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To study the plasma evolution and spatial structure at the L/H transition, the double hysteresis
is examined by use of the 1-dimensional transport model eguations. Three mechanisms for the
brpolar losses, i.e., the loss cone loss, collisional bulk viscosity loss of ions and the aromalous loss
are simultaneously retamed. Five-fold multiple bifurcations are found to exist at the plasma edge,
similar to the previous 0-dimensional study. Double hysteresis causes a self-generated oscillation.
which is attributed to the compound dither, a kind of ELMs. Spatio-temporal evolution of the

compound dither is analyzed.
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§€1. Introduction

Transition phenomena in plasmas {e.g., L/H Tran-
sition) are widely observed in various toroidal devices
and mirror devices. The hysteresis characteristic has
been observed in the L/H transition!’ and in the var-
ious collapse events.”) The model based on the elec-
tric field bifurcation has been proposed to understand
the H-mode® In this study, multi-fold relation be-
tween the gradient and flux is predicted, ie., the hys-
teresis characteristic was derived, considering the loss
cone loss of ions and the anomalous loss. The trans-
port barrier is predicted by this model, when the spatial
structure was examined by use of the 1-dimensional (1-
d) model equation. The model equation is also applied*)
to study the dynamics of the transport barrier. At the
edge, the self-generated periodic oscillation of the parti-
cle flux is theoretically obtained, which is attributed to
the experimentally-observed dithering ELMs.*) Dither-
ing ELMs are observed in the vicinity of the threshold of
the L/H transition. The other kinds of ELMs, (Type L,
Type 111), have been observed away from the threshoid
of L./H transition, and are considered as MHD phenom-
ena in experiments (see e.g., a review®)), The theoretical
analyses were reported for Type I and III ELMs in the
framework of MHD instabilities and large scale turbu-
lence.*® %) Variation of Type I ELMs has been reporied,
in DIII-D, namely, ELMs of relatively long duration up
to =~ 10ms were found. It was pointed that these long
events, 'compound ELM’, can be described as an initial
MHD instability followed by a transient L-mode.'!) Re-
cent review of the theory of ELMs is given in ref. 12.
Variety of ELMs could be more abundant than Type I,
Type IIT and dithers.

Model theory for L/H transition is required to have
‘hard’ transition (i.e., hysteresis characteristic) to show
the fast time scale as the transition. (See e.g., ref. 13
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for a review.) It is now widely accepted that the ra-
dial electric field plays an important role in the H-mode
transition. Several possible mechanisms have been re-
ported, including an ion loss cone loss,® % ion bulk vis-
cosity loss,'*) anomalous loss,® 12! Stringer spin-up due
to poloidal asymmetries in turbulent transport'®) and
the external biasing.'” The hard type bifurcation is
predicted from the stationary condition. Other model
of the L/H transition were presented driven by the soft
type transition'® of the electric field shear.!®1%20) (In
this case, the variation from the low confinement state
to the high confinement state can occur by following a
smooth change.) The inclusion of the effect of the elec-
tric field shear on the ion loss cone loss and the anoma-
lous loss gave the variety of the bifurcation.”?) For the
mode of the hard type bifurcation, the hysteresis in the
gradient-flux relation could be more complicated than
the one in ref. 3, when these mechanisms are simulta-
neously analyzed. For example, the (-dimensional (0-
d) analysis®® have compared the impacts from the loss
cone loss, collisional bulk viscosity loss of ions and the
anomalous loss. This study has shown that there ex-
ists a parameter regime where the five-fold solutions at
the fived gradient appear. In this parameter region, two
different hysteresis are found to co-exist. This charac-
teristic is called *double hysteresis’. Due to double hys-
teresis, the new kind of periodic oscillation was obtained,
and 'compound dithers’ in experiments were predicted.
{Note that this kind of ELMs, ’compound dithers’, is
different from ’compound ELMs’; the dithering cycles
do not show the MHD features but the sequence of the
L/H transitions, and compound dithers are predicted to -
oceur near the L/H transition threshold.) H 'compound
dithers’ are obtained in experiments near the threshold
power of L/H transition, the competition of the bipolar
losses will be found to contribute the mechanisms for the
L/H transition. Here, we focus on the analysis of com-
pound dithers’ in this article. This result was obtained
by use of the 0-d model. It is necessary to investigate
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what kind of dynamics and spatial structure is generated
from these three important mechanisms (an ion loss cone
loss, a collisional bulk viscosity loss, and an anomalous
loss) in 1-d transport equations. This would give a key to
understanding the complex features of ELMs in experi-
ments, for which understanding and conirol are urgent
tasks.

In this article, we shall show the spatial-temporal
structure at the L/H transition, in which the double
hysteresis characteristic is included. We use the one-
dimensional transport which involves the temporal evo-
lutions of the density and the radial electric field. Three
kinds of the bipolar flux mechanism, the loss cone flux
of ions, the ion bulk viscosity Aux and anomalous flux
are examined similar to the study in ref. 22. Compound
dither is found to be self-generated. Spatial and tem-
poral structure of the compound dither is presented. It
is also shown that the 0-d model can provide a qualita-
tively relevant solution for compound dither in compar-
ison with 1-d analysis.

§2. Model Equation

2.1 One-dimensional model equations

The plasma of our interest is restricted to the plasma
boundary —L < r —a < 0, where a is the minor ra-
dius. Plasma parameter is assumed to be constant in the
toroidal and poloidal directions, in this article. Thick-
ness of layer is much thinner than the plasma radius and
the plasma boundary is modelled by the slab plasma in
this article. Cartesian coordinates are used, and the x-
axis is taken in the radial direction, where £ = r — a.
The relation between the coordinates » and z is shown
in Fig. 1. Plasma profiles are described by keeping the x-
dependence, and the one-dimensional transport equation
is employed.

Minimal model of the dithering ELMs contains dy-
namics of two physical quantities: one plasma parameter
and the radial electric field.¥) We follow the considera-
tion of ref. 4, and adopt two basic equations: One is the
temporal evolution of the density. The other equation is
the temporal evolution of the radial electric field derived
from the momentum equation in the poloidal direction.
We fix the temperature temporally and spatially. Dither-
ing cycles are derived from even only the flux-gradient
relation of the density. The analysis in ref. 23, in which
the temperature evolution is also included in addition to
the density evolution, shows that additional temperature
dyvnamics does not change the essence. Based on these
analyses, we choose the analytic simplifications, i.e., con-
stant temperature profile of T, and T;. {These relations,
T. = 0 and T = 0, hold, where the prime denotes the
derivative with respect to the radial direction.) Here, T,
and 7T; are the temperature of electrons and ions, respec-
tively. We use the quasineutrality, n. = n,(= n), where
ne and n; are the density of electrons and ions, respec-
tively. The set of equations is given dimensionless form,
which shows the ions’ equation of motion, as

an d dn

=525 (2.1

and

8Z =« 0*Z
EE;ZFe—Fi'f—[JgI‘E,
where n is the density, Z = ep,; E,. [T}, e is the unity of
charge, E, is the radial electric field, p,; is the poloidal
gyroradius and p is the normalized value of the shear
viscosity p; of ions. Here, I'. — I'; represents the bipo-
lar component of the particle flux, where T', and T'; are
the normalized particle flux of electrons and ions, re-
spectively. The form of the particle flux will be shown
in the next subsection. The point which holds the rela-
tion z = 0 represents the plasma edge and ¢ indicates the
smaliness parameter O( B/ B*), where B, and B are the
poloidal and toroidal magnetic field, respectively. Here,
the diffusivity D of ions in eq. (2.1) is modelled as

D(Z} = (Dmax + Dmin)/z + ((Dmax - Dminjlz) tanh Z.

(2.3)
Here, Dy, corresponds to L-mode conditions and Dz,
to the H-mode. To obtain the smoothness of the func-
tion, we choose the hyperbolic tangent as the function of
the electric field Z for the diffusivity. The normalizations
are followed as x/py; — z, D/D% — D, u:/ Db — p,
tD%/ p‘fﬁ — t, where D%, is the bipolar part of the elec-
tron effective diffusivity. The subscript '0° represents the
typical value for L mode. The parameters u, D,,, and
Do are chosen to be constants. The term I, — [, de-
rives the nonlinear relation between the particle lux and
the density gradient. The third term in the right hand
side of eq. (2.2) shows the diffusion effect of the radial
electric field Z. The influence of the inhomogeneous elec-
tric field on the anomalous transport is governed by the
parameter H; = (T,/ (e'ydechpm-))2, where Yge. is the
decorrelation rate of turbulence which causes anomalous
transport. Here { = 1/, /0(0), where o{0) is the conduc-
tivity in the absence of the radial electric field.'® When
the condition H;Z? < 1 is satisfied, the assumption of
the constant viscosity was shown to be valid.2¥ In this
expression, Z, is the normalized radial electric field at
which the bipolar flux I, — T'; takes the extremnum. The
assumption that g, Dpee and D,,,, are independent of
the gradient of the electric field means that the cases of
H,Z? < 1 are analyzed here.

(2.2)

2.2 Models of bipolar losses

We choose three mechanisms that causes the bipo-
lar particle flux, ie., the loss cone loss, collisional bulk
viscosity loss of ions and the anomalous loss. For the
loss cone loss of lons, we employ the generalized form in
ref. 25

rle — niVi\/Eppi
L 4y 1/2
{vei + Z%)
where v,; 1s the the effective collisionality of ions, which
is defined as v.; = v;fwy. Here, v; is the ion-ion colli-
sional frequency and w; is the bounce frequency of ions.
Assuming E, = —U,/B (U, is the poloidal velocity of
plasmas), the model for the bulk viscosity loss of ions2®)

1/2

exp (—(v +2°)77),  (24)
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due to the magnetie iickd 1s rewritten as (f T = 0.)

= mVEppty (Z - i) )
4r 2

(2.5)

where ¢ is the inverse aspect ratio, A is the thermody-
namic force defined as A = —pp,n'/n and the detail about
integral I, 15 given in ref. 25 as

h=: fomdﬂ" cen=s [ (1) 13 (%)T

vare? (vr /(1))

x 5.(26)

(v + (Z+ M2)VE) + v (wr/ 0]

where v is the particle velocity, x = v/vr, and vr is the
the collision frequency for the anisotropy relaxation.®’
The model for the anomalous bipolar loss has been dis-
cussed m ref. 3 and then by others in terms of the
Revnolds’ stress of turbulence.}®’ We here employ a
simplified expression for the anomalous bipolar loss as
7T =0,

! E
[enem _Db E E; . 2.7
c—t E(nc + Tc ) ( )
In the dimensionless form, we have
[ - T, =Tenem —Tie - I0", (2.8)
where
ranom = g — 7), (2.9)
= b 12
=t exp(—(v-, + 2)77),  (2.10)
(g + Z4)V°
and
I = @ (z — g) : (2.11)

Here. d = D!/(\/eps,up).

2.8 boundary condition

Boundary conditions are given at the surfaces z = 0
and x = —10. Here, we assume L = 10p,. At the
plasma surface, we impose the boundary cordition

n'/n = const. (z = 0). (2.12)

From the core side, plasma flux is assumed to be con-
stant. The plasma is in the L-state at z = —10 and
particle flux from the core region (at x = —10] is treated
as a parameter with

T =Ty, (z=—10). (2.13)

Structure
dithers

We solve egs. (2.1) and (2.2) with the boundary con-
ditions (2.12) and {2.13). We find a solution with a limit
cvele including the double hysteresis characteristic of the
edge density n{z = 0) and the particle flux at the edge
Pout-

The parameters we choose are as follows, from the con-

§3. and dynamics of compound

ur Cotpoand Tiiner 1|

[E N KT EINS

dition for the double hysteresis of 3-D analvsis. We take

(3-1)

to charactenize the transport coefficients. The boundary
conditions are chosen as

Par = 0.1. Dy, = 0,005 and =1

rn=125and I',, = 3, (3.2

where 7, = —n/n’(z = 0). Furthermore, we choose ¢ =
0.01 and d = 0.1. These parameters are constant in time
in solving eqgs. (2 1) and (2.2).

The initial value of the plasma parameter is specified
by the value

v., =2

(3.3)

This valie changes according to the evolution of n.

A periodic oscillation is obtained in a limited regime
of the parameter near the transition layer between L and
H modes. In Fig. 2, we show the typical temporal trace
of edge density n(x = 0). The temporal evolution of
[,ut 18 shown in Fig. 3. Furthermore, we obtain the Lis-
sajous figure on the F',y-n(x = 0] plare in Fig. 4. The
L mode corresponds to the branch of the large flux and
H mode is the branch of the reduced flux. The hysteresis
(F —+ 4 = B — E — F)} appears, as has been found
in ref. 3 which Las neglected the bulk viscosity of ions
in eq. (2.2). If anomalous loss becomes small, then the
contribution of the bulk viscosity loss of lons increases,
so that the new hysteresis (€ — D) is generated com-
bined with the other hysteresis. In this way, the double
hysteresis appears. As for the fundamental cusp, this
bifurcation has the nature of cusp-tvpe catastrophe; it
disappears if d is enhanced and the bulk viscosity loss
of ions becomes less important. The compound dither
is again predicted theoretically in the case of the 1-D
transport model equations In Fig. 5, temporal variation
of the radial dependence of the diffusivity D is shown.
The steep gradient of the diffusivity D is shown, which
corresponds to H mode. The profile of the diffusivity D
shows that the H mode is only recognized near the edge.
In this case, a transport barrier with finite length can
be seen in the radial profile of D. The transition from
C to D obtained here occurs due to the bulk viscosity
loss of ions. The radial width in which the change of D
can be seen do not change in the temporal evolution in
C - D E—> F— A Even if the bulk viscosity flux
of 10ns is neglected, the radial extent of the transport
barrier is same as the case including the bulk viscosity
flux of ions.

Furthermore, we study the dependence of the fre-
quency f for the self-generated oscillation on the influx
I',, from the core region. This dependence is shown in
Fig. 6. Oscillation solution appears in a limited range
of the parameters, I'y < T,, < I'», where I'y=0.63 and
I'>=4.65. Below the limit T'y, the state converges to low
flux mode, i.e., stationary H-phase. On the contrary,
beyord the critical value I's, the solution merges to the
high flux state, {L-phase). The critical values I'; and I's
are qualitatively similar to those on 0-D analysis.

Finallv. we examine the parameter range for A and v,,
i which double hvsteresis occurs. This study is made
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by changing the effective diffusivity d. The values for A
and v,, are evaluated at the plasma edge for the H mode
{state A}. The condition for double hysteresis is shown
by the shaded region in Fig. 7. If the effective diffusivity
d takes smaller value, the value of X becomes larger for
which the double hysteresis appears. The parameter re-
gion on the A-v,, plane for the double hysteresis in this
study dose not alter very much compared to the previous
0-D analysis, if the parameters A and v,; are evaluated
by those at the plasma edge.

§4. Summary and Discussion

In this article. the radial structure of the diffusiv-
ity s examined in L/H transition in which the double
hysteresis appears. The bulk viscosity loss of ions is
newly included in 1-dimensional transport model equa-
tions. Therefore, the dynamics and spatial structure are
studied by keeping three independent mechanisms, i.e.,
the loss cone loss, ion loss by collisional bulk viscosity
and anomalous bipolar loss. At the edge, it is confirmed
that there can be multiple bifurcations due to the double
bysteresis. The coupled temporal evolution of the edge
density and the particle flux is analyzed at the edge. The
limit cycle with double hvsteresis is obtained. This also
predicts the existence of compound dither in experiments
similar to the prediction in ref. 22. The condition for the
double hysteresis is obtained as d ~ 0.05 and v,, ~ 1,
where d is the effective diffusivity and v,, is the effective
collisionality of ions. For the range of parameters of this
article, it is found that the spatial-temporal evolution
does not give the large change of the condition for the
double hysteresis.

In this article, the radial extent is common for the sim-
ple dithers and double dither. This result depends on
the model of the ion viscosity, i.e., g is constant. This
constant-y model applies for the case of H;Z2 < 1. In
the system of the model equations used here, the ra-
dial extent of the transport barrier is considered to be
determined by the ion shear viscosity, and the depen-
dence A « /i was predicted, where A is the thick-
ness of the transport barrier.!) The analytic estimation
from eq. (2.2} satisfies this dependence. The possible
dependence of the ion shear viscosity on the gradient
of the electric field, which is important in the case of
H;Z? > 1, might cause the guantitative difference of
the radial structure of double dithers. There arises an
interesting question whether chaotic dynamics {period
doubling, intermittency and so on} would appear in the
compound dither. These problems are left for future
work.
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Figure captions

Fig. 1 Relation between the coordinates r and z

Fig. 2 Temporal evolution of the edge density n{z = 0).
The parameters are ¢ = I, I';, = 3, r, = 1.25.
Dipe = 0.1 and Doy, = 0.005.

Fig 3 Time trace for the outfux I',,;. The parameters
are same as the case of Fig. 2.
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Fig. 4 The Lissajous trajectory on Foyp-n{e = 0) plane
Fig. 5 The spatial profile of the diffusivity D.

Fig 6 The dependence of the frequency for the obtained
oseillation at the edge on the influx Ty

Fig. 7 The double hyvsteresis region on the A - v, plane
{shaded region).
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