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Abstract

Stability characteristics of a rotating simple shear flow modulated periodically in the shear direction is investi-
gated by direct numerical simulation. The temporal evolution and the final profile of the mean flow are examined,
starting with a random perturbation imposed on it under the assumption that the velocity and pressure fields are
uniform in the mean flow direction. It is found that the mean velocity profile changes due to the shear-Coriolis
instability. If there is a locally unstable region in a stable rotating simple shear, the mean velocity profile there
is deformed into a linear one with nearly-zero absolute vorticity. An analogy holds between rotating uniformly
sheared turbulence and thermally convective turbulence that the region of nearly-zero absolhite vorticity in the
former corresponds to that of nearly-uniform temperature in the latter.
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[1] Introduction

Rotating shear flows are encountered not only as a
variety of natural phenomena in meteorology and as-
tronomy, but also in engineering applications such as
flows in turbomachinary. Turbulence in rotating flows
exhibits distinguished features: Two-dimensionalization
of low structures along the axis of rotation and strong
dependence of the flow characteristics on the amplitude
and the sense of rotation relative to the mean shear
vorticity. In the case of weak rotation anti-parallel to
the mean shear vorticity, three-dimensional disturbances
grow rapidly, whereas they decay in the case of strong
rotation both parallel or anti-parallel to the mean shear
vorticity. We refer to the system where the mean shear
vorticity is parallel (or anti-parallel) to the rotating axis
as cyclonic system (or anti-cyclonic system).

In a turbulent channel flow, turbulence characteris-
tics are different according as the shear vorticity near
the wall is parallel (at suction side) or anti-parallel (at
pressure side} to the rotating axis. The mean veloci-
ty profile is then asymmetric with respect to the center
of the channel. It is observed experimentally[1,2] and
by the use of direct numerical simulation[3.4] that a lin-
ear mean velocity profile with nearly-zero absolute mean
vorticity appears in the core region of a turbulent chan-
nel low when the rotation rate is large. Here, the term of
absolute vorticity is used for the vorticity relative to the
stationary coordinate system, that is the sum of vorticity
associated with the fluid motion relative to the rotating

svstem and with the rotation of the system itself. It
is found numerically[4] that the region of zero absolute
mean vorticity is full of coherent structures which are
gimilar to the longitudinal vortex tubes observed in ro-
tating uniformly sheared turbulence with zero absolute
mean vorticity[5,6]. Disappearance of absolute vorticity
is also seen in other types of flows such 2s & rotating tur-
bulent free-shear layer[7] and a rotating turbulent plane
Couette flow[8]. However, the formation mechanism of
the region of zero absolute vorticity has not been clari-
fied yet. In this paper, we examine the temporal evolu-
tion of the mean velocity in a uni-directional turbulent
shear flow which varies periodically in the shear direc-
tion in order to reveal the formation mechanism of zero
absclute vorticity. This is one of the simplest non-trivial
flows for understanding of the mechanism. Formulation
of the problem is described in Sec. II. Numerical re-
sults of the temporal evolution of the flow are given in
Sec. I11. An analogy between convective turbulence and
rotating shear flow turbulence is discussed in Sec. IV.
Section V is devoted to concluding remarks.

[2] Formulation

2.1 Basic equations

We consider the motion of an incompressible viscous
fluid in a rotating frame. In the case that a simple s-
hear ow, U = {Sz4,0,0), is rotating around the r3-axis
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(Fig. 1}, the temporal evolution of the velocity Huctua-
tion u, in the rotating frame is described by
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supplemented with the solenoidal condition (Ju,/dc, =
0). Here, p is the pressure, v is the kinematic viscosity
of the flnid, and f = 242 is the Coriolis parameter, 2
being the angular velocity of the rotation. The constant
fluid density p is set at unity. Summation convention
is used for repeated subscripts. We note that the abso-
Iute vorticity of the mean shear is (f — §)%3. Hereafter,
the z;-, r2- and x3-directions are called the streamwise,
vertical and spanwise directions, respectively.
Turbulent shear flows are generally dominated by the
longitudinal vortex tubes which almost align with the
streamwise direction, and the variation of disturbances
is relatively small in the z,-direction. Hence, we consid-
er as the first step the velocity and pressure fluctuations
which are uniform in the streamwise direction and which
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The cross-stream flow described by {2b) and (2¢) is dif-
ferent from homogeneous and isotropic two-dimensional
turbulence by the Coriolis effect {— fu1) that the stream-
wise componernt of velocity influences the perpendicular
components. The velocity fluctuation w(x; ) is further
split into the iean %(zs:;t} which is the spanwise av-
erage of u(w;t) and the deviation w/'(z;t) from it. The

(2¢)

subsequent evolution of the mean velocity Szo+% (z2:t)
will be investigated in the following sections.

2.2 Shear-Coriolis instability

For a later analysis the linear stability characteris-
tics of a rotating simple shear flow is reviewed briefly.
Bradshaw[9] introduced a non-dimensional parameter,
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and reached the conclusion. on the basis of an analogy
between rotating turbulence and stratified turbulence,
that the rotation stabilizes or destabilizes' the simple s-
hear flow according as B is positive or negative. Here,
the parameter,

Ro 7 (4)
represents strength of the simple shear relative to the
rotation and is referred to as the Rossby number. Note
that Bo = —1 when the absolute mean vorticity is ze-
ro. According to this criterion, anti-cyclonic Hows with
weak rotation (Ro < —1) are unstable, whereas cyclonic
(Ro > 0) or anti-cyclonic flows with strong rotation
(0 > Ro > —1), or shearless flows (Ro = 0) are sta-
ble. The case of no rotation (Ro = ) or zero absolute
vorticity {Ro = —1} is neutrally stable.

This stability criterion may be derived from the lin-
earized equation of {2) under the assumption that the
flow is uniform in the z,-directionf10,11,12]. By neglect-
ing viscosity, we find that a disturbance of sinusoidal-
wave type, u(z,t) = u(k,1)eF* and p(z,8) =
Bk, 1)ei* T, obeys
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where k& = (0, kq, k3} is the wavenumber vector. Note
that the disturbance is pressureless[12] if ky = 0. It is
seen from the first two equations that the velocity field
grows exponentially or oscillates in time according as
B < 0 or > 0. We should keep in mind that Bradshaw’s
criterion is applied to the lnear stability of a simple s-
Lear flow against disturbances which are uniform in the
zi-direction.

In the present study the slope of the mean veloci-
ty Sxz + T (w2;t) varies in the zy-direction. Hence, we
introduce the local Rossby number of

S + dﬁl(ﬂ'}g; t)/d.rg
- 7 ,
which may serve as an indicator of the local stability
characteristics of the fow.

RoWzg;t) =

(6)



Table I Dependence on Rossby numhber

run f instability of rotating simple shear unstable region
runl 240 stable anti-cyclonic Ro=—0.3 -
run2 1.5 stable anti-cyclonic Ro = —0.67 2r/3 < 79 < 4w /3
rund 1 neutral anti-cyclonic Ro=-10 w2 < Xy < 31 /2
rund 0.5 unstable anti-cyclonie Ro=-20 73 < x9 < H7/3
rund 0 neutral non-rotating Ro=x - —=
run6 -{0.5 stable cyclonic Ro=20 o
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Fig. 2 Temporal evolution of mean velocity profile subtracted the simple shear component for (a) run2, (b) run3, (c¢) rund,
and (d) rung. — ; St=0, ——; St =5,--- . 5t=10, —- —: 5t =15, — -~ ; S5 =20, — -+ — 1 5t = 25. Straight lines in
the figures represent the state of zero absolute vorticity (Ro'"’ = —1}. The steeper line in (a) denotes Ro™ = —0.8.

2.3 Numerical methad

Equations (2) are solved numerically using the Fouri-
er spectral/Runge-Kutta-Gill scheme. This is a two-
dimensional simulation. The initial field is given by a
superposition of a simple shear flow, a periodic low de-
fined by

Tz (29:0) = Asinz, (7}
and the k; = 0 component of random disturbances,
whose spherically averaged energy spectrum is given by

E(k) = ck exp | 2k*/k2) (8)

(Fig. 1). Here, ¢ denotes the magnitude of the distur-
bances and k&, the peak wavenumber.

The shear rate S is set at unity. Several number ot
simulations are executed for different values of the Corio-
lis parameter f, the kinematic viscosity v, the amplitude

A of the periodic velocity (see (7)), and the amplitude 2’
and the peak wavenumber &, of the initial disturbances.
A rectangular computational domain of 0 < x4 < 2%
and 0 < r3 < 327 is divided uniformty into 128 x 2048
grid points.

3] Temporal evolution of mean velocity
profile

3.1 Rossby-number dependence

First, we examine the Rossby-number dependence by
changing the value of f {(see Table I). The other param-
eters are fixed as » = 278, A = —1, &/ = 1.25 x 1072,
and k, = 8. Figure 2 shows the temporal evolution of
the mean velocity profile Ty (zq;t) for (a) run2 (linearly
stable system), {b) run3 (linearly neutral system), {c)
rund {linearly unstable system), and (d) run6 (linearly
stable system).



Table 1. Dependence on other parameters. Here, Aty = (v/3 — n/3}A| and Azy = 27 /3.
run f A u []A] by v Ra = fA# Ay V2
run2 1.5 —1 1.25 x 1072 8 391 x 1073 6.19 x 10°
run2-hy’ 1.5 -1 1.25 x 1071 8 3.91 % 1073 6.19 x 10°
run2-sw’ 1.5 -1 1.25 x 1073 8 3.91 x 1073 6.19 x 10°
run2-kp4 1.5 -1 1.25 x 1072 4 3.91 x 1073 6.19 x 10°
run2-kpl6 1.5 -1 1.25 x 1072 16 391 x10°3 6.19 x 16°
run2-lowRa 1.5 -1 1.25 x 1072 8 1.10 x 1072 7.73 x 104
run2-hRa 1.5 —1 1.25 x 1072 8 1.38 x 1073 4.95 x 108
run2-A2 2.0 —2 1.25 x 1072 8 6.38 x 1073 6.19 x 10°
run2-A05 1.25 —0.5  1.25x 1072 8 252 x 1073 6.19 x 10°
(a) (b)
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Fig. 3 Temporal evolution of local Rossby number at z2 = 7 for three values of (a) the amplitude w’ (—: run2, - —
run2-la’, - - - run2-su’) and (b) the peak wavenumber & (—: run2. - - run2-kp4, - - -; run2-kp16) of disturbances, (c)
Rayleigh number Ra {—: run2. - —; run2-lowRa. - - -; run2-hRa), and (d) the amplitude A4 of periodic velocity (~—; run2, —

—ttun2-A2, - - run2-A08).

In these figures the simple shear flow is subtract-
ed to emphasize the variation in the zs-direction. The
flow is locally unstable where the gradient of the mean
velocity, 0w, /0xs, is larger than that of the straight
line of RoW(zs) = —1. The initially unstable region
(Ro™(x2;0) < —1) is denoted by a thick line on the
right of each figure. The flow is locally unstable initial-
Iy in the range of 27/3 < z2 < 4w/3 for run2. The
mean velocity profile changes in time in this unstable
region and becomes hnear by S¢ = 10. The velocity
gradient gradually decreases to approach a finite value,
the associated absolute vorticity of which is nearly zero
(Ro® =~ —1). In contrast, the velocity profile has hard-

ly changed around z, = 0 where the flow was linearly
stable at the initial instant.

For run3 (neutral system) and rund (unstable sys-
tem) the mean velocity profile becomes linear in the
locally unstable region as in the case of run2. How-
ever, the stable region is also broken up as opposed to
the case of run2 and eventually the large-scale varia-
tion %1 (z2: ¢} vanishes completely. Therefore, the mean
velocity profile approaches back the simple shear flow
and the stability characteristics is common throughout
the whole region: it is neutral for run3 and unstable for
rund. Since turbulence intensity increased monotonical-
ly in time for rund, the simulation was terminated at



5t = 12 (the dash-dotred line represents the profile at
thie final stage}.

Figure 2{d) shows that the wean velocity profile is
almost invariant in time for runG. This is because the
disturbaneces given at the initial mstant decay and lose
the ability to modify the mean velocity. since the whole
region is linearly stable in this case. A slight change
in the profile is mainly due to the viscous effect. The
change in the mean velocity profile is not noticeable for
runl and rund for the same reason (figures are omitted)

3.2 Dependences on other parameters

In order to clarify whether the results obtaned jor
run2 are universal or not, several additional runs have
been conducted for different values of the parameters.
Here. the ratio (|A|/{f — 5)) of vorticity of the periodic
How to the absolute mean vorticity is fixed to the value
in run2. so that the flow is initially unstable in the range
of 27/3 < 22 < 4n/3. The strength of Coriolis force a-
gainst viscosity may be measured by the "Rayleigh num-
ber’, Ra = fA#;Axy® /2. which is an analogue of the
Rayleigh number in a thermal convection (see §3.2 be-
low). Here. Azs (= zo — z_) is the width of the initial
unstable region. x4 being the upper and lower hound-
aries, and Al = Uy (24,0) —w (2= 0) — {f — S)Axzs is
the increment of the mean velocity across the unstable
region relative to the neutral profile of Ro" = —1 (see
Fig. 5 below as well as Fig. 2{a)). Eight runs are carried
out by changing A (with |A|/(f — 5) fixed), Ra, and
the initial disturbances {u'/|A} and &,) separately (see
Table IT). The high-Rayleigh-number case (run2-hRa) is
simulated with 256 x 2048 grid points.

In figure 3, we show the temporal evolution of the
local Rossby number Rol) at x4 = = for three values of
(a) the amplitude «’ and (b} the peak wavenumber &,
of disturbances, (¢) Rayleigh number Ra. and {d) the
amplitude A of periodic velocity. There is the tendency
in all cases that Rol¥ approaches close to -1, or the zero-
absolute-vorticity state. The approach to —1 is closer for
smaller scale (larger &,) of disturbances, larger Rayleigh
number, or smaller modulation of the mean shear (small-
er A). This is consistent with theoretical results[13]. In
summary, in an unstable region of a stable system the
mean velocity profile is deformed into a linear one with
nearly-zero absolute vorticity. This phenomenon seems
very robust.

[4] Analogy with convective turbulence

When the turbulence field is uniform in the z;-
direction, an analogy holds between the rotating tur-
bulent shear flow and thermally convective turbulence.
This is not restricted to & linear limit as shown below
Introducing new variables,

i =u - (f—- Sk p=p+ @322- (9)

we rewtite (2a) and (2b) as
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Omn the other hand. the thermal convection of a Boussi-
nesq Huid is described by
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wliere 7. a. w1, and ¢ arc the temperature. the volume
expansion coeflicient. the thermal diffusivity coefficien-
t. and the gravity constant. respectively. The gravity
is assumed to point to the negative zo-direction By
comparing {10} and {11}, especially buoyancy force agT
and Corlolis force —fi;, we see that the temperature in
the convective turbulence behaves in the same manner
as the new variable @, in the rotating shear fiow when
Pr = v/ =1. A similar analogy was also pointed out
in Veronis[14]. Note that the spanwise component of ab-
solute vorticity is described by 0¢;/0z2, whereas that
of Huctuating vorticity Suy /Oza.

It is seen in {10a) that if the flow is uniform in the z,-
direction. the variable @, is conserved under the advec-
tion. This is associated with supply of the {streamwise)
momentum of férs by the Coriolis force[15.16] and of
—S58x; by the simple shear How (see the first term in the
right-hand side of {(2a)) when a fluid element moves in
the zo-direction by dzs.

The above analogy enables us to interpret the result-
s obtalned in the preceding section as convective turbu-
lence. The temporal evolution of the spatial distribution
of —4y = —uy + (f — 8)xz is shown in Fig. 4 for run2.
The regions of —i; > 0.2 and —d; < —0.2 are respec-
tively represented by red and blue which correspond to
those of high and low temperature in convective turbu-
lence when the gravity force is acting in the negative zo-
direction. Initially there is a region of "low {or high) tem-
perature’ above (or below} the line zo = = (Fig. 4(a}). In
the unstable region, relatively simall initial disturbances
develop into plumes (Fig. 4(b}). extend to the vertical
{z9) direction, and develop into mushroom-like struc-
tures {Fig. 4({c)). They move around while mixing up
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Fig. 4 Temporal evolution of the spatial distribution of
—a; for run2. (a) St =0, (b) 6, (¢) 10, (d) 20. Red for
—i1 > 0.2 and blue for —a, < 0.2.

fluid elements of different temperature in the unstable
region. The stable region is not influenced significant-
ly by such disturbances since the vertical fluid motions
are converted there to ‘internal gravity waves’. Note
that at least one locally stable region exists in a stable
system but not necessarily in a neutral or an unstable
system. Actually, the initially locally stable region is
broken down by disturbances developed in adjacent un-
stable regions in these systems.

Finally, the fluid is sufficiently mixed in Fig. 4(d).
At this time ‘temperature’ —; is nearly uniform in this
region (see Fig. 5). This means that the absolute vortic-
ity —O1, /0, is nearly zero. In short, the state of zero
absolute vorticity in a rotating turbulent shear flow cor-
responds to that of uniform temperature in convective
turbulence. Bradshaw[9] mentioned an analogy between

Al
2n ¥
)Czﬂ: I~ sz
0
0 T
.'ﬁl
Fig. 5 Temporal evolution of —; for run2. — ; St =0,
——r Bt =5 o s B =10 — =3 St=15 — .. : 5f =00,

— -+ —; St = 25. Az2 denotes the width of the initially
unstable region. A%y corresponds to the temperature
difference AT in convective turbulence, so that we can
define an analogue of the Rayleigh number as
agAT Az [ky — fAG Az /v when Pr =1 (see §3.1.2).

the state of uniform temperature in free convection flow
and that of zero absolute vorticity in an unstable rotat-
ing cylinder flow or a curved channel flow. In his paper,
however, it is only stated that both cases correspond to
a linearly neutral state of the How. Equations (10) and
(11), on the other hand, show that the analogy between
a rotating shear flow and convective turbulence holds at
nonlinear stage if the flow is uniform in the streamwise
direction.

[5] Concluding remarks

We have investigated stability characteristics of a ro-
tating simple shear flow modulated periodically in the
shear direction. The temporal evolution and the final
profile of the mean velocity perturbed initially by ran-
dom disturbances are examined numerically, assuming
that the velocity and pressure fields are uniform in the
streamwise direction. It is found that in an unstable
region of a stable system the mean velocity profile is de-
formed into a linear one with nearly-zero absolute vor-
ticity, i.e., Ro") & —1. An analogy holds at nonlinear
level between rotating uniformly sheared turbulence and
thermally convective turbulence if the flow field is uni-
form in the streamwise direction. Then, the region of
nearly-zero absolute vorticity in the former corresponds
to that of nearly-uniform temperature in the latter.

In the present study, we assume that the turbulence
field is uniform in the streamwise direction. Actual-
ly, however, vortical structures in turbulent shear Hows,
such as longitudinal vortex tubes, are generally inclined
from the streamwise direction. Since there are no such
structures in convective turbulence, it is expected that




some differences appears between rotating shear turbu-
lence and convection turbulence in a three-dimensional
case.

In order to see the effects of this three-dimensionality
of turbulence field. we have also conducted a fully three-
dimensional simulation with the same parameters as
run?. It is found that the linear mean profile appears in
the three-dimensionai case as well. However, the devia-
tion of Rol*! from —1 in this linear profile is more distin-
guished {Ro'") = —0.9) than that in the two-dimensional
case. In their direct numerical simulation of rotating
plane turbulent Couette flow, Bech & Andersson|8] also
found the deviation (Ro? = —0.94} in the linear mean
velocity profile which appeared in the central region of
the channel. The mechanism which causes such a devi-
ation will be investigated in our further study.

References

i1] J.P. Johnston, R.M. Halleen, and D.K. Lezius.
“Effects of spanwise rotation on the structure of two-
dimensional fully developed turbulent channel flow,”
J. Fluid Mech. 56, 533 (1972).

[2] K. Nakabayashi and O. Kitoh, “Low Reynolds num-
ber fully developed two-dimensional turbulent channel
flow with system rotation,” J. Fluid Mech. 315, 1
(1996).

[3] R. Kristoffersen and H.I. Andersson, “Direct simu-

lations of low-Reynolds-number turbulent fiow in a ro-
tating channel,” J. Fluid Mech. 256, 163 (1993).

{4] E. Lambaliais, M. Lesieur, and O. Métais, “Influ-
ence d’une rotation d’entrainement sur les tourbillons
cohérents dans un canal,” C.R. Acad. Sci. Paris 323,
Série 11b, 95 (1996).

[6] M. Tanaka, “Vortical structures in homogeneously
sheared turbulence subjected to background rotation,”
J. Phys. Soc. Japan 63, 3914 (1994).

[6} M. Tanaka, S. Yanase, S. Kida, and G. Kawahara,
“Vortical structures in rotating uniformly sheared tur-
bulence.” Flow, Turbulence and Combustion 60. 301
{1998).

[7] O. Métais, C. Flores, 5. Yanase, J.J. Riley and M.
Lesieur, “Rotating free-shear Hows. Part 2. Numerical
simulation,” J. Fluid Mech. 293, 47 (1995).

[8] K.H. Bech and H.I. Andersson, “Turbulent plane
Couette How subject to strong system rotation,” J. Flu-
id Mech. 347, 289 (1997).

[9) T. Bradshaw. “The analogy between streamline cur-
vature and buoyancy in turbulent shear flow,” J. Fluid
Mech. 36. 177 (1969).

[10] T.J. Pedley, “On the stability of viscous fiow in a
rapidly rotating pipe,” J. Fluid Mech. 35, 97 (1969).

[11] 8. Yanase, C. Flores, O. Métais, and J.J Riley, “Ro-
tating free-shear flows. Part 1: Linear stability analy-
sis.” Phys. Fluids A 5, 2725 (1993).

[12] 8. Leblanc and C. Cambon, “On the three-

dimensional instabilities of plane flows subjected to
Coriolis force.” Phys. Fluids 9, 1307 (1997).

[13] F.H. Busse, “On Haward’s upper bound for heat
transport by turbulent convection,” J. Fluid Mech. 37,
457 (1969).

[14] G. Veronis, “The analogy between rotating and
stratified fluids,” Annu. Rev. Fluid Mech. 2, 37 (1970).

{15} D.J. Trittor and P.A. Davies, “Instabilities in geo-
physical fiuid dynamics,” in Hydrodynamec Instabilities
and the Transition io Turbulence, edited by H.L. Swin-
ney and J.I. Gollub (Springer-Verlag, Berlin, 1981}, p.
229.

[16] D.J. Tritton, “Stabilization and destabilization of
turbulent shear flow in a rotating fluid,” J. Fluid Meck.
241, 503 (1992).



NIFS-560

NIFS-561

NIFS-562

NIFS-563

NIFS-564

NIFS-565

NIF3-586

NIFS-567

NIFS-568

NIFS-569

NIFS-570

NIFS-571

NIFS-572

Recent Issues of NIFS Series

S Sude, K Kholopenkov, K Matsuoka, S Okarnura, C. Takahashi, B Akiyama, A Fupisawa, K ida, H ided, H iguchi, M Isobe, S

Kado, K Kondo, 8 Kubo, H. Kuramoto. T Mimarm. S Monta, S Nistimura, M Osakabe M Sasao. B Peterson. K Tanaka. K Tor
and Y Yoshimura,

Particle Transport Studv with Tracer-Encapsulated Solid Pellet lyection, o 1938
{(IAEA-CN-89/EXP1/18)

A Fupsawa, H. lguchi, S Lee, K. Tanaka, T. Minamy, Y. Yoshimura, M Osakabe, K Matsuoka, S Okamura, H lder, S Kubo, S
Ohdacht, S. Morta, R. Akiyama, K. Toi, H Sanuks, K. loh, K. Ida, A. Shimizu, § Takag. C. Takahashi. M Kopma, S Hidekuma, S.
Nishimura, M Isobe, A Epn, N. Inoue, R Sakamoto, Y. HMamada and M Fupwara,

Dynamic Behavior Associated with Electric Field Transitions in CHS Helwtron/Torsatron, Oct 1998
(IAEA-CN-B9/EX5/1}

S Yoshikawa,
Next Generation Toroidal Devices; Oct 1908

Y Todoand T Sato,
Kinetic-Magnetohvdrodvnarmuc Simulation Studv of Fast lons and Torowdal Alfvén Eigenmodes; Oct. 1998
(AEA-CN-69/THP2/22)

T. Watan, T. Stamozuma, Y. Takewn, K. Kumazawa, T. Mutoh, M. Sato, O Kaneko, K Ohkubo, S. Xubo, H idel. ¥ Oka, M
Osakabe, T. Seki, K. Tsumor, ¥ Yoshmwra, R Akiyama, T Kawamoto, S Kobayashi, F Stimpo, Y Takita, E. Asano S Itoh, G
Nomura, T. Ido. M. Hamabe, M Fujiwara, A. liyoshy, S. Monmoto. T Bigelow and Y P. Zhao,

Steady State Heating Technology Development for LHD Oct 1998

(IAEA-CN-69/FTP/21}

A Sagara, K.Y. Watanabe, K Yamazaki, O. Motoyma, M Fujwara, O. Mitarar, S Imagawa, H Yamanishi, H. Chikaraishi, A.
Kohyama, H. Matsur, T. Muroga, T Noda, N Chyabu, T Satow, A A Shishkin, S Tanaka, ¥ Teraiand T Uda,
LHD-Type Compact Helical Reactors;oct. 1998

(IAEA-CN-69/FTP/03(R)

N Nakajima, J. Chen. K. lchiguctu and M. Okamoto,
Global Mode Analvsis of ldeal MHD Modes in L=2 Heliotron/Torsatron Systems;Oct. 1998
{IAEA-CN-89/THP1/08)

K. ida, M. Osakabe, K Tanaka, T. Minam, S. Nishimura, S Okamura, A, Fujisawa, Y Yoshimura, S. Kubo, R. Akiyamna,
D.S.Darrow, H. Idei, H. Iguchi, M. isobe, S Kado, T. Kondo, S Lee, K. Matsucka, S Morta, | Nomura, 8 Ohdachr, M Sasao, A
Shimizu, K. Tumon, S. Takayama, M. Takechi, S. Takagt, C. Takahashi, K Torand T Watan,

Transition from L Mode to High lon Temperature Mode in CHS Heltotron/Torsatron Plasmas, 0c 1998
(IAEA-CN-69/EX2/2}

5. Okamura, K Matsuoka, R. Akiyama, D.S. Darrow, A. Epin, A Fujisawa, M. Fupwara, M Gote. K |da H. Idei, H Iguchi, N. inoue,

M. isobe, K. Itoh, S, Kado, K. Khiopenkov, T Konde, S. Kubo. A. Lazaros, 5. Lee. G Matsunaga, T. Minamm, S. Morta, S
Murakarmi, N Nakajima, N. Nikai, 8. Nistimura, | Nomura, S. Ohdachi, K. Ohkuni, M Osakabe, R. Paviichenke, B. Peterson, R
Sakamoto, H Sanuki, M Sasao, A Shimezuy, Y. Shira, S Sudo, S. Takagi, C Takahashi, 5. Takayama, M. Takech, K. Tanaka K
Toi, K Yamazaki, ¥ Yoshimura and T Watan,

Confinement Physics Study in a Small Low-Aspect-Ratic Helical Device CHS;0ct 1998
{IAEA-CN-69/0V4/5)

M.M. Skoric, T Sato, A. Maluckov, M.§ Jovanowvic,

Micro- and Macro-scale Self-organization in a Dissipative Plasma,oct 1998

T Hayashi, N. Mzuguchi, T-H Watanabe, T. Sato and the Complexity Simulation Group,
Nonlinear Simulations of Internal Reconnection Event in Spherical Tokamak Oct. 1998
(IAEA-CN-69/TH3/3)

A liyoshu, A Komon, A. Epn, M. Emoto, H. Funaba, M. Goto, K ida, H. tder, S. Inagak, S. Kado, O Kaneko, K. Kawahata, S Kubo,
R Kumazawa, S. Masuzak:, T. Minam, J. Miyazawa, T Monsaki, S Morita, S. Murakami, S. Muto, T Muto, Y Nagayama,

Y. Nakamura, H. Nakanishi, K. Nanhara, K Nishimura, N. Noda, T Kobuchi, S Ohdachi, N Ohyabu, Y. Oka, M Osakabe,

T. Ozaki, B.J. Peterson, A. Sagara, $. Sakakibara, R Sakamoto, H Sasac, M Sasao, K. Sato. M Sato, T. Sek, ¥ Shimozuma.
M. Shojl, H. Suzuki, Y. Takeir, K Tanaka, K. Toi, T, Tokuzawa, K Tsumon, |. Yamada, H. Yamada, S Yamaguch:, M Yokoyama,
K Y Watanabe, T. Watan, R. Akiyvama, H. Chikaraishu, K. Haba, S Hamaguchi, S. lima, S lmagawa, N. Incue, K lwamoto,

S. Kitagawa, Y. Kubota, J Kodairz, R Maekawa, T. Mito. T. Nagasaka, A. Nishimura, Y. Takia, C. Takahash:, K. Takahata, K
Yamauch, H. Tamura, T Tsuzukl, S. Yamada, N Yanag, H. Yonezu, ¥ Hamada. K Matsuoka. K. Mural, K. Ohkubo, | Ohtake,
M. Okamoto, S Sato, T Satow, S Sudo, 5. Tanahash, K. Yamazaki, M Fujwara and C Motojma,

An Overview of the Large Helical Device Project; 0ct 1998

{|IAEA-CN-68/0V1/4)

M Fujiwara, H. Yamada, A. Ejir, M Emoto, H. Funaba, M Goto, K. Ida, H. lde., $ Inagaki, S Kado, O. Kansko, K Kawahata,

A. Komon, 5 Kubo, R. Kumazawa, S. Masuzaki, T. Minami, J Miyazawa, T Monsaki, S. Modita, S. Murakamu, S Muto, T. Muto,
Y Nagayama, ¥ Nakamura, H. Nakanishi, K. Nanhara, K. Nishimura, N Noda, T. Kobuch:, § Ohdachi, N Ohyabu, Y. Cka,



NIFS-573

NiFS-574

NIFS-575

NIFS-576

NIFS-577

NIFS-578

NIFS-579

NiFS-580

NiFS-581

NIF5.582

NIF5-583

NIFS-584

NIFS-585

NIFS-586

M. Osakabe, 7. Ozak), B. J. Peterson, A. Sagara, S. Sakakibara, R. Sakamoto, H. Sasao, M. Sasao, K. Sato, M. Sate, T. Seki,
T Shimozuma, M. Shoji, H. Sazuk, Y. Takeri, K Tanaka, K. Toi, T. Tokuzawa, K. Tsumaon, I. Yamada, S Yamaguchi,

M. Yokoyama, K.Y. Watanabe, T Watan, R. Akiyama, H. Chikaraishy, K. Haba. § Hamaguchy, M. ma, S. Imagawa, N. Inoue,
K. lwamoto, S. Kitagawa, Y. Kubota, J. Kodaira, R. Mackawa, T. Mito. T. Nagasaka, A. Nishimura, Y. Takita, C. Takahashi,

K. Takahata, K Yamauchi, H. Tamura, T. Tsuzuki, S. Yamada, N. Yanag), H. Yonezu, Y. Hamada, K. Matsuoka, K. Murai,

K. Ohkubo, I. Ohtake, M. Okamoto, S. Sate, T. Satow, S. Sudo, S. Tanahashi, K. Yamazak:, O. Motofima and A. liyoshi,
Plasma Confinement Studies in LHD; Oct. 1998

{|IAEA-CN-69/EX2/3)

C. Motojima, K. Akaishi, H. Chikaraishr, H. Funaba, S. Hamaguchi, S. Imagawa, § Inagaki, N Inoue, A. Iwamoto, S Kitagawa,

A. Komori, Y. Kubota, R. Maekawa, S. Masuzeki, T Mo, J. Mivazawa, T. Monsaki, T. Muroga, T Nagasaka, Y. Nakmura,

A Nishimura, K. Nishimura, N. Noda, N. Ohyabu, $. Sagara, 5. Sakakibara, R. Sakamoato, S. Satoh, T Satow, M. Shoji, H. Suzula,
K. Takahata, H. Tamura, K. Watanabe, H. Yamada, S. Yarnada, S. Yamaguchi, K. Yamazaks, N. Yanagi. T. Baba, H. Hayashi,

M. lima, T. Inoue, 5. Kaio, T. Kato, T. Kondo, S. Monuchi, H. Ogawa, 1. Ohtake, K. Ogba, H. Sekiguchi, N. Suzuki, S. Takami,

Y Tamguchy, T. Tsuzuki, N. Yamamato, K. Yasui, H. Yonezu, M. Fujiwara and A, Iiyoshi,
Progress Summary of LHD Engineering Design and Construction; Oct 1998
({AEA-CN-89/FT2/1)

K. Ta, M Takechi, $. Takag, G Matsunaga, M. Isobe, T. Kondo, M Sasao, 0.5 Darow, K. Ohkum, 8. Ohdachi, R. Akiyama

A. Fujisawa, M. Gotoh, H. [dei, K. Ida, H. lguch), S. Kado, M. Kojima, S. Kubo, S. Lee, K. Matsucka, T. Minarmi, S. Morita, N Nika,
S. Nishimura, S. Okamura, M. Osakabe, A. Shimizu, Y. Shirai, C. Takakashi, K. Tanaka, T. Watari and Y. Yoshismura,

Global MHD Modes Excited by Energetic lons in Heliotron/Torsatron Plasmas;Got. 1998
(IAEA-CN-69/EXP1/19)

Y Hamada, A. Nishizawa, ¥ Kawasumi, A. Fupsawa, M. Kopma, K. Nanhara, K. ida, A. Epn, S. Ohdachi, K. Kawahata, K. Toi,

K. Sato, T Seki, H. Iguchi, K. Adachs, S. Hidekuma, S.Hirokura, K. lwasaki, T [do, R Kumazawa, H Kuramoto, T. Minam,
. Nomura, M. Sasao, K.N. Sato, T Tsuzuki, | Yamada and T Watan,

Potential Turbulence in Tokamak Plasmas:Oct 1998
{|AEA-CN-B/EXP2/14)

§ Murakami, U Gaspanno, H. idei, S. Kubo, H. Maassberg, N Marushchenko, N. Nakapma, M. Roms and M Okamoto,
5D Simulation Study of Suprathermal Electron Transport in Non-Axisymmetric Plasmas,Oct. 1998
(JAEA-CN-69/THP1/01)

S. Fujiwara and T. Sato,
Molecular Dyramics Simulation of Structure Formation of Short Chain Molecules; Nov. 1998

T Yamagish,
Eigenfunctions for Viasov Equaiton in Multi-species Plasmas Nov. 1998

M. Tanaka, A. Yu Grosberg and T. Tanaka,
Molecular Dynamics of Strongly-Coupled Multichain Coulomb Polymers in Pure and Salt Aqueous
Solutions;Nov. 1998

£ Ghen, N. Nakajima and M. Okamato,
Global Mode Analysis of Ideal MHD Modes in a Heliotron/Torsatron System: I. Mercier-unstable
Equilibria, Dec. 1998

M. Tanaka, A. Yu Grosberg and T. Tanaka,
Comparisor of Multichain Coulomb Polymers in Isolated and Periodic Systems: Molecular Dynamics
Study; Jan, 1999

V 8. Chan and 5. Murakarm,
Self-Consistent Elecivic Field Effect on Electron Transport of ECH Plasmas; Feb 1599

M. Yokoyama, N. Nakajima, M. Okamoto, Y. Nakamura and M. Wakatani,
Roles of Bumpy Field on Collisionless Particle Confinement in Helical-Axis Heliotrons;Feb. 1999

T.-H. Watanabe, T. Hayashi, T. Saig, M. Yamada and H. Ji,
Modeling of Magnretic Island Formation in Magnetic Reconnection Experiment,Feb. 1999

A. Kumazawa, T. Mutoh, T. Seki, F. Shinpo, G. Nomura, T. kdo, T. Watari, Jean-Marie Noterdaeme and Yangping Zhao,
Liquid Stub Tuner for font Cyclotron Heating ;Mar 1999

A. Sagara, M. Ima, 3. Inagaks, N. Inous, H. Suzuk, K. Tsuzuki, S. Masuzaki, J. Miyazawa, S. Morita, Y. Nakamura, N. Noda, B.

Peterson, S. Sakakibara, T. Shimozuma, H. Yamada, K. Akaishi, H. Chikaraishi, H. Funaba, O, Kaneko, K. Kawahata, A. Komori,
N. Ohyabu, O. Matojima, LHD Exp. Group 1, LHD Exp. Group 2,
Wall Conditioning at the Starting Phase of LHD;Mar. 1999



NIFS-587 T Nakamura and 7. Yabe,
Cubic Interpolated Propagation Scheme for Solving the Hyper-Dimensional Viesov-Pousson Equanton in
Phase Space Mar 1899

NIFS-588 W X Wnag, N Nakama, S Murakam: and M Okamoto,
An Accurate 8f Method for Neoclassical Transport Calculation Mar 1999

NIFS-589 K. Kishida, K Araki, S Kishiba and K Suzuki,

Local or Nonlocal? Orthonormal Divergence-free Wavelet Analvsis of Nonlinear Interactions in
Turbulence Mar. 1999

NIFS-580 K. Araki, K Suzuki, K Kishida and 5 Kishiba,
Multiresolution Approximation of the Vector Fields on T5.Mar 1989

NIFS-591 K. Yamazaki, H. Yamada, K Y Watanabe, K Nishimura, S Yamaguchi, ¥ Nakarishi, A Komon, H Suzuki, T Mito.
H Chikaraisht, K. Muras, © Motopma and the LHD Group.
Overview of the Large Helical Device (LHD) Control Svstem and Iis First Operation Apr 1999

NIFS-592 T. Takahashi and Y Nakao,
Thermonuclear Reactivity of D-T Fusion Plasma with Spin-Polarized Fuel, Bpr 1999

NIFS-593 H. Sugama,
Damping of Toroidal lon Temperature Gradient Modes, Apr. 1989

NIFS-594 Xiaodong L1 .
Analysis of Crowbar Action of High Voltage DC Power Supply in the LHD ICRF System; fpr 1989

NIFS-595 K Nrshimura, R, Horiuchi and T Sato,
Drifi-kink Instability Induced by Beam Ions in Field-reversed Configurations, Apr 1999

NIFS-596 Y. Suzuki, T-H. Watanabe, T. Sato and T. Hayashi,

Three-dimensional Simulation Study of Compact Toroid Plasmoid Injection into Magnetized Plasmas
Apr. 1999

NIFS-597 H Sanuky, K ltoh, M. Yokoyama, A Fujisawa, K. Ida, S. Toda, S.-1. ttioh, M. Yagi and A Fukuyama,
Possibility of Intermal Transport Barrier Formation and Electric Field Bifurcation in LHD Plasma,
May 1999

NIFS-598 S. Nakazawa, N. Nakajima, M. Okamoto and N. Ohyabu,
One Dimensional Simulation on Stabiliry of Detached Plasma in a Tokamak Divertor;Jjune 1899

NIFS-599 S. Murakami, N Nakayma, M. Okamotc and J Nhrenberg,
Effect of Energetic lon Loss on ICRF Heating Efficiency and Energy Confinement Time in Heliotrons,
June 1999

NIFS-600 R Honuchi and T. Sato,

Three-Dimensional Particle Simulation of Plasma Instabilities and Collisionless Reconnection in a
Current Sheet;; June 1899

NIFS-601 W. Wang, M. Okamato, N. Nakayma and S Murakam,
Collisional Transport in a Plasma with Steep Gradienis; June 1999

NIFS-602 T. Mutoh, R. Kumazawa, T. Saki, K Sartta, F Simpo, G Nomura, T Watan, X. Jikang, G Cattanel, H Okada, K. Ohkubo, M Sate,
S Kubo, 7. Shumozuma, H ider, Y Yoshimura, O Kaneko, Y. Taker, M Osakabe, Y Oka, K. Tsumon, A Komori, H Yamada, K
Watanabe, S Sakakibara, M. Shop, R Szkarnoto, $ Inagzk, J. Mivazawa, S Morta, K Tanaka, B.J. Peterson, S. Murakams, T
Minami, S. Ohdachi, S Kado, K Narhara, H. Sasao, H. Suzuki, K Kawzhata, N Ohyabu, ¥ Nakamura, H. Funaba, S. Masuzak:,
S Muto, K Sato, T Monsaki, S Sudo, Y. Nagayama, T. Watanabe, M Sasao, K. lda, N Noda, K. Yamazak, K Akaisht, A
Sagara, K Nistimura, T. Ozaki, K Toi, O. Motolima, M. Fujwara, A. liyoshi and LHD Exp Group 1 and 2,

First ICRF Heating Experimeni in the Large Helical Device ; July 1999

NIFS$-603 P.C. de Vries, Y Magayama, K Kawahata, S. Inagak, H. Sasao and K Nagasaki,
Polarization of Eleciron Cyclotron Emission Spectra in LHD  Juy 1999

NIFS-604 W. Wang, N Nakajima, M Okamoto and §. Murakam:,
8f Simulation of lon Neoclassical Transport; July 1999



NiFS-805

NIFS5-806

NIFS-807

NIFS-608

NIFS-609

NIFS-610

NIFS-611

NIFS-612

NIFS-613

NiFS-614

NIFS-615

NIFS-616

NIFS-617

NIFS-618

NIFS-619

NIFS-620

NIFS-821

NIFS-622

NIFS-623

T. Hayashs, N. Mizuguchi, T, Saie and the Compiexity Simulation Group,
Numerical Simulation of Internal Reconnection Event in Spherical Tokamak, Juiy 1999

M. Okamoto, N. Nakajima and W. Wang,
On the Two Weighting Scheme for 8f Collisional Transport Simulation; Aug. 1999

Q. Metojima, AA. Shishkin, S. Inagaki, K. Y. Watanabe,
Possible Control Scenario of Radial Electric Field by Loss-Cone-Particle Injection into Helical Device: Aug
1999

R. Tanaka, T. Nakamura and T. Yabe,
Construciing Exactly Conservative Scheme in Non-conservative Form;Aug. 1999

H Sugama,
Gyrokinetic Field Theory, Aug 1999

M. Takechi, G. Maisunaga, 5. Takagi, K.Ohkun, K. Tol, M. Osakabe, M Isobe, S. Okamura, K. Matsuoka, A. Fujisawa, H Yguchy,
S.Lee, T. Minami, K. Tanaka, Y. Yoshimura and CHS Group,

Core Localized Toroidal Alfven Figenmodes Destabilized By Energetic Ions in the CHS
Heliotron/Torsatron; Sep. 1999

K. Ichiguchi,
MHD Equilibrium and Stability in Heliotron Plasmas;Sep. 1999

Y Sato, M. Yokoyama, M. Wakatzani and V. D. Pusovitov,
Complete Suppression of Pfirsch-Schiwter Current in a Toroidal =3 Stellarator;Oct. 1999

8. Wang, H. Sanuki and H Sugama,
Reduced Drift Kinetic Equation for Neoclassical Transport of Helical Plasmas in Ultra-low Collisionaliry
Regime;Oct. 1999

J. Miyazawa, H. Yamada, K. Yasui, § Kato, N., Fukumoio, M. Nagata and T. Uyama,
Design of Spheromak Injector Using Conical Accelerator for Large Helical Device :Nov. 1998

M. Uchida, A. Fukuyama, K. itoh, S.-1. itoh and M. Yagi,
Analysis of Current Diffusive Ballooning Mode in Tokamaks, Dec. 1999

M. Tanaka, A.Yu Grosberg and T. Tanaka,
Condensation and Swelling Behavior of Randomly Charged Multichain Polymers by Molecular
Dynamics Simulations; Dec. 1998

S. Goto and S. Kida,
Sparseness of Nonlinear Coupling, Dec. 1999

M.M. Skoric, T. Sato, A, Maluckov and M_S. Jovanovic,
Complexity in Laser Plasma Instabilities Dec 1999

T.-H. Watanahe, H. Sugama and 7. Sato,
Non-dissipative Kinetic Simulation and Analyrical Solutton of Three-mode Equations of lon Temperature
Gradient instability; Dec 1999

Y. Oka, Y. Takeiri, Yu.l.Belchenko, M. Hamabe, O. Kaneko, K. Tsumori, M, Osakabe, E. Asano, T. Kawamoto. R,
Akiyama,

Optimization of Cs Deposition in the 1/3 Scale Hvdrogen Negative lon Source for LHD-NBI System ;Dec
1999

Yu.l. Belchenko, Y. Oka, O, Kaneko, Y. Takein, A. Knvenko, M. Osakabe, K. Tsumori, E. Asano, T. Kawamoto, R. Akiyama,
Recovery of Cesiwm in the Hydrogen Negative Ion Sources;Dec. 1998

Y. Oka, O. Kaneko, K. Tsumori, Y. Takeiri, M. Osakabe, T. Kawamato, E. Asano, and R. Akivama,
H- lon Source Using a Localized Virtual Magnetic Filter in the Plasma Electrode: Type | LV Magnetic
Filter: Dec. 1999

M. Tanaka, S Kida, S. Yanase and G. Kawahara,
Zero-absolute-vorticity State in a Rotating Turbulent Shear Flow Jan. 2000



