibility to solve the closure
problem. In the present paper, we discuss the direct-
interaction approximation (DIA) [2, 3], which is based
on sparseness of coupling. As will be shown later; the
coupling density should be compared with the number of
degrees of freedom. It is usual that any approximation
may require at least one small parameter. A purpose
of the present paper is to find such small parameters for
validity condition of DIA which depends on the coupling
density and the number of degrees of freedom and which
can be small even in the large Reynolds number limit.
The rest of this paper is organized as follows. In the
next section, we infroduce a model equation, in which
the strength of norlinearity, the coupling density and
the number of degrees of freedom are easily controlled.
The DIA is formulated for this model in §3, and its ac-
curacy and validity conditions are discussed in §4. In
£5, we clarify relationship between DIA and Gaussian-
ity. Concluding remarks are given in the last section.

(k)

uz{kz)

ui(ka)
ui(—kl - ks)
uz(k5)
u {—ky — kyg)
u,(—ky — k3)

u,(—ky — k)

Figure.l Schematic illustration of direct interac-
tions between a Fourier mode u,{k;) and the oth-
ers in the Navier-Stokes system. Each interaction
is depicted by a triangle.

2 Model equation and coupling
density

By introducing a model equation [4-6] for a set of real
variables {X,[t =1,2,--- ,N},

d
a Xz(t)

=33 Cup X;(0) Xe@®) —v Xu(t) + £:(8), (3)
i &

the coupling density of which is easily controlled, we
shall discuss the essence of DIA in detail. Hereafter, 3,

Figure.2 Direct interactions between X; and
other modes in the model system (3). The cou-
pling density is (a) p ~ 1, (b) 2 and (c) 18.
N =20.



N N -
implies " . Real constant coefficients C,,x are as-
sumed to satisty

Cyk = Cuy  (symmetry). (4)
Cuk + Ciar + Cryy =0 (detaled balance of energy),

(5)

(absence of self-interaction), (6)

Cy; =0

C:jk = Crem{a+m,N}rem{;+m‘h’}rem{k+m,N}

form=12---,N-1 (homogenaty), (7)

where rem denotes the remainder between 1 and N. Be-
cause of symmetric appearance of X,(t} and X(t) in
the nonlinear term, the anti-symmetric part of C,;z is
irrelevant so that we can always assume the symmetry
condition {4). The detailed balance of energy (5) and
the absence of self-interaction (6) are analogue of the
Navier-Stokes equation (1). A stepwise random force
f:(t), which is constant during a time interval Af, is
assumed to obey a normal distribution with zero mean
and variance,
2 2w

T T Na ®)
Instantaneous values of forcing terms, f,(t) and f,(¢'),
are independent of each other either if i £ j or jt —¢'| >
At. Because of the homogeneity (7) of C,;, and f,(t),
statistics of X,(f) can be independent of z.

We define the coupling density p quantitatively by
the average number of direct interactions between pairs
of modes. In an N mode systern, p can take a value be-
tween 0 and N — 2. Only two extreme cases were dealt
with in Ref. [6], namely the cases either that there is a
single, at the most, direct interaction between any pair
of modes (p ~ 1), or that a pair of modes has N —2 direct
interactions through all of the other modes (p = N - 2).
Here, we shall examine such systems that have inter-
mediate coupling density. Incidentally, as stated in §1,
p is exactly equal to unity in the Navier-Stokes system
(1). Because of restrictions (4)—(7) of coefficients C,y,
we cannot construct in general this model system (3)
with p exactly equal to an integer except the densest

coupling case. Direct interactions between Xy (f) and
the other modes in several cases of coupling density are
schematically depicted in Fig.2 in the case of N = 20.
We construct the coefficients C,,¢ in such a way that the
number of direct. interactions between any pair of modes
does not exceed [p] + 1 in order to make the nonlincar
couplings as homogeneous as possible.

The model equation (3) has three parameters: the
dissipation coefficient v (or the Reynolds number R =
1/}, the number N of degrees of freedom and the cou-
pling density p. We are particularly interested in the
limit of strong nonlinearity, i.e.,

Raoc < v-o0, (9)

in which both the dissipative and the forcing terms van-
ish {see (8)), and the system is governed by the nonlinear
term only.

3 Direct-interaction
approximation (DIA)

3.1 Correlation and response functions

To start with, we separate the variable X, () into two
parts:

Xz(t) = xt(t} + Yz(t) ) (10)

where

z,(t) = X,(t) (11)
is an ensemble average (or a temporal average in statis-
tically stationary cases), and ¥,(¢) is a fluctuation which
satisfies

Vi(t)=0. (12)

It is easy to derive the evolution equation for Y,(¢), from
(3). (10)—(12), as

aqg V() =3 > Cu { 22;(t) Yil(t) = ¥, () Ye(t) + Y, (t) Yi(2) } - vY,(t) + filt) .

k

(13)

The purpose of second-order moment closure is to derive a closed set of equations for the correlation function of

the fluctuation,

V(t,t') = Yi(t) Yi(#)

which is governed by

o
[& ol v -5 {200 TOT@ FOROTE | (> 0)

]

(14)

(15)



l% + 2,,} Vit 8 =2 ;Xk: Cujk { 23;(t) Ye(£) Yi(t) + Y, (2) Yi(t) Yi(E) } +2 f() YY),

(16}

and for a few other statistical quantities {if necessary). In DIA we introduce the response function,

Gt t') =

where 6 denotes a functional derivative and G (t,t) = 6ipn-

YLt}
AR
The evolution equation of (7,,(¢,¢') is obtained by

(17)

taking the functional derivative of (3) with respect to Y.(¢') as

o , , ,
Gt ) =233 Con { 5,0 +Y,(8) } Grnlt.t) —vCunltst) (> 1), (18)
i ok
an ensemble average of which leads to
O ——— “ Fa '
5 601 =233 Cin {zjct) Gin(60) + Y5(8) Gnlt,7) } —vGaEY) () (19)

ik

with initial condition G,,(t,1) = &;i. The higher order
statistical quantities appearing on the right-hand sides
of (15}, (16) and (19) must be expressed in terms of the
quantities on the left-hand sides under some reasonable
assumptions. In the following subsection, we solve this
closure problem by DIA |2, 3].

3.2 Formulation of DIA

The DIA is based on the sparseness of nonlinear cou-
plings, and consists of the following two assumptions,
which have been justified numerically [6]. If we artifi-
cially remove a single direct interaction between Yy, (¢),

Y,,(t) and Y3, (¢), say, then {I} these three modes are
statistically independent of each other, but (1) statisti-
cal properties of the entire system are hardly changed.
In order to put these assumptions into practice, we in-
troduce a decomposition {the direct-interaction decom-
position) at t = fp that

Yilt) = Y5 sop, (tit0) + Y001 (tito) . (20)

Here, an artificial field Ya Jigoko (t|tp}. called the non-
dlrect interaction field associated with a triplet of modes
{Y%: Yo Yo }. is governed by

d y@ (0)
ar l/tojako to) - Z Z C”A 2'1:3 (t) Ylﬁo]oko

+ZZ

¥
{i,5,k}#£{t0.30,k0}

(tto) - GO TGE }

(0} ()
Cljk thnjoko(tlto) jG‘/‘t‘o_’.'nko (tltu) - yYB/ZQJQkO(tltO) + f't(t) ]

(21}
and a deviation field Yz(/iz] Joko (tlto) by
d
EN t(/tlJoko (tft) = ZZ 2Csi 7 {t) k/mjnko(tlto)
1)
DD IR ACZNCORI MUY
ik
{t,2.k}#{t0.20.k0}
+ 855 2 Ciogoro YU, L (#t)Y O (it
ta & Viggoko * gy fio joks lto ko fiajoke ito)
+ 8130 2 Clokats Yiotioiota (HE0) Yo o sk (D)
+ Biis 2 Cryiogo Yiﬁ/iojuko( !tﬁ)Y;,-(uo/),,omko( fto) - (22)



Observe that a difference between the governing equa-

tions for Y,(¢) and Yjﬁi}oko

a single direct interaction between {Y,,.Y,, Y, } in the
latter. Then, the DIA assumptions arc stated as foliows:

{tltp) is only in the absence of

DIA assumption !

(0} -(0) ~{0)
Three modes {Ylo/m.‘roko’ }10/20301‘0’ }ku/!ojukn}’ be-

tween which the direct interaction is absent, are sta-
tistically independent of each other.

DIA assumption 2
The deviation field ¥}

1/ 10ko
magnitude than the true field ¥,(¢) in a statistical
sense as long as t — tg 1s within the time scale of the

auto-correlation function V(¢.¢').

(t|te) is much smaller in

Similar assuraptions are imposed for the response func-
tion (see Ref [6] for detail). Hereafter, we omit the

argument lo of Yz(/(li 1ok, (tlto} for brevity of notations.

These two assumptions are satisfied better as the
number N of degrees of freedom of the system increases.
As for the first assumption, when N is large, many
modes are coupled indirect]y with those particular three
modes, and such indirect interactions may be well ran-
domized and tend to cancel out correlation between
them in a statistical sense. As for the second assump-
tion, an artificial removal of one direct interaction may
have only tiny effects on the entire statistics of a large
system. Furthermore, it should be stressed here that
the first assumption requires also sparseness of nonlin-
ear couplings. If couplings are denser. there exist more
indirect interactions between a triplet of modes through
a few modes {e.g., four-mode indirect interactions shown
in Fig.3), which are not expected to be randomized
enough to make correlation between the three modes
negligible. Indeed, it is shown [6] that in the densest
coupling system {p = N —2) this assumption is violated,
and the prediction of auto-correlation function by DIA
is far from satisfaction. Density dependence of accuracy
of prediction by DIA will be estimated quantitatively in
84.

X, X, X, X. X, X.

Figure.3 Direct interactions between X, and
other modes in the model system (3). The cpu-
pling density s (a)} p ~ 1, (b) 2 and {c) 18.
N =20.

The DIA assumption 1 will be employed as

YO yO O _g

ifigk " 3/fijk T k/izk (23)

and

LY O

tfi3k T i/uk Y(U) Y(O)

2k 7 pfuak
(24)

0) (0} {0y -0)
Yl/uk Y;/zj‘k y;i/?.?k }J/U""

in the DIA formulation (see Appendix A). It is the
guiding principle in moment closure theories to express
higher-order moments in terms of lower-order ones. By a
straightforward calculation, using (23) and (24), we can
derive from (15), (16} and (19) a closed set of equations
for the two-mode correlation and the response functions
as

3 7 N —
[éz+v]L(t,t)_

t
—20[ A" G(t.¢") V (max{t', £"}, min{t’, 1)
to

x V(t,¢")
o
+2C / dt”" Gt YV, t")? (>t (25)
ip
[ d 2v
and
2N P
[ 5 +uv| Gt t)
ot
= —ZC/ dt" V{t,t"YG(t.t") G{t", ). (27)
t.‘
Here, G(t,t') and C are defined by
Gt = G, (8, ) {(28)
and
(29)

c ZZZCMQ’
7 &k

respectively. The linear equation (26) can be integrated
as

Vit 1) = Nlﬁu { v(0,0) - ;,}e—“f. (30)

It is intercsting to see that (25} and (27) permit a solu-
tion which satisfies

V(e = V.Gt ), (31)

since each of them then leads to
ﬁ +v
ot

i
= ~2C[ dt” G(t,#") G(t,t") G{t", 'y V(" ¢") .
o

G(t.t)

(32)
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Figure.4 Auto-correlation function of the model equation (3) for various combinations of N and p in
the case R — oo. Thick line, DIA; thin lne, direct numerical simulation.



Equation (31) implies that the response function plays
the role of a linear propagate operator on the correlation
function. It should be noted that the artifinal time tg
in (25) disappears automatically when we assume (31).
In the following, we call (30), (31} and (32) the DIA
equations.

4 Accuracy and validity of DIA

Here, we show explicitly that the DIA equations give
an extremely good prediction even in the limit of large
Reynolds numbers (R — c0) by examining their solu-
tions in the statistically stationary state, in which V
and (G may be expressed as

V(r)y=Vit+r1),
(33)
G(r) =Gt +7,t),

where 7 > 0. Then the DIA equations (30), {31) and
{32) are reduced to

VO) = 5 (34)
V() = V(0) G(r) (35)
and
d 2C T . ; .
(36)

For later use, we define here the auto-correlation time
scale 7. as

TC(AT) = —1——'* . (37)
2CV(0)

The DIA equation (36) does not depend on N in the

limit » — 0, if V and 7 are respectively rescaled by V(0)

and 7.(N).

In Fig4, we compare predictions V. of the auto-
correlation function by the DIA equations (36) and re-
sults Vows of direct numerical simulations of (3) for sev-
eral combinations of (p, N) at the infinite Reynolds num-
ber (i.e., » = 0). The agreement is better for larger N or
smaller p, and it is excellent in the case that p ~ 1 and
N >» 1. This is consistent with the intuitive argument
made in §3.2 that DIA is valid for systems with sparse
nonlinear couplings and a large number of degrees of
freedom.
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Figure.5 Coupling density dependence of the in-
tegrated difference Apia. ¥ = 0. (a) N = 102, (b)
10% and (¢) o, N = 10%; o, N = 105,

In order to make a quantitative comparison, we in-
troduce an integrated difference,

/ " dr Vo () - vDNS(T)l
0

[d?‘
o

which represents a discrepancy between a direct numer-
ical simulation result and a prediction by the DIA equa-
tions, that is, small Ap;, implies validness of the DIA
equations. Numerical results of Ap,, evaluated for var-
ious p (& N) are plotted in Figs.5(a) for N = 10% and

Ao =

, (38)

Vons (7))



(b) 10° in the limit of R — oc. They are qualitatively
consistent with the above results on the auto-correlation
function. As seen in Fig.5(c), Ap.. seems to be a func-
tion of p/v/N. Thus, it is numerically suggested that
the DIA equations may be valid as long as

p < VN, (39)

even if R — oo.

This validity condition (39) of the DIA equations
is consistent with that of DIA assumiption 1, which is
grounded on sparseness of nonlinear couplings and on
largeness of the number of degrees of freedom. This
may be understood as follows. The simplest indirect in-
teractions between a triplet of modes {X,, X,, X} are
four-mode interactions which involves one more mode
X. (Fig.3). Since such a small-number-mode interaction
may bring non-negligible correlation between the three
modes, the independency assumption (DIA assumption
1) deteriorates. (It requires that indirect interactions
should be randomized enough so that their effects to the
correlation can be neglected in a statistical sense.) The
probability ¢ of the existence of a four-mode interaction
is evaluated as

0 (p<1),

=9 3olp-1) (40)

for N >» 1. It is expected that Ap;, is small for small ¢.
This may be a reason why Ay, is a function of p/ VN
note that ¢ =~ 3(p/vVN)2 for p > land N > 1. It is
concluded therefore that DIA is valid for systems which
satisfy the condition (39) irrespective of the Reynolds
number.

5 Irrelativeness of DIA to
Gaussianity

It is known {see e.g., §19.6 of Ref. [7}) that the DIA equa-
tions are derived by a variety of methods based on dif-
ferent idea and procedures. In contrast with the method
described in §4, many of the authors (e.g., Refs. [4,8,9])
assumed the Gaussianity of variables, and employed the
well-known mathematical properties of a set of probabil-
ity variables, {Y;(G)li =1,2,3,---} which obeys a joint
Gaussian distribution with zero mean: An odd-order
motnent vanishes, e.g.,

v vy ~q, (1)

and an even-order moment is expressed in terms of
second-order ones, e.g.,

G G a G G G G G G G e G G G G G
Y;-( )Y]( )Y;ﬁ( )YE( ):Ya( }YJ( ) Yk( )YE( )-I-Yl( }Yi( ) Y;( )Yk( )+Yi( }Yk( ) Y:T( }Y}( )

(42)

f

It should be emphasized that {41} and {(42) are superfi-
cially similar to, but essentially different from (23) and
{24). In the following we shall give two examples which
show that DIA is never based on Gaussianity. In one
case DIA does not work though the pdf of X;(¢) is nearly
Gaussian. In the other case the pdf is far from Gaussian
but the prediction by DIA is excellent.

The m-th order moment of X,(¢) is defined by
My (1) = Xit) ™. (43)

Here, we deal with a non-stationary homogeneous sys-
tem, in which an average is defined by

1 N J
ziltid) = w5 33T ()

i=1 j=1

(44)

instead of the temporal average adopted in a stationary

case. Index j denotes a realization of J(3» 1) initial con-
ditions. Equation (44) implies, therefore, that we take
an average over both N modes and J initial conditions.
For the purpose of showing the irrelativeness of DIA to
Gaussianity, the following four initial pdfs P(X;,t = 0),
which satisfy

M>(0) = {45)

1
N kl

are examined:

(a) : P(X.0) =

1 X,?
—— exp| —— |, 46
\/271_712 p[ 20.12}- ( )

{b) : P(X;,0) = %{ 68X, ~ 2)+o0(X, + 2) } (47)



X,

X,

Figure.6 Temporal evolution of the pdf P(X,,t). Each line denotes P(X;,¢); t = 0, At, 24¢, 34¢, - -

(At = 3.8 x 10~*). Figures (a)—(d) correspond to the initial pdfs (a)

(d), respectively. N = 10%,

v=10,p~1
(0 (X: < —0?),
(C) : P(X‘ho} = 4 1 X, +022 ) (48)
= exXpy| — ] (X'l > —0y ) »
L V2102 (X, + 6,%) 20,
( 0 (X, <0),
(d) : P(X,,0) =< 1 (49)
ex : X, >0).
\ r———QTl'O'SQX7 P I: 5 32] ( 1 )
r i
where relaxes to a statistically stationary state. This station-
1 LN\ d 03 ary state may be Ergodic, if ¥ = , in which a state point
o = =, 0,° = (_) and g;° = (_) . migrates densely and homogenecusly on an equi-energy
N 2N 3N surface in the N-dimensional phase space. The pdf in

(50

Initial pdf (a) is a Gaussian, the results of which are
compared with those of other three initial pdfs far from a
Gaussian. Initial pdf (b) has two peaks; (¢) and (d) have
non-vanishing skewness factors; (d} has non-vanishing
mean M, (0} = o3® as well.

Temporal evolutions of the pdfs obtaived numeri-
cally are plotied in Fig.6. It is observed that each system

the statistically stationary state is then estimated as

1 T(N/2) B2

P(X,, 00) = (l—Xf)T. (51)

T V& (N -1)/2)

The numerically obtained pdf actually tends to (51) at
t 3 7. (Fig.7). Here, we should note that expression
{51) is valid irrespective of coupling density p as long as



a conservative system is concerned, and that (51) tends
to a Gaussian in the limit of N 3» 1. These facts im-
ply that applicability of DIA, which strongly depends
on coupling density, is not necessarily stuck with Gaus-
sianity. Note that in the statistically stationary (£ >> 7.)
system with dense couplings and large degrees of free-
dom, the pdf is nearly Gaussian but DIA never works.
This is the first example which shows that DIA has no
relation with Gaussianity.

i

LR LLLL B L I LN 1)

aund aavvml wyggel o osnag

i
0 0.1
X

)

Figure.7 Pdf of X;{t) in the statistically sta-
tionary state (¢ » 7.) obtained by direct nu-
merical simulations. Coupling density p =
1, 10, 20, 30,---, 100; these curves overlap not
only with each other but also with the theoretical
prediction (51). N = 103, v = 0.

By estimating the skewness factor,

s(t) = Ms(t) [ Ma ()3 (52)
and the flatness factor,
() = Ma(t) [ Ma(t)?, (53)

we may determine the relaxation time scale from the
initial non-Gaussian pdf to the one expressed by (51).
Simulation results are plotied in Fig.8, in which time ¢ is
normalized by the auto-correlation time scale 7. defined
by (37). It is seen in this figure that the deviation of
pdf P(X;,{) from a Gaussian is significant in the early
stage of evolution (t < 7.) even if N is large when the
initial pdf is not Gaussian.

The above results enable us to investigate the auto-
correlation function,

V(t) = V(t,0) (54)

10

as a statistical quantity the pdf of which is non-Gaussian
when the pdf P(X,,0) is taken as one of (b)—(d). It is
easy to show from (30}, (31) and {32} that the DIA equa-
tion for ]7(1&) is the same as (36) in the limit of & — 0.
In Fig.9, direct numerical simulation results of V(t) are
compared with the prediction by the DIA equation (36)
for each of the four initial pdfs. We can see that DIA
predictions are excellent irrespective of the initial pdfs.
This is the second example which explicitly exhibits ir-
relativeness of DIA and Gaussianity.

6 Concluding remarks

The moment closure problem for a quadratic nonlin-
ear dynamical system at very large Reynolds number
is solved at the second order level by DIA. This approx-
imation is based on the assumption (DIA assumption
1 in §3.2) that the three-mode correlation is induced
mainly by direct interactions between them. Sparseness
of nonlinear couplings and largeness of the number of de-
grees of freedom play key roles in this assumption. We
applied DIA to the model equation (3}, and obtained
the DIA equations for the two-mode correlation and the
average response functions, which give excellent predic-
tions of the auto-correlation function both in the statis-
tically stationary and non-stationary states (Figs.4 and
9}, when the coupling density p (i.e., the number of di-
rect interactions between two modes) is much smaller
than the square root of the number N of degrees of free-
dom (Fig.5). It is emphasized again that validity of DIA
is related neither with the nonlinearity {the Reynolds
number) nor with the Gaussianity of pdf of variable.
Indeed, the Reynolds number in Fig.4 is infinitely large,
and the pdf of X; in the cases of Fig.9 is far from Gaus-
sian. The present success of DIA may be a little surpris-
ing because it is well-known that a naive application of
DIA to the Navier-Stokes turbulence (i.e., the Eulerian
DIA [3]) does not necessarily work well, and that an in-
troduction of Lagrangian quantities is necessary [10,11].
Note that the model equation (3) is so general that the
Navier-Stokes equation (1) can be included. In this pa-
per, however, we simplify the system by homogeneous
viscous constant v, = v, and by homogeneity condition
{7} of the coupling coefficient C;;z. On the other hand,
in the Navier-Stokes system, both of the coefficients are
larger for Fourier modes of larger wavenumbers. It seems
to be significant, therefore, to study an inhomogeneous
system, i.e., model equation (3) without the condition
(7) and with inhomogeneous viscosity v;. We are study-
ing such a system, hoping to report interesting conclu-
sions elsewhere in the near future.
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Appendix A DIA formulation for a system with mean
Similarly to (20}, the respounse function G, (¢,#) is also decomposed as

(&) + G (), (A1)

in/wjoko

Gin(t,t) = GY

infipaoke
where the two quantities on the right-hand side are respectively governed by

8 {0) {0)
3]5 m/IDJ’OkU (t L ) = Z Z: 203-7’“ Zj (t) Gkﬂ-/iujoku (t’ t ) v Gmﬁojoko (t’ t’)

o
+ Z Z 20, V(8 Gl o (6,E) (A.2)

{Z»J,k}?s{lo 0.k}

d 1) i
ot Gfﬂlzojo ko (1) Z Z 2 Cijs 75(1) Ggm)/ﬁojo ko (t,4') —w GSn)/zoJoko (8,%)
+ O3S 20 Y Gl )
i k
{i.g.k}#{40.50,k0}
+ 63, 2Cinioko 4 Yio (1) G t,') + Vi (£) G9 £,t)
) injoko o koﬂ/iojoko{ 3 ko( ) Jon/m:mku( s

0
+ 130 2 Cokoi { Y (8) G loﬂ/loJoko (t,t') + Yzo(t) Gi:o)n/zo_mkn(t’ t’) }

+ 8k 2Chpiozo { Yiol) Gootosuse ) + Vi) GO 1,7) (A3)

Jonfiojoko fpn/iajoko
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(6}
\\lth G1n:"!n]0kn( ) W 617] a‘nd (“lnl'lflj[lkﬂ( :

express formal solutions of (22) and (A.3) as

t) = 0. Then, by employing Gig}(t,t’) as Green’s function, we can

t
#(1) - {0) - £y (0} '
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and

ﬂ
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(A.5)
Decompositions (20) and {A.1} are naive extensions to a system with non-zero mean of that of zero mean z, = 0

{see [6]). The resultant DIA equations (25)—(27) are the same between the two cases as shown below.
The first term of the evolution equation (15} for the auto-correlation function is written as

(First term on rhs of (15)) Z Z 20, x, (1 k/Uk(t) Yz(/(:)]k(t')

+ Z Z 2C,k x;(8) Yk/;z)j‘k(t) Y/Uk( )
+ Z Z 2C, 2, (1) Y7 ) Y (1)

+ Z Z 2Ck 2, (1) V5 (O V) (1) (A-6)

The first term of {A.6) vanishes because Yl(fg . and Yk(?l) . are statistically independent of each other. and because

Yz{/(g ¢ (t) = 0. Furthermore, by substituting the formal solution (A.4) of ¥, (/lzg_;ok

shown to be zero. For example, the second term of {A.6) is rewritten as

{t), the other three terms are also

(Second term of (A.6))

—ZZ 4Cyp ,(t f dt”{Cuk Gt YO v O v ) (e

+Cpe G40 YO v D v )

ijigh fegh ™
(o) 0) '
+Cny G0 YO V@Y | A

where we have assumed that G p and y© )k are statistically independent of each other because they have no

m/tJ 2/
direct interaction. (This assumption has been checked numerically [6].) Then, all the terms in (A.7) vanish because
of independency between X ( /z)J ” X;?iﬁk and X ,(:/)1 - Thus, it is shown that
(First term on rhs of (15)) =0 (A.8)
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Next, the second term of (15} is written as

{Second term on rhs of (15})) = Z Z 2Cijk Y;(;.uk {t) Yk(?zjk(t) YI/(Zk(t’)

1) (D) (0)
4 Z Z 4C‘¢Jk Y/"J‘k ) k/‘;gk(t) z/z]k(t')

(0) (0} 1)
+ Z 3 2Cu Y (Y @ v @) (A.9)
k

where higher-order terms have been neglected. The first term vanishes. A straightforward calculation after substi-
tution of the formal solution (A.4) into the second and the third terms leads to the right-hand side of (25). The
DIA equation {26) for one-time correlation function is derived from (16) by the same procedures.

The DIA formulation for the response function equation (19) is also straightforward. Since only auto-response
functions G(t,t') = G,,(t,t') appear in the DIA equations (25) and (26), we put ¢ = n in (19). Then, the first term
on right-hand side of (19) is written as

{First term on rhs of (19)) = Z Z 2C;5k x;(t) { z/”k (t,#) + G](:‘)/ijk(t, t') } . {A.10)

It can be shown, by substituting (A.5) in the second term of (A.10), that both terms of (A.10) vanish because

ng gk {t,t') = 0 and Y;(¢) = 0. Next, the second term on right-hand side of (19) is rewritten by substituting the

direct-interaction decompositions {A.1) as

{Second term on rhs of (19)) = Z Z 2C5k { Y,(t) G I/Uk (t,t) + Y;(2) G;}Uk(t, t') } ) (A11)

i

The first term of (A_11) vanishes, since ¥; and Ggi) 7iz 2re statistically independent of each other, and since ¥;{t) = 0.

Using (A.5), the second term of (A.11) is shown to lead to the right-hand side of (27). Thus, we arrive at (27).
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