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Abstract. It is shown that plasma viscosity does not influence the magnetic island rotation directly.
Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of

the viscosity effect on island rotation.

Keywords: Magnetic islands, rotation, plasma viscosity, profile function

1. Intiroduction

The rotating magnetic islands are responsible for
the ultimate plasma pressure achievable in long-
pulse tokamak discharges [1]. The existing theories
and available data (yet incomplete and insufficient
for conclusive predictions) give unfavorable scaling
for larger devices. Thereby, the physics of magnetic
islands is an important area for present-day toroidal
experiments with high-beta performance and even
more for reactor-size fusion devices similar to ITER
(International Thermonuclear Experimental Reac-
tor) [2].

The rotating magnetic islands are the key element
of the theory of nonlinear drift-tearing modes in toka-
maks and of forced magnetic reconnection in plasmas
(see Ref. [3] and the references therein). One of the
crucial points there is the problem of determining the
island rotation frequency. Basing on semi-intuitive
considerations, the authors of Ref. [4] suggested the

idea that the perpendicular viscosity is important
for this problem. This idea was lively discussed in
many subsequent papers (see, e.g., [3, 5-7]}. However,
till now this problem was studied inconsistently (the
surface part of viscosity near the island separatrix
and the nonstationarity of the plasma velocity were
neglected), so that the mechanism of the viscosity
effect on magnetic island rotation and even existence
of this effect remained questionable. These subjects
are analyzed in the present paper.

2. Magnetic island geometry

We consider magnetic field By with toroidal
nested axisymmetric magnetic surfaces, labeled by
the coordinate r, and the perturbation producing
magnetic island localized near some rational surface
r = rs. Near this surface the total magnetic field is
B = Byz — Vi X z, where Bz is the main (“equi-



librium”) magnetic field at r = r,, and z is the unit
vector determined by z = (Boc€ + Boa®)/Bg, 8 and
¢ are the unit vectors along gradients of § and ¢;
# and ¢ are the poloidal and toroidal angles, respec-
tively, Bo¢ and Byy are the toroidal and poloidal com-
ponents of equilibrium magnetic field at the surface
T = r1s. The island magnetic flux function % describes
both the perpendicular (to the direction z) compo-
nent of equilibrium magnetic field at r # r, and the
perturbed magnetic field. It is defined by

¥ = cost — 2By /2L,. (1)

Here z = r — r,, L, is the shear length, 1:5 is a posi-
tive constant characterizing the perturbation ampli-
tude, and £ = m (0 — (/qs) — wt is the island cyclic
variable, where m is the poloidal mode number,
gs = g(rs) = m/n is the safety factor at the rational
surface, n is the toroidal mode number, and w is the
island rotation frequency.

3. Perpendicular
torque balance equation

We use the single-fluid momentum equation
podVy/dt = —jBofc — Bnzy (D (2)

The direction y is defined by y = 2 x X, where y
and x are the unit vectors along gradients of y and
z. The explicit form for y is y = (Byc8 — BgeC) /Bo.
The function V;, is the y-projection of the plasma
velocity V, 4. is the z-projection of the electric cur-
rent density, ., is the viscosity tensor component,
Po is the plasma mass density, c is the speed of light,
the operator d/dt is defined by d/dt = /6t + V. V.
The standard approximation 8/8y « 8/0z is used.
Drift and neoclassical effects are neglected.

Similarly to [3,6], to obtain the equation for the
island rotation frequency we use the perpendicular
torque balance equation. The last is found by spatial
integration of Eq. (2) and can be represented in the
form (cf. [3,6]):

IyNS = TyEM + TyV- (3)

Here Ty g and Ty are the electromagnetic and vis-
cous torques, respectively,

1@M=4&m]$% (4)

Ty = — f A4y /O, (5)

Iyns is the inertia nonstationarity,

ILing = pofdst;,/dt, (6)

Jeras= [ de [~ aiy=
;%émwfﬁbh @)

Yz = 0% /0z, 0, =sgnz. The operator §(...)d¢ means
J7_(...)d¢ outside the separatrix (for 4 < —¢%) and
9 (--)dE, where &y=cos™(3/4), inside the island

(for ¢ > —4).

4. The absence of viscosity torque
for islands with localized viscosity
tensor

We transform Eq. (5) as follows

Tyv =§:%/$_w d@bb%j{dgwmy =

—;%f%mwmw ()

We consider the magnetic islands with localized vis-
cosity tensor, wzy — 0 for 9 — —oo (the alternative
case With 7z # 0 for ¥ -+ —c0 was considered in
{7]). It then follows from Eq. (8) that

Thr=0. (9)
In this case Eq. (3) reduces to
Lins =Tyem. (10)

Thus, the electromagnetic torque is compensated by
the inertia nonstationarity only.

5. Relation between
inertia nonstationarity and
profile function nonstationarity

The plasma wvelocity V is taken in the form
V = Vjz + V., where V| is the parallel veloc-
ity, V. describes the cross-field motion, so that
V. = ¢[E: xBj/B? and E, is the perpendicu-
lar {with respect to B) electric filed. We express the
field E| in terms of the electrostatic potential ¢ by
E, =-V.,¢, where V, = V — bV is the per-
pendicular gradient, b = B/B, Vi =b-V is the



parallel gradient. The plasma electric conductivity is
assumed to be infinite, so that the paralle! Ohm's
law reduces to Ey = b-E = 0. On the other hand,
E“ = *V“Qf) - (1/c) aA"/Bt, where A” = —1 is the
parallel projection of the vector potential. In addi-
tion, we use the expression for the parallel gradient
V= kna/&g, where k” = —.’I?ky/Ls is the parallel
wave number, k, = m/r,. Introducing k,, we have
allowed for that in the approximation of large aspect
ratio ry < R, where R is the major torus radius, the
rule of differentiating over the variable y is defined
by 8 /8y = r; 18 /88. Then we obtain

¢ = (Bow/cky) [z — A(¢, )], (11)

where h(1,t) is the electrostatic potential profile
function. The form of this function will be explained
below.

Using Eq. (11), one can find that in terms of
(W, ,1)

d/dt = 8/t — wi, h'8/BE, (12)

where the prime denotes the derivative with respect
to 7. On the other hand, in terms of h,

Vy = (¢/B0)8/0z = (w/ky) (1 - ¢k} (13)

By means of Egs. (7), (12), and (13), Eq. (6) is trans-
formed to

w = 8k
Iyns = —27po— sz/ dp—. (14)
¢ ky ; ¥ ot

Following {7], we assume that & = 0 inside the island,
i.e. for ¥ > —1. By this reason, we used here § d¢ =
27. Evidently, the right-hand side of Eq. (14) can be
represented in terms of (0h/0t) 152

pule o

6. Equation for electrostatic poten-
tial profile function and relation
between electromagnetic torque
and viscosity

‘We use the current continuity equation
84z/0z + Vy Jj = 0, (15)
where J) is the parallel electric current density. Mul-

tiplying Eq. (15) by ;! and integrating over &, we
obtain the ambipolarity condition

5 j! GudE = 0. (16)

Integrating Eq. (16) over % and assuming the inte-
gration constant to be zero (otherwise the function
h is strongly divergent for ¥ —» —o0), we obtain

§ dadg =0. (17)

Substituting here j, from Eq. (2) and using Eqs. (12)
and (13), we arrive at the equation for h:

on’ O,
() G = (52 (1®)

where (...) means the averaging over the island mag-
netic surface defined by

)= }(()%/j{% (19)

By means of Eqgs. (10), {14), and (18), we obtain the
relation between the electromagnetic torque and the
viscosity:

— g O7ay
TyeM =f27r2<7:/‘E (7%<¢3 ;11, > (20)

Thus, while directly the viscosity does not enter
the torque balance equation, it contributes into this
equation since it causes the inertia nonstationarity.

7. Structure of electrostatic potential
profile function and viscosity

In the simplest plasma description the viscosity
tensor component 7, is given by

oy = —UpedVy /O, (21)

where 4 is the viscosity coefficient. By order of mag-
nitude g =~ v;p2, where »; is the ion collision fre-
quency, p; is the ion Larmor radius. In this case Eq.
{18} reduces to

A,01' 8t = B (Ash") [0, (22)

where A; = §9Ldg, i =1,3.

One can see that Eq. (22) has no stationary solu-
tions with A’ # 0. The standard approach to ana-
lyzing Eq. (22) (cf., e.g., {7}) is based on the idea
that this equation has approximate solutions which
are stationary everywhere with the exception of a
narrow “nonstationarity layer” near the separatrix.
Let A, be the characteristic scale of the nonstation-
arity layer in the magnetic flux space 1. Then, for
W < —f — Ay it follows from Eq. (22) that

W' =C/[As, (23)



where C' is an integration constant. Requiring that
R" — 0 for ¢ — —o0, we obtain from Eq. (23)

k' = Cg(y), (24)

where §(¢) = [¥_ diy/As. Using Eq. (13), from the
condition V, — V4 for ¥ — —oo, where V; is the
equilibrium value of V,, we find C = 2xBs(1 —
kyVo/w)/Ls. If the nonstationarity layer scale Ay
is smaller than the ion Larmor radius scale A, ~

— 1
pi (¢Bg /Ls) /2, Ay < A,, the expression for Ty
of form (21) should be modified by allowing for the
terms with higher derivatives of V}, corresponding to
the hyperviscosity (see in detail [8]).
Equations (23) and (24) are compatible with the
above condition & = 0 inside the island if one takes

$ d&ﬁx% -

Bo(w - ky%)

L.k, [6(h) + A3eGsb" ()], (25)

—2mppo
where Ags = 43(~9), G = §(~%), § =¥+, § is
a function like the d-function which is nonzero only
for ¢ < 0, localized in the nonstationarity layer and
normalized by the condition | foo §(¢)de) = 1. As an
example of the function §(1)) one can take the “half-
Gaussian”,

8 = 2205 exp (—9%/A2) (26)

Exact knowledge of §(3) is not too important for
our problem since, as it will be shown below, our
final result depends on Ay logarithmically.

8. Dispersion relation
Using Eqgs. (25) and (26), Eq. (20) reduces to

Tyem =
2g(1 —ky Vo [ Be \*? ”
—Fg3( ) oo - 0( °~) In Ai , (27
Y L3¢ (4

where g(1) = —80.g,9Y2 (Bo/Ls)*/* = 0.869 (see
details in Ref. [8]). The value Tygas is calculated by
the following standard manner. Integrating by parts
and using the current continuity equation (15), we
transform Eq. (4) to

Tyga = % / Jy sin éds. (28)

By means of Eq. (1) and the parallel Ampere’s law
Jp = (¢/4n)b- V x B we express the parallel cur-
rent Jj in terms of 8%)/8z> and use the known
matching condition at infinity

(8/82)|%,, = ¥ (AL cosé + Al sing), (29)

where Al and A} are the cos-part and sin-part of
the matching parameter, respectively. Then Eq. (28)
reduces to

Tyrm = kyA;'JP/ 4. (30)
From Eqgs. (27) and (30) we obtain the equation
3k2v% w
w—kyVy =— vA- AL, (31)
s2rg()12u1n (4/A,)

where v3 = B2 /Amp, is the Alfvén velocity squared

and w = 2 (iz?Ls /Bg) "2 i the island halfwidth, This
equation can be called a dispersion relation for the
magnetic island.

For applications, the case of interest is when the
equilibrium poloidal plasma velocity vanishes. In this
case ky Vo = —nlU¢ /R, where U; = V) is the equilib-
rium toroidal plasma velocity.

9. AQualitative analysis of dispersion
relation and energy conservation
law

After calculation of the value A, the dispersion
relation {31) together with the generalized Ruther-
ford equation for the island width can be used for
analyzing the problem of electromagnetic interaction
between magnetic islands and the resistive wall (cf.
Ref. [7]). Preliminary qualitative conclusions can be
obtained by using expression for AL given in Ref.
[9]. According to [9], in the case of resistive wall
sgnAl=sgnw. Therefore, if plasma is nonrotating for
T =15, Vo = 0, dispersion relation {31) is not sat-
isfied. Thus, rotating magnetic islands can not be
driven in nonrotating plasma because of their inter-
action with a resistive wall. On the other hand, in the
presence of plasma rotation, V) # 0, it is possible to
drive the magnetic islands for k,Vp/w > 1. Thereby,
the reason for driving the magnetic islands interact-
ing with a resistive wall is the plasma rotation. One
can suggest that such a driving should lead to exclud-
ing this reason, ie. to braking the plasma rotation.
This suggestion is in correspondence with the fact
that the magnetic islands considered are related to
the velocity profile nonstationarity. Such a braking



of plasma rotation can be interpreted as an effective
friction of rotating plasma with the nonrotating wall.
The effect of plasma rotation breaking can be seen
also using the energy conservation law following from

Eq. (2):
81

2
a E / poVy rdrdf =

8V, \?2 Wrs
— 00T s / (—Bf—) ds + Py TyEM, (32)

where integration in the left-hand side is performed
over all plasma volume (per length unit). For A, ~
A,, from Eq. (32) one can find the estimate

8V, pi { kyVo ?
Franle V,a( ” -1}, (33)

where Vy is a characteristic quasistationary plasma
rotation velocity, a is the wall radius.

10. Discussion

In terms of the torque balance equation, the ide-
ology of preceding studies of the viscosity effect on
island rotation can be explained as follows (cf., e.g.,
Ref. [3]). The velocity profile was assumed to be
exactly stationary, so that the left-hand side of Eq.
(3) was neglected. The viscous torque T,y was rep-
resented in the form of first equality (8), but the
full region of integration over t was replaced by
the region outside the nonstationarity layer. In other
words, only the volume viscous torque was taken
into account, while the surface viscous torque in
the vicinity of the island separatrix was neglected.
Then, instead of the identical zero given by Eq. (9),
a finite value for the viscous torque was obtained.
As a result of these two mistakes, a relation between
w and Al was derived. This relation coincides qual-
itatively with our dispersion relation (31} (cf. our
Eq. (31) with Eq. (31) of Ref. [3]). This fact is not
surprising since the velocity nonstationarity is also
related to the surface part of the viscosity [see Eg.
(18)].

Turning to [10], one can think that the islands
studied can be suppressed by the feedback tech-
nique based on the finite wall resistivity effect. Math-
ematically, the role of feedback should consist in
modification of the above condition sgnAl=sgnw by
sgnA;=sgn(w — ky Vo).

The approach presented can be generalized by
including the finite plasma resistivity and drift as
well as neoclassical effects.
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