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Axial and Equatorial Magnetic Dipoles
Generated in a Rotating Spherical Shell
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Two tvpes of magnetic dipole fields are generated by thermal convection in a rotating spherical shell. The axial
{or equatorial) dipole in which the magnetic dipole moment is parallel {or perpendicular) to the rotation axis is
realized at a larger (or smaller) value of the Rayleigh number. Their structure is robust and persists over the whoie
simulatien period that is eight (or two) magnetic diffusion time.
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Existence of the magnetic field in rotating spherical
celestial bodies such as the Sun and planets has long
been attracting scientific interests by offering such ques-
tions as how 1t is generated and why the dipole com-
ponent is often dominant. Thermal convection of an
electrically conducting fluid in celestial bodies is one
of the most probable dynamo mechanisms. There are
three essential elements for this convection dynamo to
be realized, that is, rotation, spherical geometry, and
convection (by nuclear reaction or phase transition).

As a simple model in which these elements are in-
corporated the thermally driven dynamo in a rotating
spherical shell has been extensively studied by numeri-
cal simulation.!=19} In this model a given temperature
difference between the inner and outer spheres drives a
convection of an electrically conducting fluid confined in
a spherical shell rotating at constant angular velocity 2,
which in turn intensifies the magnetic field. This is the
dyvnamo action.

Different settings of simulations are devised depend-
ing on the purpose of dynamo research. Here. we make
it in two steps.®) First, starting with a slightly unsta-
ble thermal conduction state superimposed by random
disturbances, we perform a purely non-magnetic simula-
tion to get a fully developed thermal convection either of
steady or unsteady state which is independent of the ini-
tial small disturbances. Then. a random weak magnetic
field is seeded and its temporal evolution is investigated
by a full MHD simulation. In this way we may eluci-
date the intensification mechanism of magnetic field by
convection.®

There are five control parameters in the present svs-
tem. which are the Rayleigh number Rea, the Taylor
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number Ta. the Roberts number Ro. the Prandt! num-
ber Pr. and the ratio # of the radii of the outer and
inner boundary spheres (see ref. 6 for definition). We
are particularly interested in the phenomenon at large
values of Ra and Ta as it is anticipated to be the case
for the Sun and the Earth.

We have already reported a series of runs with
Ba = 3.200 and Te = 8000, Pr = 1, n =
0.5, and changing values of Ro. The numerical
simulation was performed by employing the Crank-
Nicolson/ Adams-Bashforth scheme for time integration
and the Chebyshev-Legendre-Fourier expansion for spa-
tial resolution.® # The thermal convection obtained is
steady for these parameter values. An imposed weak
magnetic field grows or decays according as Ro1s greater
or smaller than a critical value 0.122. Amplitude of the
resulting magnetic field gets larger as Ro decreases. The
magnetic energy is 2%, 30%, and 40% of the kinetic in
the mean for Re = 0.12, 0.1, and 0.07. respectively.
The concentrate-and-stretch mechanism of the intensi-
fication of magnetic field was discovered for Ro = 0.12
where the magnetic field was not so strong as to alter the
thermal convection. In all of these cases the magnetic
dipole moment m(t) = [ 1z x j(z, t)dz, where j(x.1) is
the electric current density and the integration is carried
out over the whole spherical shell, is dominated by the
z-component (which is parallel to the rotation axis). It
changes either periodically, quasi-periodically, or chaot-
ically in time for Ro = (.12, 0.10, or 0.07. respectively.

We describe here new results at a larger value of
Ta = 1.6 x 10%, in which the energy of magnetic field
exceeds that of convection field. The critical Rayleigh
rnumber Ra, of linear stability to a thermal conduction



Table I. Parameters and flow characteristics. {N, L, M) are the numbers of
modes taken in the radial, latitudinal, and longitudinal directions, respec-
tively. Ta = 1.6 x 10°. Ra, = 1.36 x 10%.

Case ] Case I
Type of dipole field equatorial axial
Rayleigh number Ra 1.6 x 10* 3.2 x 10*
Angular velocity of TP columns Q.. 0.541 ~0.9 + 0.08
Angular velocity of magnetic field Q,,,, 0.23 —
Number of TP columns 6 9
Roberts number Ro 0.02 0.1
Critical Roberts number Ro, 0.075 0.149
Magnetic diffusion time d2 /A 50 10
Viscous diffusion time d2 /v 1 1
Thermal diffusion time d?/x I 1
Resolution (N, L, M) (64,64, 128) (128,64,128)
Time step width At 2.5x10~* 1.25 x 1075

state at this Taylor number is then found to be Ra, =
1.36 x 10* (see Table I). We choose a slightly unsta-
ble Rayleigh number Ra = 1.6 x 10* (Case I) and the
double 3.2 x 10* (Case II) of it. In Case I, six pairs of
cyclonic and anti-cyclonic Taylor-Proudman {TP) vor-
tex columns emerge, which are unsteady and prograde
with mean angular velocity 2, = 0.541, where time is
normalized by the thermal diffusion time. In Case II,
on the other hand, nine pairs of vortex columns appear
which vary in time more violently and retrograde with
mean angular velocity (2. = —0.9 £ 0.08. These angu-
lar velocities are much smaller than that of the rotating
shell itself 12 = 632.

A random weak magnetic field is seeded in these ther-
mal convection flows. The critical Roberts number Ro,
which divides the growth and decay of magnetic field is
about 0.075 for Case I and 0.149 for Case II. In the fol-
lowing we present simulation results for Ro = 0.02 {Case
I} and Ro = 0.1 (Case II). Incidentally, the spectrum
of the dependent variables in the Chebyshev-Legendre-
Fourier expansion decays at large wavenumbers rapidly
enough to ensure the numerical accuracy.

In the both cases the amplitude of magnetic field be-
gins to increase exponentially in time and keeps growing
until the magnetic and velocity fields become compara-
ble in magnitude. After this time the two fields fluctuate
irregularly around statistically equilibrinm states.

In Fig. 1, we show a snapshot of magnetic field in
the equilibrium period for Case I. The magnetic lines
plotted outside the outer sphere are seen from a high
latitnde of the Northern hemisphere in the top panel,
where color of the lines indicates the direction of the
magnetic field which is pointed from red to blue. They
form a dipole structure, the axis of the dipole moment
of which lies on the equatorial plane and rotates around
the rotation axis of the spherical shell. The angular

velocity 0.23 (cf. Fig. 3(a)) is about a half of that of
Taylor-Proudman columns. The pattern of the magnetic
field lines in the equatorial plane is shown in the bottom
panel with many lines, the length of which is propor-
tional to the strength and a circle at an edge denotes
the direction of the magnetic field pointed to. Color
map on the annulus indicates magnitude of the magnetic
field (stronger for red and weaker for blue), the equato-
rial (z and y) component of which is overwhelming. At
the same time the axial (z) component of vorticity is
drawn with white and black contours for w, < 0 (anti-
cyclones) and w, > 0 (cyclones), respectively. Strong
magnetic field is localized in the neighborhood of a cou-
ple of anti-cyclones which locate symmetrically with re-
spect to the origin. It is interesting to note that the six-
fold symmetric around the origin (see white and black
contours) still remains in the convection field, whereas
the symmetry of magnetic field is only two-fold. Such a
coexistence of different symmetries was also observed at
other parameters.®) These intensified regions of magnetic
field retrogrades relative to the convection field (see be-
low). Magnetic lines are running along streamlines (not
shown} in the frame in which convection field is steady.

In Fig. 2, we plot an instantaneous structure of the
magnetic field in the equilibrium period for Case . It
is seen that strong magnetic flux density is localized in
some particular areas. The axial component is dominant
inside a couple of anti-cyclones, whereas the equatorial
component is intensified between neighboring cyclones
and anti-cyclones. In the same way as Case I, strong
magnetic lines are along streamlines (not shown). No-
tice that all of these strong magnetic field is being in-
tensified by the concentrate-and-stretch mechanism® in
the places where flows come out of thin boundary layers,
that is, the stagnation points on the equatorial plane, on
the outer boundary, or on the inner boundary.
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Figure 1 (left panel). Equatorial magnetic dipole. Top: Magnetic lines which are pointed from red to blue.
They are drawn by numerical integration starting from the outer sphere. The number density of the starting
points varies depending on the magnitude of B, the radial component of the magnetic field on the surface.
They are distributed on 32 x 64 points in the 8- and ¢- directions for |B,| > 2, 16 x 32 for 1 < |B;| < 2,
8 x 16 for 0.5 < |B,| < 1,4 x 8 for 0.25 < |B,| < 0.5, and 2 x 4 for |B,| < 0.25. —4.1 < B, < 2.8. Bottom:
Structure of the magnetic and vorticity fields on the equatorial plane. Color map represents the magnitude
of the magnetic field which is stronger for red and weaker for blue. The magnetic lines in the equatorial
plane are shown by red lines with circles to which the magnetic field is directed. The axial component
of vorticity is drawn with white and black contours for anti-cyclones and cyclones, respectively. ¢ = 100.
Figure 2 (right panel). Axial magnetic dipole. The quantities plotted are the same as in Fig. 1. The starting
points of the magnetic lines are distributed on 32 x 64 points in the #- and ¢- directions for |B,| > 16, 16 x 32
for 8 < |B,| < 16, 8 x 16 for 4 < |B,| < 8, and 4 x 8 for |B,| < 4. —=23.7T < B, <23.2. t = 60.
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The temporal evolutions of magnetic dipole moment
are shown in Fig. 3 for (a) Case I and (b) Case II. In
Case I, the dashed and dotted lines denote the equatorial
components which oscillate in time after a transient pe-
riod £ 2 30. The phase of the former is 90° in advance of
the latter. The axial component is invisibly small. The

mg +m,2 of the

equatorial component which increases slowly in time.

solid line represents the magnitude
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Figure 3. Temporal evolution of magnetic dipole mo-
ment. {a) Case I. m,, dashed line; m,, dotted line;
2 solid line.

o (b) Case II. my, solid line;

my, dotted line; m,, dashed line. The magnetic dipole
moment is normalized by x(up)'/%d?, and the time by
d” [k, where & is the thermal diffusivity, 4 the magnetic
permeability, p the fluid density, d the thickness of the
spherical shell.

2
m +m

Therefore the dipole vector retrogrades around the rota-
tion axis in the equatorial plane with constant angular
velocity 0.23 (found by reading on the graph).

By contrast, in Case I1, after a transient time ¢ > 42,
the axial component dominates the equatorial compo-
nent so that the magnetic dipole moment aligns almost
with the rotation axis. The deviation angle is less than
9°. The magnitude of the axial component varies in time
substantially but the sign never changes during the sim-
ulation period (over eight magnetic diffusion time). A
possibility of reversal at jater times cannot be denied,
however.

We have seen two types of magnetic dipole fields in
an MHD simulation of a rotating spherical shell model.
They are the equaiorial and axial dipoles, the structure
of which is robust and rotate with a constant angular ve-
locity around the rotation axis of the spherical shell in
the former, whereas it does not show a polarity reversal
in the latter.

Several interesting questions arise. What determines
the selection of the axial and equatorial dipole 7 Does
it have some implications on the axial dipole (11° off)
of the Earth and the non-axial dipole (59° off) of the
Uranus ? What happens for a range of control param-
eters between these two cases 7 Will equatorial or ax-
ial dipole emerge ? How about the magnetic reversal
?75.8.1) What on Farth is the intensification mechanism
? Studies on these interesting problems as well as on the
mechanism of each dipole field are now under way and
will he discussed in a forthcoming paper.
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