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Abstract.,

Cesium recovery from the polluted layers in the 1/3 scale hydrogen negative ion source for
LHD-NBI system has tested. It was found, that the cesium recovery can be produced by additional
discharges as from the cesium layer, aged by tungsten and residual gas, so as from the cesium layers,
polluted by an occasional water leak. The highest cesium recovery to NI production was produced by
a xenon arc, while glow discharge and arcing in hydrogen wereless effective. The mechanism ofrecovery
is the ejection of cesium from the underlying enriched layer by the arc and its transport to the surface.
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A number of multicusp negative ion sources
developed for neutralbeam i 1n;ecuon into fusion devices
have explored seeding of cesium’. Most of the seeded
cesium in the developed versions of the multicusp
sources is buried with the evaporated tungsten on, the
water-cooled intenal surfies of gas-dlscharge box®. k
seems important to recover the cesium, buried on the
discharge chamber walls instead ofjust additional feed.
We have tested the cesium recovery ffom the poliuted
layers by additional dischargesin the 1/3 scale hydrogen
negative ion source for LHD-NBI system. The results of
cesium recovery experiments are described below,

Experimental Setup

In cesium recovery experiments, an Extemal-
filter-type 1/3 scale Multicusp NI source (EMS) was
used, which has been developed fx high-enesgy and
high-current NI beam production'. The tingsten
filaments are used in the source forelectron emission. A
direct deposition of cesium was done to EMS inner
walls with a small movable oven2. There arethree grids
used for H beam extrction and acceleration - Plasma
Grd (PG), extraction gnd and grounded grid. The PG
has 270 apertures of mm in diameter. The ion sourceis
attached to the NBI test stand”. The H beam acceleration
up to 90 keV with beam pulse duration 0.6-1.3 s was
used. A multichannel calonmeter, located 11.2 m
downstream from the ion sourceis used forH ion current
measurement. About 2.5 AH current produced with the
1/3 scalesourceat S0 kW ampowensto be scaledup to
40 A H yield for the full-scale source’.

Cesium recovery was produced by an
additional discharges during the 30-60 min
pause in EMS operation. For recovery of cesium
on the Plasma Chamber (PC) wall the last one
was acting as a cathode of additionsal discharge.
PG surface recovery was done with PG acting as
a cathode. A 0.4-0.6 kV voltage provides the
xenon glow ignition. A glow-fo-arc transition
occurs with the glow current increase, and a
pulsed arc discharges were supported in the
xenon or hydrogen. The arc cuxvent and pulse
duration were depended on cesium coverage
thickness and were decreased with the cesium
depletion. A regular EMS discharge in bydrogen
and xenon, nging an eleciron emission from the
EMS filaments was also tested for cesium
recovery. The PC or PG was biased to the
cathode potential during this PC or PG
processing by the EMS di . A special
electrodes wereintroduced onto the PC wall Hrignition
the vacuum arc. Attempts to ignite the vacuum arc on
the cesiated PC surfice were launched affer the 6.1 g
cesium deposition by cestum piasma, but they fatled.

Cesivm recovery from Cs-W coverage

A. Deposition ofsmall cesium amount into the
EMS produces the temporal i increase of H current for
several pulses of source operation’. Fig.1 shows the
evolution of H current from shot to shot (triangles, lef
scale), and arc power of shot {circles, right scale) in the
case of 10 mg cesiuvm deposition and its processing by
an additional discharges. H current was increased to a
value of 1.3 A affer the cesium deposition to PC back
{done beforethe shot # 60) and it was decreased with the
further operation due to cesium blocking (Fig. 1).

An attempt to recoverthe blocked cesium by a
xenon glow was done beforethe shot #8%in Fig.1. Adc
glow (0.3 kKV/0.5 A) at xenon pressure 0.5 Pz was
applied during about 20 minutes with PC acting as a
cathode. A negligible change of H yield was recorded
after this (shots # 95-98 in Fig.1). The next processing
was done wlth PC acting as an arc cathode (PC arcing).
About 10° pulsed arcs were ignited at xenon pressure
0.8-1.5 Pa before shots #08. It results in a temporal
increase of H current t0 0.5 A value, but then ¥ current
was decreased fist (Fig.1). PG processing with PG
acting as an arc cathode (PG arcing) was done then.
About 10° pulsed arcs wereignited with the PG having
a cathode potential at xenon pressure 1.5 Pa beforeshot
#110, No improvement of H yield was recorded afier PG
arcing (Fig.1). Fig.1 shows, that cesium recovery is
inefficient in the case of small cesium deposition.

B. Deposition of 0.1-0.2 g Cs portions while
using an optimal amount of flaments in the discharge
demonstrates the stable a:hancanent of H yield for a
longer period of source opemation’. Namely, 0.1 g
deposition provides the increase of T beam current to
2.8 A value, and it was slowly degraded down to 2 A
level in 500 shots/2 days of operation The next 0.15 g
deposition produces the 2.8 A level of H current and it
was decreased down to 1.7 A during 600 shots/4 days
operation (at discharge power about 50 kW, hydrogen
pressure 0.7 Pa, § filaments). Several types ofadditional
discharges were tested %r H production recovery affer
this cesium blocking. Fig.2 show the H cument
evolution before and affer these EMS processing
(triangles, left scale), and an arc power of corresponding
shot (circles, right scale}.

1. PC arcing was produced at xenon pressure of
about 0.7 Pa befbre shot #1232, Afer producing about
2-10° pulsed arcs (20-30 A, 5-15 msec) the H production
was tested again. chnmtwasmamsedup 1023 A
with the PG temperature gmwth to 160-170 °C, and it
was decreased to the previous value 1.7 A during the
further 50 shots/ 2 hours operation {Fig.2). No one
breakdown happened during the source high-voltage
operation after the cesium recovery processing in xenon.

2. Attempt to recoverthe cesium-tungsten layer
on PG surfice was done by the PG biasing to the
cathode potential while the source was operated in the
regular EMS arc mode with hydrogen $ed and dectron
emission from heated filaments. After producing the 9
pulses with PG at cathode bias (arc power 5-10 kW,
shots # 1287-95 in Fig. 2) the H' production was checked
again | pddhad a value of 0.8 A at PG starting
temperature 80 °C, it wasmcreasedto 1.5 Alevelmth
the PG temperature growth to 220 °C, and had no
with the further operation and PG heating up to 260 C
(Fig.2). No temporal peak of H production was recorded



in this case The H current steady-state level wasabout
0.2 A lower, than it was before the PG processing with
PG cathode biasing in the EMS regular arc!

3 The processing by the regular EMS arc with
the PC biasing to the cathode potentia! was tested next
The arcin xenon was used, since an attempt 1o ignite the
arc in hydrogen with the PC biasing to the cathode was
failed 13 pulses of EMS regular arc (40-60 A/60 V) were
produces at xenon pressure 0 7 Pa The H yield had
about the same value after this PC processing, as it was
before.

4. About 2:10” pulsed arcs were produced
during the PC arcing at hydrogen pressime 5-10Pa. The
H beam cument had about 7-10% increased value affer
PC arcingin hydrogen, and it was degraded downto the
previous value after 50 shots/2 hours operation.

5. About 30 minute PC processing as a cathode
of 1 kV/ 1-3 mA dc glow in hydrogen had no changed
the H vield.

6. About 2-10° pulsed arcs (10-20 A, 4080V,
5-20 msec) were produced during the next PC arcing at
xenon pressure 0.5-3 Pa. This more intense PC arcing
results in a more steady 30% H yield increase and the
Bllowing slower decrease down to the previous value
during the 70 shot/2.5 hours operation. The next intense
PC arcing was applied after an additional 0.1 g cesium
deposition to PC and its aging by a 400 shot/3 day
operation. About 10° pulsed arcs (2030 A, 3075 V,
5-10 msec) were produced at xenon pressure 0.7 Pa It
resulted in asteady 25% increase of H currentup to 2.5
A level with a Hliowing slow decrease down to the
previous value during about 10° shot /3 hours offurther
operation. A 30%H cumrent increase to 2.2 A level was
recorded after the next PC arcing, produced 3 days later.
Several intense PC arcings provide the steady 25-30%
H vyield enhancement, but H current absolute value was
higher afierarcing of EMS coverage, enriched by cesium.

Cesium recovery from a water-poliuted
layer

The cesium recovery from the cesium-tungsten
layer, polluted by an occasional waterleak wastested as
well. About 0.6 g of cesium was deposited to the PC
surfice during 700 shots of EMS operation, preceding
the occasional water leak. The evolution of H beam
current due to cesium recovery procedures fom the
water-polluted layer is shown in Fig.3. The H beam
current had a value of0.5 A at arcpower 50kW and gas
filling pressure 0.7 Pa after the source pollution with a
waterleak. This value was about 20-30% higher, than H
yield from the pure hydrogen discharge.

About 10° pulsedmw;ththePGasanam
cathode, and then about 5-10° pulsed arcs withthe PC as
an arc cathode were produced at xenon pressure 1. 5 Pa
After this processing, done befbre the shot #1 in F1g 3,
the H current wasincreased upto 1.1 A at the 10® shot,
and then was decreased to the previous value 0.5 A after
aboart 20 shots/ 40 min of operation. The next PC and/or
PG arcing processing in xenon displayed approximately
the same evolutlon of ' current (Fig.3). The second PC
arcing (10° arc pulses) was done before shot # 35 at
xenon pressure 2 Pa. The increaseof H currentupto 1.4
A level was displayed (shot #48 in Fig.3). Afler about

5-10° arcs produced with PG biased to the cathode
potential (before shot #356) the H current was increased
to a maximal value I 2 A (shot #66). The next arcing
processing, produced on the water-polluted PC and PG
surfaice (before shot #78) have resulted in the same
temporal increase of H curentto 1.1 A (shots #86—92)
PG optimal temperature was about 140-190 °C at H
curent maximum. No trace of eectrode erosion by
PC/PG multiple arcing was detected on EMS surfaces
after the source evacuation to atmosphere.

The listed data shows, that sevemal arcing
processing on water-poiluted electrodes produces the
same temporal 2-fold enhancement of H vield, but does
not recover the optimal cesium-tungsten coverageon PG
surface completely. As aresult, the H current maximum
sfter the water-polluted electrodes processing was about
two times less, than that affer a thick Cs-W coverage
arcing. The enhanced H yield degraded 2-3 times faster
affer the waterpolluted electrode recovery (or after
cesium adding to water-polluted electrodes’), as
compared with that after the Cs-W coverage arcing.
shows, that cesium deposited on the water-polluted
layer provides a smaller replenishment flux to PG
surface.

DISCUSSION

The data obtained evinces the cesium blocking
on the PC/PG walls and its recovery for H production
by an additional discharge processing. The highest
cesium recovery were produced by arcing in xenon,
while arcing in hydrogen and processing by glow were
less effective. The principle of cesium recovery by arcis
the decomposition of cesium compound, the cesium
gjection from the underlying layer and the renewal ofthe
cesium coverage on EMS surfaces. The internal layer of
Cs-W reservoir are enriched by cesium, so the arc
gjection of electrode material increases the percentage of
cesium in the coverage. An arcejects of about 1 atom of
cathode material per 10 cathodeemxtted electrons, so the
EMS processing with 10° ares (107 s, 30 A) evaporates
of about 30 mg of Cs-W coverage. Cesium recovery is
less efficient ®r a higher tungsten percentage in the
coverage.

PC arcing can produce the Cs” ion implantation
to PG coverage with positive ion flux to the arc anode.
The gjection of the overlayed tungsten by arcing and the
tungsten sputtering by glow is also important for the
improvement of cestum seed from the buried layer.

Qur data demonstrates the importance of
optimai PG coverage structure r H  production
enhancement. A minute PG processing by a regular
EMS hydrogen discharge with PG biasing to the

cathode produces a sizable decrease of H current (Fig.2).
It can be caused by H production decrease dueto Cs-
W coverageloading with energetic hydrogenions®. The
pollution of Cs+W coverage by a water leak increases
the PG work finction and stops the replenishment flux
to PG It decreasesthe H production down to about pure
hydrogen level.

The cesium recovery can be produced by
vacuum arcing on the thick Cs-W coverage. Vacuum arc
supplies an intense {10% of arc current) flux ofenergetic
positive ions to the anode and produce Cs’ ion
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implantation to PG coverage. The H extraction voltage
applying during the arcing will prevent the Cs’ flux to
the extraction gap. It is proposed to support the cesium
recovery in situ by applying the pulsed arcing/glowing
within the pause between the injector pulses.

Cesium recovery processing in xenon produces
an easy flux of cesium to PG surfice and does not
decrease the electrica! strength of extraction/acceleration
gaps. The xenon flling to PC duwing the standard
cesium deposition procedure can also decrease the
cesium flux to accelerator and to improve the high-
voltage holding-on of the EMS. The cesiated hollow
cathodes or RF discharge canbe used instead of the hot
tungsten Hlaments for EMS feeding with plasma.

SCMMARY

Optimal PG cesium coverage structure is
impottant for H production enhancement. Cesium
blocking by evaporated tungsten decreases the H yield
fom the EMS. Electrode processing by an additional
discharge recoversthe H production. The mechanism of
recovery is the gection of cesium ffom the yndedying
enriched layer by arc and it transport to the surface.
Recovery processing permits the use ofdeposited cesium
more cfficiently and to minimize cesium addition during
the EMS longterm operaiion.
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Figure Captions

Fig 1. H- current evolution after 10 mg Cs deposition and PC/PG arcing.

Fig.2 H- current evolution after PC arcing and after PG processing
by EMS discharge in hydrogen.0.25 g cesium deposited

Fig.3. H- current evolution afier water-polluted electrodes arcing.
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