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Abstract

Ion diamagnetic effects on the m = 1 (poloidal mode number) and n = 1 (toroidal mode number) kinetic
internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coor-
dinates, GRM3F-CY. In the derivation of the gyro-reduced-MHD model including the ion diamagnetic effects,
finite gyroradius effects of ions are added to the gyrokintic Poisson equation {quasi-neutral condition) and the
conveciion term of the conservation law of the ion density. It is found that the long wavelength approximation,
k1 p; < 1. where k, is the wavenumber perpendicular to the magnetic field and p;, is the thermal jon gyrora-
dius, fails to reproduce the correct dispersion relation; the formulation valid even for k. p:; 2 1 is necessary.
The results of numerical calculation coincide with the theory for lw..| + |wei]| < 27, where the growth rate
reduces as the density gradient increases. Here w,. and w,; are electron and ion diamagnetic angular frequencies
estimated at the rational surface of ¢ = 1 (g is a safety factor), respectively, and +p is the growth rate for the
uniform density. Very weak instability, however, is observed for |w..| + |w..] > 2v0. where the theory predicts
the complete stabilization. This residual instability appears since the region with the density gradient is limited
in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete.
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1 Introduction

To repreduce the kinetic magoetohydrodynamic
(MHD) phenomena in tokamaks by the numerical
simulation technique is a challenging project. 1In
present day and future high temperature large toka-
maks, it is not and it will be not unusual that the
standard ideal and resistive MHD models fail to ex-
plain the phenomena observed experimentally. The
inertia of electrons, diamagnetic effects of electron-
s and ions, finite gyroradius effects of ions. and the
Landau damping are examples of the kinetic effects
which can significantly modify the MHD phenomena.
Those kind of kinetic effects can be included by the gy-
rokinetic particle, gyrofluid, gyro-reduced-MHD, and
hybrid simulations. It is important to develop sev-
eral codes with different orders of physical accuracy
and to benchmark those codes for the same physical
phenomena.
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We have developed the gyrokinetic particle
code (GYR3D)[1, 2, 3]. the gyro-reduced-MHD
code (GRM3D-2F)[4, 5], and the hybrid code
{Hybrid3D)[6] to study kinetic modification of MHD
modes. These codes have been coded for the rectan-
gular mesh and fast Fourier transformation technique
is used. The linear and nonlinear development of the
m = 1 (poloidal mode number) and = = 1 {toroidal
mode number) kinetic internal kink mode are simu-
lated successfully. Fast full reconnection followed by a
second phase in which the configuration with g < 1
(go is the safety factor at the magnetic axis) is re-
formed has been observed by these three codes. How-
ever it has been felt that the cvlindrical model with
mode expansions in toroidal and poloidal angles would
be more powerful to simulate realistic plasmas. The
mesh accumulation technique in the radial direction
can be used for the cylindrical code. For example, in
order to simulate an m = ! and n = 1 kinetic internal
kink mode, we must resolve the fine mode structure of
the current perturbation around the ¢ = 1 magnetic



surface with the characteristic length of the collision-
less electron skin depth, d. = c¢/wy. (¢ is the speed
of light in vacuum and wy, is the electron plasma an-
gular frequency). For the parameters of present day
large tokamaks, d,/a ( @ is a minor radius of a plas-
ma) is less than 1073. By accumulating radial meshes
around the ¢ = 1 surface, we can simulate the physics
including the thin inertial layer by using the moderate
number of meshes.

As the first step to build the series of cylindrical
codes, we developed linear version of the GRM3F-CY
code which is based on the three field gyro-reduced-
MHD model. The stabilization of the kinetic internal
kink mode by the electron diamagnetic effect was s
tudied by Naitou et al. [7] using the three field gyro-
reduced-MHD model in the limit of T, = 0 (T} is the
ion temperature). The most important finding was
that the stabilization of the internal kink mode by the
electron diamagnetic effects is not clearly observed for
the simulation of d./a ~ 107! — 1072, The simnla-
tion with d./a < 1073 verified the stabilization of
the mode and the existence of the very weak insta-
bility for the large density gradient in which theories
[8, 9, 10, 11] predict the complete stabilization. Hence
the simulation with d./e < 10~ has much reality to
compare with actual experiments. This paper extend-
s the work of the previous paper[7] and investigates
the diamagnetic eflects of ions on the kinetic internal
kink mode using the realistic parameter of d. /a.

The outline of the paper is as follows. The basic
formulation of the gyro-reduced-MHD model with the
finite gyroradius effects of ions are summarized in Sec.
2. Simulation model is described in Sec.3. Section 4
shows results of linear mode analysis by the GRM3F-
CY code with the finite gyroradius effects of ions. The
conclusions and discussion are given in Sec.5.

2 Basic Equations

The five field gyro-reduced MHD model [12] was de-
rived by moment equations of the gyrokinetic Vlasov-
Maxwell system [13]. The name of gyro-reduced-
MHED comes from the fact that the basic equations are
the gyrokinetic generalization of the two field reduced
MHD model by Strauss [14]. Not all of the finite gy-
roradius effects of ions were included in the Lee's for-
mulation; hence, this article aims the improvement of
the gyro-reduced-MHD model. By assuming I'; = 0
(ion flux along the magnetic field), the five field mod-
el reduces to the three field model which is equivalent
to the subset of the four field model (in the limiy of
T; = 0) given by Aydemir [L5]. The four field mod-
el by Aydemir is the simplified version of the four
field model by Hazeltine et al. [16] which is based
on the Vlasov-Maxwell system. When the ion gyro-
radius effects are included, the relation between the
Hazeltine’s four field model and the treatment based
on the gyrokinetic formulation is not clear. We be-
lieve that this article bridges some of the gaps between
the Hazeltine’s four field model and the gyro-reduced-

MHD formulation.

Here we derive the three field gyro-reduced-MHED
model with kinetic modifications from the gyrokinet-
ic Vlasov-Maxwell system given by Hahm [13]. The
gyrokinetic equations are derived using the ordering
of

wo s Kk 9B
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where w is the characteristic mode frequency, w,; is
the ion cyclotron frequency, py; is the thermal ion gy-
roradius, L is the characteristic length of the gradient
of the macroscopic quantities like density, tempera-
ture, and magnetic field, and k) and & are the wave
numbers parallel and perpendicular to the magnet-
ic field, respectively, e is the electron charge, ¢ is the
electrostatic potential, 7, is the electron temperature,
4B is the variation of the magnetic field from a con-
stant longitudinal magnetic field B, and ¢ is the s-
mallness parameter. This ordering is valid for the low
frequency phenomena in the bulk plasma in tokamaks.

We assume a uniform (toroidal) magnetic field,
B = Byb, where b is the unit vector in the z direction.
The (poloidal) magnetic field in the =,y plane is ex-
pressed by V x (A4.b) = VA, x b with A; being the z
component of the vector potential. The compressional
component of the torvidal magnetic field is neglected
in the low-3 approximation. The electric field consists
of the electrostatic component, —V ¢, and the induced
electric field along the magnetic field, —8A4, /Ot.

The gyrokinetic Vlasov equation for the electron
distribution function f.(r,v,£) with r, vy, and ¢ be-
ing the coordinates of the configuration space, the ve-
locity along the magnetic field, and the time, respec-
tively, is given by

ol + (U”bt + b XBDV'¢> -Vf.

ot
e . A\ df.
m. (_b Ve at )

where m, is the electron mass and b is the unit vector
of the magnetic field,

5 =0 @

4 VA, xb
By

While the electron finite gyroradius effect is neglect-
ed because of small mass, the ion gyroradius effect is
included to the gyrokinetic Vlasov equation for the
ion velocity distribution function fi(r, v, vy, ):

b*=b (3)

af; . DX V{J
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where g; is the ion charge, m; the ion mass, and Jy
the linear operator which carries out the gyroaverag-
ing operation. In Fourier space, Jy is a Bessel func-
tion with an argument of k; p;, where p; = v, fwe:



is the ion gyroradius and vy the velocity perpendic-
ular to the magnetic field. It is to be noted that in
the gyrokinetic theory f, denotes the velocity distni-
bution for guiding centers. Also the ion polarization
response is not included in f,.

In order to calculate the fields ¢ and 4., the zeroth
and first order moments of f, and f, are needed. The
zeroth order moments of f. and f, determine the elec-
tron and ion densities, n. and < n, >, respectively,

ne(r,t) =

/dvﬂfc(r,v”,t) y (5)

< N(r.t) > /d{?vrv_l_)dt:”.]gf,(r.v“.v_L,t) \
(6)

where angular brackets indicate the gyro-averaging.
Note that < N; > designates the particle density,
while N,,

!V,(T,t) = /d(27’("vi)d’i)”fi(1',vn,U_}_,t) B (7)

is the guiding center density. The first order moment
of f. determines the electron current along the mag-
netic field which is given by the following equation.

Jo(r, t) =
= —e/dv||vj|fe(7'a’0“7t) ) {8)

—en, (7, t)v.(r,1)

where v, is the electron fluid velocity along the mag-
netic field. We assume that ion current along the
magnetic field is zero; hence the coupling to ion sound
wave is neglected.

The electrostatic potential is given by the gyroki-
netic Poisson equation,

T

e 1
- TAT(I —Ip)gp= ;(en‘e - <N.>), (9)
T De

where eg is the permittivity of vacuum, Ap,_ is the elec-
tron Debye length estimated by the average density,
and I'y is the real space operator which correspond-
s to To(k3 p2,) = Io{K% p%) exp(—k3 p2,) in Fourier s-
pace (I is the modified Bessel function). The real ion
density n, is obtained by adding the ion polarization
response to < N, >;

€0 Te

n, =< N; > ————
' ¢.T37%,

(1-To)é.  (10)
Hence, the gyrokinetic Poisson equation is equivalent
to the quasi-neutrality condition, n, = n,. In the long
wavelength limit the left hand side of Eq.(9) becomes
(Wl /w? V7 ¢ where ¢; = ¢ is assumed, wp, i the ion
plasma frequency, and V¥ is the Laplacian operator
perpendicular to the magnetic field.
Ampere'’s law determines A,:

Vi, = —pol. (11)

where g is the vacuum permeability. Equations (2),
{4). (5), {6), {8), (9}, and (11) give the closed set of
gyrokinetic Viasov-Maxwell system.

The gyro-reduced-MHID model is derived by the
two-fluid gyrofluid model which is based on the mo-
ment equations of the gyvrokinetic Vlasov equations.
Although. the Landau damping and higher order mo-
ments can be taken into account in the gyrofluid mod-
el, we are only interested in the lower order moments.

The equation for the conservation of electron den-
sity is obtained by integrating Eq.(2) over v

dn. B
FTE b*-V(n.)=0. (12)
where d/dt is the convective derivative defined by
d d bxVo
a“t“ = E + B, -V. (13)
The conservation law for the ion density.
d <N, > bx Vg
s To-122Y2 . UN, =0, (14)

dt By

is derived by integrating Eq.(4) over vy and v, af-
ter multiplying 27w, Jy. The dominant term for the
gyro-averaged E x B drift is kept as in the paper
by Dorland and Hammett[17]. The second term in
the left hand side of the equation indicates the devi-
ation of the gyroaveraged E x B drifts from the sim-
ple estimation neglecting the finite gyroradius eflect,
b x Vd)/B()

The first moment equation for electrons is given by
the following equation.

dl. €T, , _ nge’ . OA,
& om VT T, (“’ Ve Bt) =

(15)
where higher order nonlinear termn is neglected, n, in
the right hand side of the equation is replaced by n.g
{(Boussinesq like approximation {18]}. and isothermal
model (T, = constant) is used to evaluate electron
pressure along the magnetic field.

Oerating d/dt on the gyrokinetic Poisson equation
(Fq.(9)), replacing dn./dt and dn,/df by Eqgs.(12)
and(14), and using Ampere’s law (Eq.(11}) we have
the vortex equation;

_td
P?i dt

[(1-Te)g] = —v3b* - V(ViA4,)

I, 1-
. Lobx Ve

N, . 16
eney P2, By (16)

where v4 = i /wps is the Alfvén velocity. The sec-
ond term on the right hand side of the equation indi-
cates the variation of the charge density caused by the
difference in the E x B drifts of electrons and ions.
Generalized Ohm'’s law along the magnetic field is
nothing but the first order momentum equation of
electrons along the magnetic field {Eq (15)):

8A,
ot

where Ampere’s faw, Eq.(11), is used to eliminate J,
in the expression. The electron diamagnetic effect o-
riginates from the third term on the right hand side
of the equation.

d .
- ,b*.v¢+d§_(vifl2)+ib Vn., (17)
i €Nep



The eqguation for the comservation of electron-
s (Eq.(12)) is modified by using Ampere’s law
(Eq.(11));

dn. 1

=——0b-V(Vid,). 1
=t V(viA) ()

In addition to these three equations of {16}, {17}, and
{18), the conservation law of ions which describes the
time variation of the ion density will complete the
closed set of equations. In this paper, we are inter-
ested in the linear analysis. In the linear treatment,
N; in the vortex equation represents the equilibrium
quantity; hence, the coupling to the conservation law
of ions can be neglected.

For the uniform density and the uniform magnetic
field, the angular frequency of the normal mode is
given by linearizing FEgs.(16), (17), and (18),

»_ Kiva
1+ k3 d?

k_l_pl
1 —To(k3 p?)

s a9)

which is the angular frequency of the kinetic AHvén
wave [19].

Here, we make some discussions about the vortex e-
quation. In the long wavelength limit, we can approx-
imate 1 — Iy as —p%, V2 . Hence the vortex equation
in the long wavelength limit is given by

—'uib* - V(ViAz)
T; b x VN,' .
ens By

2o =

V(Vig), (20)

where the ion diamagnetic drift velocity,

Ti bx VN;
eneg By

Ve = (21)
is included in the second term on the right hand
side of the equation. Fquation (20) is first derived
by Hasegawa and Wakatani [20] for their proposal of
finite-Larmor radius magnetohydrodynamic equation-
s for microturbulence. It will be found in the follow-
ing section that the correct dispersion relation for the
kinetic internal kink mode is not reproduced using
Fq.(20).

In the limit of T, = 0, with Eqs.(17) and (18), the
vortex equation, Eq.(20), constitutes the closed set of
the three field gyro-reduced-MHD model which was
used in the previous paper [7] to study the electron
diamagnetic effects on the kinetic internal kink mode.
For the case of uniform equilibrium density, replac-
ing n. in Eq.(17) by (eo/e){w;,/w?,) using the long
wavelength limit of the gyrokinetic Poisson equation,
Eq.(9), the generalized Ohm’s law becomes

dA, . d
= VL S (VIA) 400"V (V). (22)
where p, = +/T./m,/w; is the thermal ion gyroradius

estimated by the eleciron temperature. Equation (20)
with T; = 0 and Eq.(22} make the two field gyro-
reduced-MHD model used in the papers [4, 5].

When T; # 0, it is important to include the ion
response which is valid even for &} py; 3> 1 because p,,
is much larger than d. and near the rational surface
the resolution of the mode structure with the scale
length of d, is crucial. Hence, we make the Padé like
approximation for T'y which is expressed in Fourier
space as

kel

—=5 5 - 23
1+k_1_ Pt; ( )

1 To(kpf) =
The above approximation is rigorously correct
through second order in k; p.; while still being well be-
haved for large &, p;; {21]. We can use Fourier trans-
formation technique to numerically execute above op-
eration. However, we are using the code with nonuni-
form radial mesh because mesh accumulation is need-
ed to represents the fine mode structure around the
rational surface. Hence we stick to the finite difference
method without Fourier transformation. For this pur-
pose, we multiply 1 + k2 p%; to the both sides of the
vortex equation. We have the vortex equation valid
for the whole region of &, pi;;

(\_ ¢) = vi(l-pL Vi)D" - V(Vid)
T-; bx Vi’\ri 9
STV 2

If, in the Aydemir’s four field model, the vortex equa-
tion for the generalized vorticity is rearranged using
the conservation law of the electron density, the resul-
tant vortex equation for V2 ¢ is very close to Eq.(24).
Equations (17), (18), and (24} form the basic equa-
tions for the linerized version of GRM3F-CY code
with finite gyroradius effects of ions.

3 Simulation Model

We assume a cylinder with a minor radius of @ and a
height of L, = 2R (R is a major radius) surround-
ed by a perfectly conducting wall. Periodic boundary
condition is used in the z direction. GRM3F-CY uti-
lizes the following normalization: z/L, — z,r/a —+ T,
t’UA/Lz — 1, AZLZ/(G2BQ) — A4, ¢Lz/(UAa2Bo) —
¢, nel./(neod,) = e, n:L./{nepd.) = n;. The
normalized equations include only three parameter-
8, de/a! ps/ar and pz/a = Ti/Teps-

We selected the parameters close to the present day
large tokamaks: ¢ = 1 [m}, R = 3 [m], neo = 10%
[m?], magnetic field strength of B = 5 [Tesla), and
T, = 10 kev]. For such a tokamak with deuterium
discharge, d,/a = 5.315 x 107* and p,/a = 2.801 x
10~%. The profile of the safety factor is

—~1

W =awfi-a-w ()] . @

where qg = 0.85 is the safety factor at the magnetic
axis. Note that g(a/2) = 1.0 and g(a) = 2.125. The
equilibrium density profile is chosen as

r ;nrg) ’ (26)

n{r} =mnp (1 — €, tanh



where ryp = /2, 1, = 0.16a. and ¢, is used to change
the density gradients
Since we arc doing the linear analysis. only a mode
of m =1 and n = 1 1s needed. So the linear equations
have the form of finite difference equations in the ra-
dial coordinate and the time. The density profile of
the nonuniformn radial mesh is given by the following
equation,
N

1
gr) =p+ > pa
n=1

an tanh 1=f= — taph ==

sech” =l

(27)

where r is the normalized radius and py+py+-+pn =
1. While py shows the ratio for the uniform part of
the mesh, p, represents the ratio for the part of the
accummulated mesh with the center position r, and
the width a.. Here we emploved the multiple mesh
accumulations at the rational surface of ¢ = 1. For the
uniform mesh 40 per cents of the number of meshes
are used, pp = 0.4. We have selecied N = 3. The
mode structure with the characteristic length of d.
is resolved by the accumulated mesh of n = 1 with
m = 0.3 and a; = 0.00075. The mode structure with
the characteristic lengths of p, and p; s represented
by the accumulated mesh of n = 2 with po = 0.15 and
g = 0.006. The third mesh accumulation is needed
to mitigate the sharp change in the mesh density from
the uniform mesh to the accumulated mesh of n = 2;
for n = 3, pz = 0.15 and a; = 0.032.

4 Simulation Results

The effects of the density gradient on the stability
of the n = 1 and n = 1 kinetic internal kink mod-
e is studied by the linearized version of GRM3F-CY
code which simulates the time evolution of the un-
stable mode as a initial value problem. Electron dia-
magnetic effects are studied in the previous article{7].
Ion diamagnetic effects is added to the previous mod-
el which included only electron diamagnetic effects.
When T;/7T. = 0, the new model includes only elec-
tron diamagnetic effects. Two parameters of T, /T.
and e, which determine the magnitude of the density
gradient, are keyv parameters.

Figure 1 shows the measured growth rates depend-
ing on the magnitudes of the density gradient. The
case of T,/T. = 1.0 is shown. The electron and
ion diamagnetic frequencies which are estimated at
the rational surface of ¢ = 1 are defined by w.. =
—(T./reBon,)dn. /dr and w,, = (T;/reBon,)dn;/dr,
respectively. In this article, the electron diamagnetic
frequency is expressed with negative value, while the
ion diamagnetic frequency is designated by the posi-
tive value. We have used 256 nonuniform grid points
in the radial direction. The meshes are accumulated
at the raiional surface of ¢ = 1 located at r = 0.5¢.
The measured growth rate for the uniform density is
Yo = 7.19 x 107 3v4 /L. which agrees very well with
the theoretical value of 7 = 9.19 x 10 3u4/L, (see
Eq.(29)). The measured characteristic time for the
instability. 1/7q. is about 340 usec.

The theoretical curve written in the figure is ohb-
tained from the dispersion relation which is given by
the following equation (8. 9, 10, 11].

{w— u),‘e)"i(w - :_-J.,)3 = (3"'0)6 N (28)

Here, v, is the growth rate without the density gra-
dient which is given by, for p; > d..

. v
0= 270 (de) 2T+ 1Y P (29)

where ¢ = dg/dr represents the magnetic shear esti-
mated at the rational surface of ¢ = 1. The solution
of the above dispersion relation, w = w, + 17, is for
the small density gradient of |w..| + |w..| € 27,

Wee + Wag

W= (30)

Yo' = (wee —wa)?/(270)%,  (31)

and for the large density gradient of |w..|+|wa| > 270,

Wae ;‘w:u \/(w*t’ - L;*i)z - 4’\.‘% , (32)

v~ = 0. (33)

Y

L =

Note that jw,. —w.;] can be expressed as |w..| +|w..[.

The observed real frequencies for T,/7, = 1.0 are
zero in accordance with the theory because w,, +w,; =
0. Also, the dependence of the measured growth rates
on the (Jwaee| + |we})/ (27 ) agrees very well with the
theory; -y reduces drastically as the density gradient
increases. However very weak ingtability remains for
|weel + |wee| > 270. This residual instability will be
discussed at the end of this section.

It is interesting to recognize the difference between
the models which are valid for whole values of k; py;
and valid only for long wavelength limit of ki pu.
‘When the vortex equation which is valid only for small
value of k| py, is used, we have the growth rates and
angular frequencies which are shown in Fig.2. The
dispersion relation for the formula which is valid for
the long wavelength,

w2 {w - wai(w — wee) = (110)° (34)

is obtained by the matching method (for example see
[22]) and displayed in Fig.2 by numerically solving
Eq.{34). Both dispersion relations {Eqs.(28) and (34))
are the same in the limit of 7, = 0. The simulation
results for the model valid for long wavelength agree
quite well with the theory in the same limit. The the-
oretical predictions of the growth rate for T,/7T, =0
and T,/T. = 1, which is valid for whole value of k, pt.,
are also shown in Fig.2. We find that the ion diamag-
netic effect is weak for the long wavelength model.
The growth rate is somewhat close to the theoretical
curve for T; /T, = 0. The eigenmode pattern rotates in
the electron diamagnetic direction whereas the mag-
nitude of the electron and ion diamagnetic drifts are
the same for T, /T, = 1.

The data which will be shown hereafter are ob-
tained by using the model which is valid for the whole



rage of & p:;. Figure 3 shows the growth rates versus
T;/T.. When there is no density gradient (e, = 0), the
growth rate increases with the ion temperature which
is consistent with the theory. For the case with the
density gradient of €, = 0.07071, the growth rate en-
hances slightly with the ion temperature for the lower
value of T;/T,, while for the higher value of T} /T, the
growth rate reduces with the ion temperature. The
amount of the reduction from the curve with ¢, = 0
to the curve with e, = 0.07071 corresponds to the
stabilization of the mode by the electron and ion dia-
magnetic effects.

Figure 4 displays the angular frequencies versus
T./T. for the cases of ¢, = 0 and €, = 0.07071. There
are poloidal rotations of the elgenmode patterns cor-
responding to the respective angular frequencies. The
observed angular frequency is zero for the case of u-
niform density. The case with the density gradient
is summarized as follows. When T;/T, is less than
unity, the mode rotates in the electron diamagnetic
direction. With T;/T. = 1 no poloidal rotation is
observed. The mode rotates in the ion diamagnetic
direction when T;/T, > 1. These results agree with
the theory in which w, ox T3 /T, — 1 (Eq.{30}).

The typical mode pattern of the unstable m = 1
kink mode for the uniform density is observed in Fig.5
which shows the profiles of ¢ and perturbed J. (6.J.)
around the g = 1 surface in the {r,8) coordinates.
Note the difference in the scale of the horizontal axis
of {r -~ rg)/a for ¢ and 8J.. The perturbed current
profile is localized at the rational surface and has the
characteristic scale length of d. which is much less
than the characteristic scale lengths of p; and py, of
the potential profile. The case of T; /T, = 0 (Fig.5(a))
is compared with the case of T;/T. = 1 (Fig.5(b)).
The mode pattern of the potential with T3 /T, = 1 has
the fine structure near the rational surface; the mode
profile has the drastic change between Ar < p;; and
Ar > py; where Ar is the distance from the rational
surface. This drastic change of the potential profile
reflects the treatment of ion diamagnetic effects which
are valid for the whole values of &, p;;.

The mode patterns of ¢ and §J. with the density
gradient of €,, = 0.07071 for the different value of the
temperature are shown in Fig.6. Fig.6(a) shows the
case with T; /T, = 0. The mode pattern rotates in
the electron diamagnetic direction. As the electron
diamagnetic term becomes zero just at the rational
surface (k; = 0), there is an effective shear in the
electron diamagnetic effects. Hence the mode pattern
experiences the V-shape deformation.

The case of T;/T, = 1 is shown in Fig.6(b}. Al
though no diamagnetic rotation is observed by the
cancellation of electron and ion diamagnetic drifts.
The mode structures are influenced by the both dia-
magnetic effects. The case of T;/T, = 2 in which the
mode pattern moves in the ion diamagnetic effect is
shown in Fig.6(c).

Here, we return to the case of 73 /T, = 1 and discuss
the origin of the residual instability shown in Fig.1.
Note that the theories predict complete stabilization

for |wee| ¥+ |wei| > 27v0. Figure 7(a) shows the poten-
tial profile arcund the ¢ = 1 surface for €, = 0.1187
{{Jwee] + feee]}/{2v0) = 1.008) which is very close to
the theoretical limit of Jw..| + jw..| = 290. This case
corresponds to the data designated by the letter A in
Fig.1. We can see that the drift-wave like mode prop-
agates into the outer regions (to the magnetic axis and
to the plasma surface) from the rational surface. This
mode pattern is observed only in the electrostatic po-
tential; so the mode is essentially electrostatic. The
density gradient broadens the characteristic length of
the potential profile; the width of the zone of drift-
wave like mode pattern becomes much larger than p,
and py,. The stabilization mechanism is expected that
the energy of the unstable kink mode is extracted from
the thin inertial layer to the outer regions.

Figure 7(b) shows the potential profile around
the rational surface for e, = 01697 ((Jw..! +
fwii])/(270) = 1.443). This case is denoted by the
letter B in Fig.1. The radial extent of the potential
perturbation becomes large as the density gradient in-
creases. We can see that the area where the drift-wave
like mode can propagate is limited to the region with
the density gradient. So if there are not enough spaces
for the shear damping of the drift-wave like mode, the
wave will reflected back to the rational surface. The
spatial structure of the drift-wave like mode exhibits
the mode pattern of the standing waves due to the
mode coupling between outgoing and reflected waves.

Up to this place I,, has been fixed as 0.16. Here,
the case of I, = 0.08 with ¢, = 0.08485 is shown in
Fig.7(c). The parameter, (Juw..| + jwei])/(270), is the
same as that of Fig.7(b). The measured widths of
the broadening of the mode pattern by the density
gradient are Hmited by ~ [, supporting the above
mentioned speculation.

5 Conclusions and Discussion

Effects of density gradientson them =l and n =1
kinetic internal kink mode are studied numerically by
the linearized version of GRM3F-CY code which is
the three-field gyro-reduced-MHD code in the cylin-
drical geometry. While the previous paper {7 treated
the electron diamagnetic effects in the limit of 7, = 0,
the ion diamagnetic effects are investigated in this ar-
ticle. The gyro-reduced-MHD equations with the ion
diamagnetic effects are obtained from the gyrokinet-
ic Vlasov-Maxwell system given by Hahm [13}. It is
found that the basic equations in the long wavelength
limit of k1 ps; < 1 fails to constitute the valid dis-
persion relation for the internal kink mode. The for-
mulation valid even for ki pi; > 1 is necessary. The
term 1 — T'g(k? p7;} is the origin of the finite gyro-
radius effects of ions. The Padé like approximation,
1-To ~ k2 pZ, /(1+Kk2 pf;), is used to make the code in
the framework of the finite difference method. Final
equations are very close to the subset of the four field
model of Aydemir [15]. Hence, the Padé like approx-
imation bridges the gap between the fluid equations



obtained from the gyrokinetic mode! and the standard
kinetic model.

In order to resolve the mode structure with the
characteristic lengths of d.. ps, and py, in the realistic
parameters of present day large tokamaks, GRM3F-
CY accumulates meshes around the ¢ = 1 rational
surface. We have selected d, = 5.315 x 10~% and
ps = 2.891 x 107*. The ion diamagnetic effect is
controlled by changing the parameter of T,/7,. The
results of numerical calculation coincide with the the-
ory for |wee| + |we:] < 27, where the growth rate
reduces as the density gradient increases. Here 7 is
the growth rate for the uniform density. Very weak
instability, however, is observed for |w..|+|w.i| > 270,
where theories predict the complete stabilization.

One explanation of the stabilization of the kinet-
ic internal kink mode is the energy extraction from
the unstable region by the drift-wave like mode. The
stabilization is, hence, effective only if there is a sufhi-
clent space around the ¢ = 1 rational surface so that
the drift-wave like mode can propagate in the radial
directions. The observed residual instability may be
excited since the region with the density gradient is
limited in the radial direction and the stabilization
by the outgoing drift-wave like mode becomes incom-
plete. Although ion Landawr damping was not includ-
ed in this study, it may be possible that the inclusion
of ion Landau damping may increase the stabilizing
effects of the drift-wave like mode propagating outside
of the ¢ = 1 surface.

As discussed in the previous paper [7], it will be in-
teresting to study the nounlinear behavior of the resid-
ual instability, since this instability has both charac-
teristics of the electrostatic drift wave and the internal
kink mode. Also, the nonlinear stabilization of the ki-
netic internal kink mode which is linearly unstable is
the subject of our investigation. Thus the develop-
ment of the nonlinear version of GRM3F-CY code is
our project in the near future.
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Figure captions

Fig.1 The normalized growth rate ~/v versus
{(Jwae| + |we:|}/(2v0) for T;/T. = 1.0. The ba-
sic equations are valid for all value of £ pu-
The theoretical curve written in the figure is

Y/ve = \/1 - [(Iwne| + Jwsil) /(27%0)]2-

Fig.2 The normalized growth rate and angular fre-
quency for I3/T. = 1.0 depending on w../7¥.
The basic equations are valid only for long wave-
length limit of &) p1;. The theory for the long
wavelength model is shown in the figure. The
curves for the growth rate for 7,/7T. = 0 and
T./T. = 1.0 are obtained by the theory being
valid for the whole range of &, p;.

Fig.3 The growth rates versus T, /T, for e, = 0 and
€n = 0.07071.

Fig.4 The angular frequencies versus 1;/T, for €, =
0 and e, = 0.07071. For the positive value of w,
the mode pattern rotates in the ion diamagnetic
direction, while for the negative value it rotates
in the electron diamagnetic direction.

Fig.5 The contour plot of  and perturbed .J, around
the ¢ = 1 magnetic surface at » = 0.5a¢ in the
r — 6 coordinates. The cases without the den-
sity gradient are shown. (a) 7;/7. = 0 and (h)
T./T. =1,

Fig.6 The contour plot of ¢ and perturbed J, around
the ¢ = 1 magnetic surface at r = 0.5a in the r—§
coordinates. The cases with the density gradient
of g, = 0.07071 are shown. (a) T;/T. = 0, (b)
T:/T. =1, and (¢} T;/T. = 2.

Fig.7 The contour plots of ¢ around the ¢ = 1 mag-
netic surface at r = 0.5z in the r — 8 coordinates
for (a)e, = 0.1187 and I,/a = 0.16, (b)e, =
0.1697 and {./a = 0.16, and (c¢)e, = 0.08485 and
I./a = 0.08.
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