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abstract
Wakefield of a charged particulate in a streaming plasma 15 investigated by a three-dimensional particle simulation
A difference is found 1n wakefields between a negativelv charged particulate and a positivelv charged one. depending
on the velocity of the particulate relative to that of the streaming plasma.
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The realization of a “plasma cryvstal” in experimen-
tal plasma has made the ordered structure of dusty
plasmas visible to naked eyes {1-4] Since then, dusty
plasma has been one of the attractive subjects of study
in plasma physics. Particulates immersed in a plasma
acquire a charge from the surrounding plasma and
interact with other particulates through an isotropic
screened Coulomb potential if there is no external
force In actual experiments on plasma crystals. an
anisotropic layered structure of particulates can be
observed in the vicinity of the sheath region where
ion flow exists It has been pointed out that plasma
flow disturbs the Coulomb potential of a charged par-
ticulate. In particular, when the velocity of plasma
flow becomes greater than the ion-acoustic velocity ¢
{=\/kBTe/m,, where kpT, is the electron thermal en-
ergy and m, is the ion mass), a potential structure
called a “wakefield” can be generated on the down-
stream side of a particulate [5-8]. While it is said that
the lavered structure that appears in a plasma crystal
results from the wakefield, there is no direct evidence
to support this assertion.

The mechanism by which the wakefield is generated
can be explained by a theory similar to that for the
Cherenkov emission [9]. To put it briefly, a charged
particulate in a plasma can emit an ion-acoustic wave
under conditions where the velocity of the particulate
relative to that of the plasma becomes greater than the
ion-acoustic velocity. Analysis shows that an oscilla-
tory structure of the electric potential appears on the
downstream side of a test particle and the character-
istic length of the wakefield is determined only by the
relative velocity [6,7].

An electrostatic lurd simulation [10] and a Monte
Carle simulation [11] were carried out, mn which the
particulate charge was fixed to be negative, and the
formation of the wakefield was confirmed. The pro-
cess of charging of a particulate in a plasma has been
studied through particle simulations [12,13]. Lapenta
[13] verified the generation of the wakefield for nega-
tively charged particulates using his elaborate simula-
tion code. In most experiments on plasma crystals.

particulates in plasmas charge up negatively because
the mobilitv of electrons is larger than that of ions.
There are some effects which can make the par-
ticulate charge positive. Electrons hitting the par-
ticulate may cause secondary electrons to be emitted
from inside the particulate (secondary eleciron emis-
sion) (14.15]. Furthermore, electirons inside the partic-
ulate can be emitted from the surface when the partic-
ulate is heated (thermionic emission) [16] or when the
particulate 15 exposed to light {photoemssion) [17]
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Fig. 1 Dependence of the equilibrium charge of a particu-
late Q/'476n0)\? on the Mach number M Both the simulation
results (circles) and the analytical results (hines) are shown for
two different values of 61 - bpr = 0 (closed circles and bioken

hine) and &3; = 10 [open circles and dotted line}

When these effects are essential to the charging pro-
cess, the particulate charge can become positive. Little
attention has been given to the wakefield generated by a
positively charged particulate until now. Our concern 15
1o investigate the wakefield created by a charged partic-
ulate immersed in a streaming plasma and discuss some
of the differences between the wakefields generated by a
positively charged particulate and a negatively charged
one. We perform a three-dimensional particle simula-
tion dealing with both attachment of plasma particles
and emission of secondary electrons from the surface of
a particulate.

Qur numerical scheme is a standard particle simu-



lation based on the particie-in-cell {PIC) method [18].
We treat plasma particles (ions and electrons) as su-
perparticles, the loaded number of which is 3 x 10°
for each species. A rectangular simulation domain
(L x Ly x L.} is divided into 65 x 65 x 129 grids. The
simulation region is L = L, = 32\, and L, = 64),,
where A. is the electron Debye length, then the grid
separations are uniform, Az = Ay = Az = 0.5X,..
Periodic conditions are imposed at all of the bound-
aries. We assume one spherical particulate with finite
radius a to be at rest in a plasma, the position of which
R; = (16A., 16A.,48),) is fixed throughout this calcu-
lation. The equations to be solved are the equations
of motion of both the ions and the electrons, and Pois-
son’s equation. The charge density of the plasma p,
is defined at space grids by summing up all of the su-
perparticles. The particulate charge is also assigned to
space grids to obtain the charge density pg, where a
quadratic spline is used for an interpolating function
[1g].

The temporal evolution of the particulate charge is
controlled by the following model. When the position of
a plasma particle r satisfies the condition, }r — R4} < a,
this particle is regarded as absorbed into the particulate
and is excluded from the calculation thereafter. The
charge of the absorbed particle is added to the partic-
ulate charge. On the other hand, when one electron is
absorbed into the particulate, new electrons with ther-
mal energy kT, are released from the particulate surface
and added to the calculation thereafter. The charge of

Fig. 2. Contour ploss of ion density. electron density, and
electric potential at M = 3 for two different values of &,y
(a) éar = 0, negatively charged particulate and (b) 6y = 10,
positively charged particulate. The upper and lower parts on
each figure show the nermalized quantity in the z direction at
{z,y)} = (L-/2, Ly /2} and the contour on the y = L, /2 plane,
respectively

electron

the released electrons is subtracted from the particu-
late charge. The electron yield &(F), i.e., the ratio of
secondary electrons to primary ones, is determined by
the widely used formula,

5(E) = 7.45M% exp(=2+/E ] Ear), (1)

where E is the primary electron energy, éu and Ejr are
parameters depending on the material of a particulate
4}

We assume the initial ion distribution is shifted
Maxwellian with spatially constant temperature T,,
and the drift velocity is equal to the flow velocitv V7
which is in the negative z direction. On the other hand,
the electron distribution is assumed to be Maxweilian
with spatially constant temperature T.. The flow ve-
locity considered in this letter satisfies the condition,
vr; < V < vre, where vr, and wr. are the ion and
electron thermal wvelocity, respectively. From now on,
we express the flow velocity using the Mach number.
M = V/¢,. The typical simulation parameters are as
follows: the mass ratio is m,/m. = 50. the charge ra-
tio is . /e = 1, the temperature ratio is T,/T, = 01,
the radius of the particulate is a/A. = 1, the ratio
of thermal velocities is vr,/vre = 0.045, and the 10n-
acoustic velocity is ¢, /vre = 0.141. The time step for
integrating the equations of motion is wy.Af = 0.05
(wpe = y/dme®ng/m., where ng is the averaged num-
ber density of electrons). With these parameters, we
use the following parameters for the emission of sec-
ondary elecirons: Eu/kT, = 100, T, /T, = 0.5. The
number of emitted electrons can be determimed freely
by changing the parameter 8.

Figure 1 shows the relation between the equilibrium
charge of a particulate and the Mach number. The
closed circles {§ar = 0} and the open circles (6y =
10) correspond to the results of our particle simulation.
The particulate charge is zero initially, then it reaches
an equilibrium value after ¢t ~ 10wp}. The level of
fluctuation is about a few percent of the equilibrium




charge. We carried out our simulation until i =
IUOw;el ~ }50“:;61, when ions at z =~ L. imtially with
drift velocity v; = —V" come up to z = 0. A par-
ticulate charges up by absorbing surrounding ions and
electrons, then the surface charge without electron vield
{63 = 0) becomes negative because of the larger mo-
bility of electrons than that of ions. On the other hand.
when the emission of electrons is efficient (6x = 10).
the particulate charge remains a positive value The
number of particles absorbed onr the particulate tends
to increase as the Mach number increases The lines
in Fig. 1 show the analytical results obtained from the
current balance equation, I, + 1.+ J, = 0, where I,, I,
and I, are the total current of ions, electrons, and sec-
ondary electrons, respectively, towards the particulate
surface for 6, = 0 {broken line) and &y = 10 {dotted
line) [14,19,20]. It is found that our simulation results
show good agreement with the theoretical prediction.

Figure 2 shows the density distribution of the ions
and electrons, and the electric potential structure for
(a) a negatively charged particulaie (8 = 0) and (b) a
positively charged one (6as = 10) at M = 3. The upper
and lower parts on each figure show the normalized
quantity in the » direction at (x,y) = (Lz/2,L,/2)
and the contour on the y = L, /2 plane. respectively.
These quantities are averaged over a long time interval
to remove the nuzmerical noise.

To begin with, we shall discuss the negatively
charged particulate in Fig. 2(a). The ion focus region
clearly appears right on the downstream side of the par-
ticulate. It is also found that the shape of the distur-
bance is conical, the top angle of which agrees with the
Mach angle @, i.e., sina = 1/M. The electron distribu-
tion slightly deforms from the Boltzmann distribution
and the focus region appears on the downstream side.
We can see that the potential structure deforms from
the isotTopic potential and the conical structure shown
in the ion density distribution appears also in the po-
tential distribution. It is important to note that a peak
of the potential exists on the downstream side, where
the electric field E, becomes zero.

Next, we shall discuss the property of these quanti-
ties for a positively charged particulate in Fig. 2(b).
The region of rare ion density on the downstream side
becomes large compared with that in Fig. 2(a) be-
cause the positively charged particulate repels ions. It
is also found that the electron density does not decrease
around a particulate as much as the ion density does.
In our model, the number of secondary electrons is al-
most the same as that of primary ones when & = 10,
and secondary electrons are emitted from the position
on the particulate surface where a primary electron is
absorbed. Therefore, the electron density does not de-
crease even if many electrons are absorbed on the par-
ticulate We can see the negative region and a bottom
of the electric potential on the downstream side.

Let us focus on the electric field created by the wake-
field. As shown in Fig. 2, there appears a peak or a
bottom of the electric potential on the downstream side.
where the electric fleld E. becomes zero. The distance
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Fig. 3 Dependence of the distance d/X, from a paticulate
surface 10 the closest zero point of the electric field on the Mach

number A for the same case as Fig 1

Fig. 4. Dependence of the distance d/A. on the particulate
charge Q/4weng )\? ar A — & for vanous values of §,;

d/ X from the particulate surface to the nearest posi-
tion of E; = { vanes for various Mach numbers. This
relation is shown in Figure 3, where the closed and
open circles correspond to these in Fig. 1. The impor-
tant point is that the difference between a negatively
charged particulate and a positively charged one be-
comes remarkable as the Mach number increases 1t
15 clear that the distance for a negatively charged par-
ticulate tends to be larger than that for a positively
charged particulate.

Figure 4 shows the dependence of the distance d/A.
cn the particulate charge at M = 5. where we changed
b from O to 10 to obtain various values of the par-
ticulate charge. When the charge is positive, the dis-
tances are almost same, regardless of various values of
the charge. On the other hand, when the charge is
negative, the distances are changed slightly. depend-
ing on the absolute values of the charge. It is obvious
that there exists a clear difference about the distances
between negatively charged particulates and positivels
charged ones. irrelevant to the absolute values of the
charge. Although we must draw attention to the border
of sign of the charge, we cannot observe a clear wake-
field emmitted by a particulate whose charge is almost
comparable with the fluctuation. Thus, we have no re-



liable information on the distance d/A. in the vicinity
of @ ~ 0. It should be concluded, from Figs. 3 and 4,
that the difference of wakefields emitted by a negatively
charged particulate and a positively charged one can be
characterized by the velocity of the particulate relative
to that of the plasma, irrelevant to the absolute value
of the particulate charge.

There is an assertion that the anisotropy of a plasma,
crystal is caused by the wakefield, namely the distance
dfA. corresponds to the length between the layers ob-
served in a plasma crystal [6,7]. As our simulation re-
sults show, the length between layers will depend on
both the Mach number and the sign of the dust charge
if this assertion is true. Thus. an experiment 1n which
the Mach number or the sign of the particulate charge
is changed could answer the question as to whether the
layered structure of a plasma crystal can be explained
as being attributable to the wakefield.

In summary, we have investigated the wakefield cre-
ated by a particulate immersed in a streaming plasma
by means of a three-dimensional particle simulation.
Considering the effect of secondary electron emission
in the charging process, we have explored the outcome
in the case of both positively and negatively charged
particulates. It has been found that the difference of
the wakefield between two cases can be characterized
in terms of the velocity of the particulate relative to
that of the plasma, irrelevant to the absolute value of
the particulate charge.
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