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Abstract

A new spectral method in the spherical coordinate system with a coordinate singularity at the origin is proposed.
An analytical condition of all spectral modes is satisfied exactly at the origin. Dependent functions are expanded in
terms of Chebyshev polynomials of even order in radial direction. Unnecessarily increased resolution near the origin
as well as the restriction of severe time step are avoided automatically. Numerical accuracy is confirmed by applying
it to a free decay of magnetic field in spherical geometry This method is applicable to quadratic nonlinear problems.
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1 Introduction

In a spherical coordinate system (r,8,¢), special cares
should be taken not to degrade numerical accuracy and
efficiency which might originate from coordinate singu-
larities along the axis (§ = 0,7) and at the origin r — 0.
Although the coordinate singularity along the axis has
been studied extensively so far, there are a very few lit-
eratures on that at the origin. The purpose of the present
paper is to provide a new spectral method in spherical
coordinates including the origin.

The difficulty in spectral methods with a coordinate
singularity relates to an analytical property to be satis-
fied by infinitely differentiable solutions near the singu-
larity. This is called the pole condition. In order to eluci-
date relations between the coordinate singularity and the
pole condition, we review briefly a simple problem exam-
ined in Gottlieb & Orszag [1]. It is to find eigen-values
and eigen-solutions of Bessel’s equation,

2
v’ + ly’ - n—zy = Ay, (1)
z T

under the conditions that y(x) be finite for 0 < z < 1 and
y({1} = 1. Here, n is a non-negative integer and a prime
denotes differentiation. They showed that satisfactory
numerical accuracy is not attained when y is expanded
in terms of the Chebyshev polynomials unless a special
care is taken to the existence of a coordinate singularity
at r = 0. They also showed that the accuracy or the con-
vergence rate is improved dramatically by imposing an
additional boundary condition at the coordinate singu-
larity such as y'(0) = 0 when n > 1. This improvement is

closely related to a characteristic behavior of analytical
solutions near the coordinate singularity. In the above
example, eigen-solutions (Bessel functions} J,(vAz) be-
have like z* as £ — 0. This is the pole condition that
is to be satisfied by analytical solutions of {1}. It should
be siressed here that the boundary condition y'(0) = 0
is only a part of the pole condition (z™ as z — 0, n > 1).
and it is valid for n > 1. See [2] for the case of n = 1.

Every coordinate singularity has its intrinsic form of
the pole condition. In the spherical coordinate system,
the coordinate singularity, the pole condition and the
appropriate boundary condition along the axis are dis-
cussed in [3]. The coordinate singularity appearing in
the cylindrical coordinate system in a pipe flow problem
was investigated by Orszag and Patera [4]. They derived
asvmptotic forms, or the pole conditions. of velocity com-
ponents near the axis (r = 0). The axial flow component
u, for example, behaves like rlml as v —» 0, where m is
the wave number in the azimuthal direction. Velocity u
is symmetric or anti-symmetric in the radial direction ac-
cording as m is even or odd. They expanded dependent
variables in radial direction in terms of the even or odd
order Chebyshev polynomials for even or odd m. There-
fore, the pole condition is satisfied exactly for m = 0 and
1 but not for m > 2 in which only parity is satisfied. In
order to achieve high numerical accuracy and to avoid
the severe time step restriction near the singularity, the
pole condition must be satisfied exactly for all modes [3].
As for the spherical geometry, Bonazzola & Marck [5]
presented a spectral method in spherical coordinates to
solve gas dynamics equations. Although the pole condi-



tion at # = 0 and » is satisfied exactly in their method,
another pole condition at r = 0 is only satisfied partially
in the same sense as in the axial singularity in the above
pipe flow problem.

In this paper, we propose a spectral method in which
the pole conditions are satisfied exactly both along the
axis and at the origin. A key point is a direct use of
asymptotic behavior of the pole condition in spectral ex-
pansions. Since the pole condition is such imporiant in
the present method, we briefly review it in §2 for the
axial singularity both in the spherical and the cylindri-
cal coordinate systems, and in §3 for that at the origin.
Numerical algorithm is presented in §4. Validity and ac-
curacy are examined in §5 where a diffusion problem of
magnetic field in spherical geometry is solved and the re-
sults are compared with analytical solutions. Section 6
is devoted to summary.

2 Pole Condition on the Axis

In the spherical coordinate system, the pole condition of
an analytical function f{r #,¢) near the axis § = 0,r is
given by [3]

fm(r,8) = O(sin'™ @) (6 —0,x), (2)

where f.(r,8) is the Fourier coefficients of f(r,8,4), i.e.,

Jr,6,8)= Y fm(r,8)e™?. (3)

m=—0o0

In the cylindrical polar coordinates (s,¢), where s is
the radius (0 < s < o0} and ¢ is the azimuthal angle
{0 < ¢ < 27), a similar pole condition is derived near
the coordinate singularity s =0 as

Fm(s) = O(s™) (s > 0), (4)
where -
flep)= D fmls)e™. (5)

There are two spectral approaches to satisfy the pole
conditions exactly. The first one is to choose a set
of complete orthogonal functions each of which satis-
fies the pole condition. An example of such functions
for condition {2) in the spherical coordinates is the
well-known spherical harmonics ¥;.. (6, ¢) [3]. (Actually,
Yim (8, 6) oc P (cos8) = O(sin™ @) for 8 — 0,x, where
P™(cosf) are associated Legendre polynomials.) As for
the cylindrical coordinate system, a family of polyno-
mial sets which satisfies the pole condition (4) was de-
rived by Matsushima and Marcus {6]. The second ap-
proach is to factorize the asymptotic form of the pole
conditions and then to expand the residual part in terms
of orthogonal functions. (This is the approach that we
take in this paper at r = (.) For example, in the
case of condition (2), a variable f(r,0,¢) is expressed

as f(r,0,9) = sin'™ @ F(r,0, ¢) and then F(r,0,4) is ex-
panded into Fourier series both in # and ¢ directions on
the basis of cosnfe™?. The combined expansion func-
tion (8, ) = sin'™ @ cos nf €™¢ is called the modified
Robert functions [3, 7]. {The original Robert function
[8] sin/™ @ cos™ 6 ¢™¢ is not suited for the fast Fourier
transform.} There is, however, a serious problem in the
Robert or the modified Robert expansions that inverse
transiorms are ill-conditioned since they invoke divisions
by very small numbers (si11Hml &) ior large m. We shall
see that the same problem appears in radial expansion of
our spectral method at the origin for nonlinear problems.
A numerical technique to avoid it will be deseribed in §4.

In addition to the pole condition, another numeri-
cal difficulty arises generally in radial expansion of the
spherical coordinates. If a normalized radial coordinate r
(0 < < 1) is rescaled to ' so that dependent functions
may be expanded in terms of, for example, Chebyshev
polynomials T7,(7"), —1 < 7' < 1, then spatial resolution
is unnecessarily refined near r = 0 (+' = —1). In the
method of Bonazzola & Marck [5], dependent functions
are expanded in terms of Chebyshev polynomials of the
first kind (T3(8) = cos(l8)) for the modified Robert func-
tions G7'{#,¢) of even m, and in terms of those of the
second kind (7} (8) = sin{l4)) for odd m to resolve this
too-high-resolution problem near r = (. In our method
proposed in this paper, only even-order Chebyshev poly-
nomials of the first kind is employed. (A different method
to resolve the resolution problem was proposed by Forn-
berg [9], in which fuunctions are defined in -1 < 7 < 1
and 0 < 8 < 7w/2.)

3 Pole condition at the origin

The pole condition at the origin when functions are ex-
panded in terms of the modified Robert functions in the
(8, @) space is presented in [5]. We derive it here when
functions are expanded in terms of the spherical harmon-
ics.

Let an analytical function f(xz,y, z) be expanded into
a Taylor series around the origin as

[e.4]

f@,y,2) =) Anlz.y, 2), (6)

n=0

where A, (z,y, z) is a homogeneous polynomial of degree
n. Suppose that V,(z,y, z) is a spherical solid harmon-
ics, e, V2V, = 0and V,, o r™, where r? = 22 + y2 + 2.
Then, it is shown from the following property of the
spherical solid harmonics,

VA(riV,) = (i + 20+ 17 72V, (M)
that A,(x,y, 2} is expanded as [10]

[=/2]
An = Z ?‘2k Vn_gk. (8)
k=0



Since 1,{z.y. z) is a spherical solid harmonics of degree
n. it can be written as a linear combination of spherical
harmonics Y,,,,.(4, &).

T

> am Yom(6.0). (9)

m=—n

Volz.y.z)=7"

where

27 T
/ d@/ sin @ dg Ynm(e, (ﬁ) Y mr(e.(ﬁ) = 6717‘4’ 6mm'~
0 0

(10)
and Y,;,, denotes the complex conjugate of Yy.,,. A com-
bination of (6), (8) and (9) leads to

jose] n [
fle) =3 ") 2 f¥im@e) (1)
n=0 =0 m=—{
where, from (8),
fy=0 for n+!=odd (12)

Exchanging the order of summations with respect to !
and n in (11), we get

flz,y,2)

! o
> (Z o r“) Yim(8,)

m=--1 n=l

i

m=—l

’rl Z fIT—j,l TJ) Km(gaqb)
=0

4

Il
Mz IMs TV

= Z 7t Flm(r} Yim (8, ¢) (13)
=0 m=—1
Here, a function
Fim(r) = Zﬁ-’ig,z r! (14)
=0

has been introduced, which is even in r (because of (12)),
ie..

PP fm et

Einlr) = i+ [ filaa ; (15)

and finite at # = 0. This is the pole condition in the
present expansion.

Another proof of the even parity of Fi,(r) is given
by writing f{z,y,z) in the spherical coordirate system
as

f(z,y,z) = f(rsinfcos¢, rsinBsing, rcosf). (16)
Suppose the identical transformation,
(T381¢)_>(T!79!:¢r) ﬁ(_r TF—H,T(+¢), (17)

under which the function f(z,y.z) should be invariant.
ie.

f = 1r
= f(r'sin# cos @', v’ sin# sin@’. r'cosd)
= f(~rsin{x — ) cos (7 + @),
—rsin (7 — @) sin (7 + @),
—rcos{w — 8))
= f{rsinfcos @, rsin@sino. rcosh)
= f, (18)

while the right-hand side of (13) is transformed as

Yin(8,0) — (') Fin(r'} Yin (8, ¢')
= (1) ' Fip(-r)
xYim{m — 8,7 + @)
=1 Fim (=7} Yim(8.6)(19)

rt Epm(r)

Therefore, Fy,,(r) = F;,,(—r) must be satisfied.
To summarize, any analytical function f(r,8,¢) is ex-
panded around the origin as

f(r.8.9) = Z Z 7 i (r)Yim (6. 6),

(20)
=0 m=—{
where Fj,,(r) is an even function of r,
Fip(=7) = Finlr), (21)
and
| Fim (0} | < o0. (22)

Equations (20)—(22) are the pole condition at the origin
in the spherical coordinate system when it is expanded
in terms of the spherical harmonics in the (8, ¢) space.
The pole condition for the modified Robert expansion is
found in {3].

4 Spectral Method without Sin-
gularity Problem

QOur spectral method is constructed on the basis of the
pole condition described in the preceding section. Sup-
pose that a function f(r,8, ¢) is governed by a differential
equation defined in a sphere 0 < » <1, 0 <8 < 7, and
0< ¢ < 2n. We expand f(r,0,¢) as (20) and the coefli-
cient Fy,.(r) in terms of Chebyshev polynomials of even
order as,

Fim(r Z Fimn T2n(r), (23)
which is justified by the property of (21) and Ty, (—r) =
To,(r). Here, N is the truncation mode number. Note
that the problem of unnecessarily refined resolution near
the origin has been avoided automatically in this expan-
sion.



By choosing such radial node points as

(24)

JT
T; = COS (W) 3=012,..., N,

we can invoke the fast Fourier cosine transformation to
calculate the summation in {23} as

N

Z -Fimn T2n (Tj )

n=0

Frm (TJ ) =

N
— Z Fipnn cos(2n cos )
n=0
n
= Z Fipy cos{njm/N).
n=0

(25)

When the problem to be solved is quadratically non-
linear, a care should be taken in dealing with the nonlin-
ear terms. Suppose a nonlinear term of

h{r,8.9) gi{r.8, ¢

According to our algorithm, we expand f, g, and h as

= f(r.9,0) (26)

o] I
fr,0,6) = Z Z r! Fin(7) Yim (6. )
= 3 7 Fir.6,4), (27)
=9
g(r,8,¢) = Z Z " Gim(T) Yim (6, 0)
=0 m=-1
= > A Girnb.9) (28)
=0
o0 1
hr.0,¢) = Z Z rt Hyp (1) Y (8, ¢)
=0 m=—
= Z lﬁg(’!‘.g,qb), (29)
i=0
where
Fi(r.0,¢) = Zﬂm ) Yim(0,6). (30}
m=—1
i
Gilr,8,0) = Y Gim(r) Yim(6,0), 31)
m=—I
I
Hi(r,0,4) = Y Hin(r) Yim(8,4). (32)

m=-I

Then, what is required in our method is to calculate
H,..(r) from Fi,(r) and G,,{r). Notice that numeri-
cal errors would be amplified if a spherical expansion of

h(r.6,¢) were divided by v to obtain Hj,(r), since 7!

could be too small when [ is large and 7 is small. (A sim-
ilar problem appears near & = 0 and = in the modified
Robert expansion [3, 7].] This problem may be resolved
if Hym(r) is caleulated from Fi(r,8, ) and Gy(r, 8, ¢) [11]
as follows.

By substituting (27} and (28) in (26} and rearranging
the terms, we get

[o¢}
Wr,8.0) = r*Hi(r.0.¢), (33)
=0
where H,{r,8.6) are even functions of r, defined by
H,(r,0,0) = ZFTB@S Gi_,(r.0,9). (34)

1=0

It should be noticed that although the expansions in {29)
and (33) are same in appearance, EII(T.G. @) is different
from H;(r,8,¢) in general.

Now, we expand H,(r.8,¢) in terms of the spherical
harmonics as

H/{r.6,0) Yim(8.9), (35)

Lim

Yy w

=0 m=—I

where

27 w
Hz,gm(r)zj(; dqbfo sin@df H,(r,8,4) Y, (8, 6).

(36)
Since a product of two spherical solid harmonies of de-
gree j and ¢ — j is written by a linear combination of
spherical solid harmonics of degree ! with [ < 7, the sum-
mation for [ in (35) is taken up to 7. Therefore, it follows
from {33) and (35} that

h(r,0,¢)
oo 2 i

= 3Ty Hom(r)Yim(9,6)
=0 1=0 m=-~1

= > Z Zr‘ "Ho i (7)Yim(8.6).  (37)
=0 m=—{ =1

Comparing (29) and {37), we obtain
Hgm Z z+£ Im (38)

1=0

Thus, we can calculate Hj,(r) from F,(r) and
Gim(r) as follows.  First calculate F(r,8,¢) and
Gi(r,8,¢) from Fi.(r) and Gun(r) by {30) and (31).
Then, we get H.,(r,8, ) by the corvolution sum (34),
H,im(r) by (36), and finally H;,,,(r) by (38).

The convolution sum (34) would be inefficient when
it were performed in its straightforward form. Here we



provide a fast algorithm by the use of the fast Fourier
transform to r(\fsolxe this problem. Suppuse {f,} and
{9,}. G =01 , L}, and their convolution sum.

!
Ry = Zf; G-,
=0

Note that kg is simply given by fg go. Let {f+} and {G}
be Fourier transforms of {f,} and {g,} as

[=0.1.2,---.L (39)

2L
o= g ekt (40)
1=0
201
G Y g emHE, (41)
7=0
where f, =g, =0for y = L+1,L+2,---,2L - 1. Then,

hy (1 <1 < L) is directly given by the inverse Fourier

transform,
T,
By = — Z e e—m‘ki/L

2L —

(42)

of the product ?Lk = f‘;@k, since

2r—1
h —1% ik/L
5% 2
2L—1 2L-1 201
. Z Z Z f Gim elr(j-i-m Dk/L
E=0 =0 m=0
2L—1 2L-1

= Z Z fjgm 7+m,l

=0 m=0
- ij gi—z.
=0

where use has been made of |j + m — ] < 2L for non-
zero terms on the right-hand side of the equality of (43).
Therefore, our spectral method is amenable to the fast
Fourier transforms in quadratic nonlinear problems with
keeping the pole condition.

(43)

5 Free Decay of Magnetic Field

5.1 Numerical Scheme

In this section, our spectral method is applied to a free
decay of magnetic field in a sphere to check its validity
and accuracy. Consider an electrically conducting solid
sphere of radius a with a finite electrical resistivity. A
magnetic field is given at an initial time ¢ = § with an
arbitrary distribution. Since the type of boundary condi-
tion is not important in the present algorithm, the outer
region of the sphere (r > a) is supposed to be a perfect
insulator, or a vacuum for simplicity. It is physically evi-
dent that the magnetic field decays with time due to the

finite resistivity. An analvtical expression of decaving
magnetic field is provided in {12].

We take the spherical coordinate system with its ori-
gin 7 = 0 at the center of the sphere, where 7 is the radial
coordinate normalized by the sphere radius (0 < r < 1).
Magnetic field b is governed by the diffusion equation.

db g
ot a2
where i denotes electrical resistivity.

Since Vb = (, the magnetic field may be written as
[12]

V2b. (44)

b=V xV x(Br)+V x (Jr), (45)

where J and B are the toroidal and poloidal potential
functions respectively, and r = rf, r being a unit vector
in radial direction. Just as (20}, we expand the potentials

as
Z Z v Bl (r) Yim(0.9),  (46)
=1 m=-1I
Z Z T (r) Yim (0, 0).  (47)
I=1 m=—1
Substituting (45)—(47) in (44), we obtain
d = n .=
- Bl(r) = L DBl(r), (48)
95t ry=D, 7 (r) (49)
at lm a2 im ’
where ) 5 5 5
Dz = T_2 {1"5 (TE) + kT—a;} ({)0)
with
k=21+1. (51)

The magnetic field inside the sphere is connected contin-
uously with the outer vacuum field on the surface (r = 1)
[12] as

dB!
5+ kB, (1) =0, (52)
Jim(1) = 0. (53)

Equations (48)-{53) constitute the fundamental equa-
tions to be solved in our spectral method.

The time derivatives in (48) and (49) are discretized
by the Crank-Nicolson scheme as



where ¢ = 2a® /nAt. Functions gfm (r) and j}m {r) are ex-
panded in terms of Chebyshev polynomials of even order
as

Bl (r) = B}, Tulr), (56)

=0

N —~—
= > T Taalr), (57)

=0

Tin(r)

where N is the truncation mode number. Similar expan-
sions are performed for Bt"'m('r) and J, tﬂtAt{r) Equa-
tions {54) and (55) are then written in matrix form as

LB 2 =R,Bl, (0<i<N,1<I<L, -I<m<l),
(58)

Ly 2 =Ry B, (0<i<N,1<I<L, —I<m<I).
(59)

Here, summation is implicit for repeated subscripis. The
(N + 1, N +1) matrices L and R are defined by

L=X’+kX-cY, (60)

R=-(X*>+kX+cY), {61)

with X and Y are operator matrices for rd/dr and r?
in this Chebyshev expansion of even order. The deriva-
tion and explicit forms of X and Y are described in Ap-
pendix A.

Since T,{1) = 1 and T},(1) = n?, where a prime de-
notes differentiation, the boundary conditions {52) and
(53) are respectively written as

Z {(20)> + k} Bif2 = (62)
and
N
Yo Jire=0 (63)
=0

at time ¢ + Af. Replacing the last (Nth} rows of {58)
and {59) by (62) and (63) respectively, we obtain

This is called the tau method [13].
following matrices in advance,

By preparing the

P = (L5 'R, (69)

z’ = (L/)'R', (70)

we can renew the potential functions by direct matrix
operations,

BiAM=ZEB! = (0<i<N,1<I<L, {<m<l),
(71)
JEA =z T (0<i< N, 1<I<L —I<m<.
(72)

These are the final form for numerical integration of free
decay evolution of the magnetic field in a sphere. See
Appendix B for procedures to obtain the magnetic field
b from the potential functions B,g,m and Jin,.

5.2 Comparison of Numerical and Ana-
Iytical Results

In order to check the numerical accuracy of the present
spectral method, we compare the minimum damping
rates (or the maximum growth rates) for each mode [
with analytical solutions. (The damping rates does not
depend on m; see (48)-(51).) The minimum damping
rates are given by squared roots of the spherical Bessel
functions [12]. In our numerical calculations, they are
obtained by time integrations till the growth rates have
converged. Several Chebyshev modes are excited for each
! and m at the initial instant.

The minimum damping rates of the poloidal and
toroidal potential functions are shown in tables 1 and
2, respectively. Numerical parameters are set at ¢ =
202 /pAt = 2 x 10°, and N = 2¢. The agreement be-
tween the numerical and the analytical results are excel-
lent, which means that our spectral method is applicable
to formulation in the spherical coordinate system with a
coordinate singularity at the origin.

We have presented a new spectral method that is appli-
cable to formulations in the spherical coordinate system
including the origin. The pole condition at the origin
which is the analyticity condition of solutions is satisfied

LEBIHM=RLB, , (0Si<N,0<I<L, 1<m<D)@ Summary
(64)

and

LT =RLTE . (0<i<N,0<I<L, —-I<m<l)
(65)

where

2={ L
w (27 + k (i=N, 0<j<N),

(66)

{ L (0<i<N-1,0<j<N)

J _ 23 =t > 3 > J V),
=11 (=N, 0<j<N), (67)

t _ ) By  (0<i<N-L 0<j<N),
RZJ_{O (i=N, 0<j<N). (68)

exactly. The problem of unnecessarily enhanced spatial
resolution is avoided automatically by employing Cheby-
shev polynomials of even order for the radial expansion.
High-accuracy of this method has been confirmed by ap-
plying it to a free decay of magnetic field in a spherical
geometry. This method is applicable to quadratic non-
linear problems. We are developing a fiuid simulation
code in a spherical geometry using the present technique
and it will be reported in a forthcoming paper.



Appendix A: Derivation of Matri-
ces X and Y

Let even functions u(r). o{r) = ru'(r). and y(r) = r?u(r)
be expanded in terms of Chebyshev polynomials of even
order as

N
= Zuz TQI(T)a (73)
=0
N
o(r) = ) uTn(r). (74)
=0
and
N
y(r) = y.Ta(r). (75)
=0

Let X and ¥ be (N + 1,N + 1) operator matrices for
rd/dr and 2, ic.,

v, = X;u, {0 <i<N), (76)
and

y'c:Yz}u] (US%SN) (77)

Then, it is straightforward from the differentiation for-
mula of Chebyshev polynomials,

TTZ"n(T) = 2n(T2n + 2T2n—2 + 2T2n—4 + -+ 2T2 + Tg),

(78}
to obtain
Fo 2 4 6 & --- 2N
2 8 12 16 --- 4N
4 12 16 --- 4N
6 16 --- 4N
X= 8 (79)
© 4N
0 AN
L 2N -
and from the multiplication formaula,
2 lT[) + ng (80)
Q 2 5 bl
2T, = Lo qu + lTr 2 (n>2), (81)
I 4 n—2 v 9= H 4 ! e S E Y ;
to obtain
f o g -
2 2 1 0
1 21
1 12 .
Y=- . {(82)
4 .
I 1
0 2 1
. 1 -

Appendix B: Calculation of Mag-
netic Field from Potential Func-
tions

The Chebyshev series (56) and (57) of potential functions
are summed up by the fast Founer cosine transform (25).
It follows from (45)-(47) that

b(r,8,¢:1)
L

i
SN w10 Bl () Yie(6,6), (83)

=1 m=-1{

sin@ bg(r.9, ;1)

ZZZ[ {z+1) ;}E’fm(r)

=1 m=-1

><sm96a Vi (8,¢) + imr' J, (T)Yim(g q))](,84)

sing b,(r, 8, ¢:t)

L !
=Y ¥ [imrf-l {(l+1)+r%}§fm(?*) Vi (6, @)

=1 m=—1

-t Jm{r) 81119 8 Yim (8, ¢) ] (85)

Since

smg%y!m _ l\/(l—m+1)(l+m+1)YI+Lm

2L+ 121+ 3)

{(I+m){l—m)

U T e

Yi 1.m(86)

the right-hand sides of (84) and (835) are written by
a Hnear combination of {¥},,}. The termm {({ + 1) +
rd/or} Et‘m(r) in {84) and (89) is calculated by the op-
erator matrix X derived in Appendix A.
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Table 1: Minimum damping rates for poloidal modes Bim.

mode [ numerical analytical relative error
i -9.869604405E+00 -9.869604401E+00 4E-10
2 -2.019072862E+01 -2.019072856E+01 3E-09
3 -3.321746222E+01 -3.321746191E+01 9E-09
4 -4 _883119461E+01 -4.883119364E+01 2E~08
5 -6.695431443E+01 -6.695431193E+01 4E-08
6 -8.753122584E+01 -8.753122026E+01 6E-08
7 -1.105197196E+02 -1.105197083E+02 1E-07
8 -1.358864204E+02 -1.358863995E+02 2E-07
9 -1.636041333E+02 -1.636040968E+02 2E-07
10 -1.936501795E+02 -1.936501189E+02 3E-07
Table 2: Minimum damping rates for toroidal modes jm .
mode ! numerical analytical relative error
1 -2.019072863E+01 -2.019072856E+01 3E-08
2 -3.321746222E+01 -3.321746191E+01 9E-09
3 -4.883119462E+01 -4 .883119364E+01 2E-08
4 -6.695431443E+01 -6.685431193E+01 4E-08
5 -8.753122585E+01 -8.753122026E+01 6E-08
6 -1.105197196E+02 -1.105197083E+02 1E-07
7 -1.358864205E+02 -1.358863995E+02 2E-07
8 ~-1.636041333E+02 -1.636040968E+02 2E-07
9 -1.936501794E+02 -1.836501189E+02 3E-07
10 -2.260052955E+02 ~2.260051983E+02 4E-07
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