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Scaling of the Distribution Function and the Critical Exponents near the Point of a Marginal

Stability under the Vlasov-Poisson Equations

Alexer Ivanov!

Theorv and Computer Simulation Center, National Insttute for Fuston Science, Oroshi-cho, Tokt, Gifu, 509-5292, Japan

A model system, described by the consisient Vlassov-Poisson equations under periodical boundary con-
ditions, has been studied numerically near the point of 2 marginal stabihity. The power laws, typrcal for 2
system, undergoing a second-order phase transinon. hold in a vicinity of the criucal point: (1) Ax —6°,
8 = 1.907 & 0006 for # < 0. where A 15 the saturated amplitude of the marginally-stable mode; (i1)
xox @ asf o0, y=-. =1020+ 0008 ford < 0, andy = 7+ = 0995 4 0.020 for 6 > 0,
where y = DA/OF; at Fi — 0 s the susceptibility 1o external drive of the strain F1; (iii) at § = 0 the
systern responds to external drive as A o Fll’l‘s\ and 6 = 1.544 £ 0.002. § = ({#*) — (2 ))/(vE )} is
the dimensionless reduced velocity dispersion. Within the ervor of computation these critical exponents
satisfy to equabty v = (8 — 1), known in thermodynarmcs as the Widom equality, which is direct conse-
quence of scaling invariance of the Fourter components f., of the distribution function Fa 8] € 1,ie
Frm (AZE, A% 0, A998, A%40 Ag. A°F F1) = Afn(t,v,6, Ag, F1) at @ = 0. On the contrary to thermody-
namics these critical indices indicate to a very wide critical area. In tumn, it means that ¢ritical phenomena
may determmne macroscopic dynamics of a large fraction of sysiems.

KEY WORDS: Fluctuation phenomena—Phase transitions: general studies—Critical point phe-

nomena

1. INTRODUCTION

First obtained by Ichimaru, Pines, and Rostoker [1], there
is the important result, valid for a marginally-stable plasma: a
weak stability or a weak instability means that fluctuations
with wavenumbers, close to the k.., can not be stabilized
on the level of the particle noise, and may grow large up io
the macroscopic level. Even in a stable plasma fluctuations
are not a white noise, as it may be intuitively expected, but
are concentrated near ergenfunctions [2] because of the long-
distance naturce of the Coulomb force, and therefore collective
behaviour of particles.

The critical state i plasma is similar to the situation, when
a medium undergoes a second-order phase transition. In
molecular systems phase transitions are accompanied by a
wealth of complex phenomena, ¢.g. critical fluctuations, crit-
ical opalescence, etc.

In general, these phenomena are closely related to resonant
dynamics. For a trajectory the condition 1w, + lwp = 0, m
and [ are integers, implies uncertainty of temporal dynamics.
As the insightful study, pioneered by Prof. . Prigogine i3] and
the Brussels-Austin school, shows, the poles of the resolvent
of the Liouvillian operator in the spectral domain yield in the
collisional term 1n the Landau or Balescu-Lenard equation {4].

Despite the different physical nature of such systems like
gases and ferromagnetic materials. their critical dynamics are
quite universal: near the critical point they are described by

Te-mail alex@nifs.ac.Jp

the power laws for the order parameter, susceptibility, corre-
lation length, specific heat capacity, etc. The critical indices
are not arbitrary or independent, but interrelated by equalities
like the Widom equality [5]. This universality is a mathemat-
ical consequence of deep symmetries of the underlying math-
ematical structure. Mathematically the Widom equality and
other relations for critical indices follow from scaling of the
Gibbs potential, which is a homogeneous function near the
critical point.

II. MODEL AND THE METHOD

To study the critical dynamics it is more instructive to em-
ploy the simplest model, because of complexity of critical
phenomena. As a first step, it is useful to consider the case
of collisionless gravitating system under periodical boundary
conditions. The Jeans gravitational instability [6] is much
simpler physically than a plasma instability, so a collisionless
system, subjected to this instability at some parameters. is a
good model fo study these phenomena.

Under these assumptions the governing equations are the
Vlassov and the Poisson ones
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where f is the distribution function, {p} 1s the averaged den-
sity, and L is the length of the system. @ is the gravitational



potential, and G is the gravitational constant. Due to period-
icity f{z, v, ¢} can be expanded into the Fourier series as

Z fu(v, 1) exp(ikmz), @)

m=—00

flz,v,t) =

where &, = 2am/L, m is an integer due to periodic bound-
ary conditions. For f,, (v, ) equations (1a)-(1c) give
fn + ikt fm +
a‘fmu
+idaG / e
> o/

— =0, 3
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or explicitly for m = 1,2, by truncating at [m| = 2
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The linear stability of this model was studied by Sweet [7]
and Lynden-Bell [8]. For the Maxwellian background

2
Po v
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where py is the background density, and o2 is the velocity
dispersion, the dispersion relation is

fo(w) =

o2 (m) w
1- L 2w (=)= 6
a? (kma) 0, ©
where W (Z) is the plasma dispersion function, and
dnG
o3m) = =5, ™
™

is the critical velocity dispersion for the mode m.
If g% jo(m) « 1, then Z < 1, and equation (6) gives for

Um,
/2 a?

Relations (8) shows, that if * > ¢%(1), then all modes are
damping, and

Jim plz,2) = po. ®

After perturbations have damped out, the system becomes in-
variant against continuous transformation ' — z + «, where

o is any number. The situation changes, if > < 63%(1). Onset
of the instability reduces the initial continuous symmetry to
the discrete transformation ' — 2 + L. Therefore the value

o = 4nGpo
cr k%

(10

can be assumed as the critical point of the second-order grav-
itational phase transition after the definition by Landau [9].

A Numerical Algorithm

To integrate equations (la)-(1c) the method, developed by
Cheng and Knorr [10] is used. Evolution is traced by subse-
quent shifts of the distribution function f in (x — v} plane as
follows

[z, v} = [z — vAL/2,v) (11a)
[ z,0) = f*(z,v — a(z)At) (11b)
iz, v) = F**(z — vAt/2,v). (11c)

Shifting operations are performed using a Fourier interpola-
tion for z-direction and a cubic spline interpolation for v-
direction. Computational domain is taken as a rectangular
mesh with NV mesh point in z-direction, 0 < = < L, so
the mesh size is Az = L/N. In v-direction the domain is
divided into the areas of high and low resolution. As it can
be seen from further results, the most dynamically important
processes occur in the relatively small area of the phase space
near v = 0. According to equations (3) and (4a)-(4b) the non-
linear evolution is determined by the terms

8 fr
ffm’ du - av E

and therefore a sufficient resclution is necessary to repro-
ducc the distribution function. The total number mesh point,
M=2000, is taken in v-direction, |v| < Vmg,, Whete v =
47 is the cutoff velocity. Egual number of mesh points,
M /2 = 1000, are adopted for the fine resolution area, |v] <
Ufine, and for the low resolution area vy, < 0| < Umgy.
So, the mesh sizes in v-direction are

2Ufine

Avppne = m, {12a)
- 2(Vrmaz — 'Ufine)
Avgoy = W (12b)

Timestep is taken from the condition, that two timesteps are
required for fastest particles to pass the cell, i.e. At —
Az /{2000 )-

In z-direction the number of cells might be relatively small,
because of only the large scale modes are dynamically impor-
tant.

In practice 4G = 1, pp = 1 and L = 2x are as-
sumed, so o2, = 1, and the characteristic timescale is ¢4y, =

WTp) 1 = 2.
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FIG. 1: A as a function of 8. Circles represent experimental
data, the dashed line 1s the power law best fitting approxima-
tion.

Depending on the aim, the least number of mesh points in
the area of low resolution is 1000, so the lowest value of the
recurrence Ume fre. = 27/ kA, 15 about 220t 4., form =
1 and about 110¢ 4y, for m = 2.

III. ORDER PARAMETER

For calculation of the critical indices the order parameter
must be first defined as a quantity, which is nonzero below the
critical point, and is equal to zero above it [9]. Expansion of
the density p = p(t, 7; 52 ) into the Fourier series gives

=0
plt,zio8) = Y, pm(t,o8) explikmz),  (13)

m=—0o0
where o is the velocity dispersion at the starting moment ¢ =

0. Instead of o it is more convenient to use the dimensionless
velocity dispersion 8, defined as

g %0~ % _265’" (14)
UCT
Let
An(t,8) = pm (t,6)]. (15)
According to dispersion relation (8) and limit (9)
A (£,6) — {él >0, ;; zig’ (16)

In absence of collisions there are no equilibrium values of
A, when

T =0 (17

is valid. However, the use of the saturated amplitudes of A e
computed m a run. 1.e.

An(8) = max{Am(£.0),0 <t <tonal, (18)

gives lime-independent quantities and allows to study only the
#-dependence. The similar quantity was used by Lece et al.
[11] and Watanabe, Sugama, and Sato [ 12] to describe the de-
pendence of the saturated amplitude of the electric field on the
imaginary part of the eigenfrequency for the ion temperature
gradient drift instability 1n collisionless plasma.

So, the order parameter is finaily defined as

A(9) = A, (6). (19)

1Iv. CRITICAL EXPONENTS
A  Order Parameter and the Index 3

To calculate the saturated amplitude A4(8), the initial pertur-
baticn in the form g(z) = Agcos(k,z), where m = 1, and
the amplitude of the perturbation A = 107° is imposed on
the system, and then equations (1a)-(1¢) have been integrated
until the saturated amplitude has reached. As Fig. 1 shows, A
is a well defined function of 8. A best-fitting approximation
confirms with a good accuracy that A depends on # as a power
law, 1.e.

Ax—6° 8<u, 2m

and
B = 1.907 £ 0.006.

Since stabilization is due to the nonlinear terms of equation
(1a) (or equation (3), and (4a-4b}}, the resolution of the mesh
must be detailed enough to reproduce correctly the structure of
the f,, componenis of the distribution function in the velocity
space. To iltustrate this. calculations have been performed on
equidistant mesh with the mesh size in v-direction

2'Uma.x
e . 21
Av= 2h

and M == {50,100, 200, 500,2000}. The calculated indices
B for these M are listed in Table 1.

Fig_ 2, where the real and imaginary parts of f,, compo-
nents, m = 1,2, 3, for the cases M = 100 and A = 2000 arc

TABLE I: 3 vs. resolution in the velocity domarn.

N M 3

16 50 1.084 £ 0.046
6 100 1.564 + 0.022
16 200 1.856 & 0.008
16 500 1.873 & 0.004
16 2000 1.872 £ 0.004
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FIG. 2: Distribution in the velocity space for real and imaginary parts of the Fourier components of f(x,v,t) foré = —0.1 and
for the time moment when A; (¢,0) = A. Solid line corresponds to the Re[f (v)], long-dashed line corresponds to Re[fa(v)],
dashed line, close to z = 0, corresponds to Im/|f; (v)]. For the left plot M = 100, (a), {c), for the right M = 2000, (b), (d).

plotted, is more illustrative. Insufficient resolution and recur-
rence wipes out the fire structure in the velocity domain and
influences significantly on calculation of the critical exponent
A.
Value 8 = 1.907 > 1 is untypical for this index and indi-
cates to significant differences between the critical dynamics
of thermodynamic systems and gravitating ones. For compar-
ison, for such gases as Ar, Xe, CO», Helium-4 experimental
value J =~ 0.35 < 1. It means, that

lim - = oo, (22)

6——0 O¢

where 7 is the order parameter for these transitions, while for
the gravitating system, studied here, the following is valid

(23)

However, 3 > 1 seems not to be unusual for collisionless
systems under kinetic description. As equation (43) in Lee et
al. [11] and Watanabe, Sugama, and Sato [12] results show,
for the ion temperature gradient drift instability there also ex-
ists the scaling as 3 = 1 between the peak (saturated) value

of the first (the least &) harmonic of the electric field and the
imaginary part of the eigenfrequency. What is more interest-
ing, these anthors considered as negligible the nonlinearity

&
[fm’ du - 8‘0 2

s0 in some sense their assumptions lead to a similar situation,
as in the case of insufficient resolution at A = 50.

This result indicates, that symmetry change in a gravitat-
ing system can be a very mild process, unlike thermodynam-
ics and its flashing emergence of a new phase, but it also
means that gravitational phase transitions, unlike their ther-
modynamic counterparts, are not necessarily fine tuned phe-
nomena and the critical area can be very wide.

Another interesting result is a relatively small amplitude of
the peak value of the order parameter. Even if the system is
assumed relatively far from stability, it 1s about 6 percent at
@ = —0.1. It also means that stochastic and deterministic
processes may compete i a wide area Af at 6 —= 0.
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FIG. 3. y as a function of . Circles represent experimental
data, the dashed lines are the power law best fit approxima-
tions.

B Susceptibility at 6 < 0, and the Response af ¢ — 0: Critical
Indexes y and &

The susceptibility to the external drive in the form

F(z) = Fn cos{kme + @) (24)

can be determined as the ratio of response A,,(#) to the strain
F,, of the dnive, i.e.
84 ()
Xm®) Fm |F, -0

The main difficulty of calcalations of x{8} = x1 () at 8 ~
0 is the necessity to take F; very small to provide the linear
dependence A on & at # ~ 1072 Therefore F} is assumed
very small. /7 < 107% and a long time is required until the
saturated amplitude A has reached.

The results are plotied in Fig. 3forf < Oand 8 > 0. As
it can be seen from the plot, the shape of the susceptibility
15 2 typical A-curve, usual for the response functions like the
specific heat or compressibility at the critical point {Stanley
[13] and references theremn).

The best fitting approxmmation gives for x ()

(25)

y o 877= (26)

and
vy_ =1.020+0.008. 8 <0, (27a)
vy = 0995+0.020, 8>0. (27h)

The response A in the critical point & = 0 is described
by the exponent 4. The results are plotted in Fig. 4, and the
function 4 = A{F) at § = 0 can be approximated as

Ax F°, (28)
and

4 = 1.544 £ 0.002.
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FIG. 4: A as a function of F). Circles represent experimental
data, the dashed lines are the power law best fit approxima-
tioms.

V. SCALING OF THE DISTRIBUTION FUNCTION AND
THE WIDOM EQUALITY

In thermodynamics there is the interrelation between the
exponents 3, 7, and 8, known as the Widom equality [5]

v=p50-1), (29)

which follows from the scaling invariance of the Gibbs poten-
tial near the critical temperature T as

G(A%e, A% M) = AG(e, M), (30)

where M is magnetization, and ¢ = (T — Tor) /Ter = Ois
the dimensionless temperature. When substituted to (29) the
exponents 3. +, and §, calculated for collisionless gravitation,
satisfy to it with a good accuracy, suggesting existence of the
symmetries, like the symmetry of the Gibbs potential with re-
spect to scaling transformations.

However for the case, studied here, the functions are time
dependent. The solution s to take snapshots of the dynam-
1cs al some characteristic moment, e.g. at the saturation
time t = t,4¢, when A; (. 8) reaches its saturated value A,
Le. jl(tsahﬂ) = A. The results are shown in Fig. 5 for
three types of conditions: 1) § = —0.01, 4y = 1075 2)
§ = —004, 4y = 107%:3)8 = —0.04, Ag = 10, The
upper and the second row corresponds to the ume moments
when A; (¢, 8) hits 1ts first maximum, A, the third row - to the
moment when }L (t,8) hits 1ts second maximum. These mo-
ments are different for these three types of conditions: for the
first case the moments of the first and the second maxima are
183.14¢ 4y, and 386.96 ¢ ,,; for the second case - 69.65 t4yn
and 119.74 ¢4, for the third - 49.24 £4,,, and 99.27 L4,

But with exception of minor differences because of dis-
creteness of calculations the structure of the distribution func-
tion is the same for all of these conditions.

The same is valid for caiculations of the critical indices &
and v for § = 0 as well as for § = Oat i # 0: when
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A = A(t, 6, Fy) hits its first and second maxima, the struc-
ture of the f,, is the same for different # and strains F}, and,
correspondingly, times.

It allows to conclude, that near the crifical point 8 = 0
the Fourier component f,, of the distribution functions is a
homogeneous function of its arguments, i.e.

FmlX%t, A%, X0, A0 Ay, \FF}) =

ZAfm(t,U,Q,AO,Fl), (31)
and so is the entire distribution function, 1.e.
FIA™E, A% 0, A% 8, A0 Ag, AP Fy) =
:Af(t?v767A01Fi)' (32)

The last equality makes proof of equality (29) straightforward,
which is done in Appendix for the case, considered in this
paper.

A Critical Exponents for the Saturation Times ¢,,;

As it follows from homogeneity assumptions (31)-(32) and
its corollary (A2), the saturation times, .4, are not arbitrary
values, but are some functions of &, Ag, Fy, 1.e.

tear = tsat (9~ AO: -Z?l ) {33)

The saturation time ¢4, is shown in Fig. 6a as a function of
the strain 7 of the external drive at @ = 0, Ay = 0, and in
Fig. 6b as a function of § at Ag = 1075, Fy = 0. In the both
cases 4, can be approximated by power laws, i.e.

tsa.t x Fl_Ar

A = 0.3423 + 0.0004, (34)

and

tsat  (—~8)"F, B =0.647+ 0.015. (35)

Saturation times diverges as & — 0, F; — 0.
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While instructive, relations (34) and (35) are not universal:
in general, 44, g1ven by equation (33), is a hypersurface, and
relanions (34) and (35) can be wreated as 1ts sections. At F; =
0, # < 0 ths section is a two-dimensional surface, plotted in
Fig. 7.

V1. THE WIDTH OF THE CRITICAL AREA

As y diverges for m = 1 as 8 — 0, x,, remains finite at
§ = 0 for mn # 1. It indicates that at # =~ 0 the incoherent
particle noise may grow into a coherent structure of & = &y of
the level up to the macroscopic level amplitude. This stochas-
tic excitation of a coherent structure was observed in hydro-
dynamic simulations of the model under periodical boundary
conditions if the density and the velocity were assumed dis-
urbing randomly on each timestep by the Langevin sources,
incorporating thermodynamic noises [14]. Near the critical
state fluctuations of small amplitude grow to a highly coherent
spatial structure of the Jeans wavelength, but of a random am-
plitude and phase. For this model the critical index 3 = 1/2
has been calculated, the others are, of course, of the classical
Landau-Weiss set: v = 1,and d = 3.

Such excitation occurs in the collisionless self-gravitating
model followed by the N-body simulanon |13]. Besides of
the values of the critical indices the process 1s similar to hy-
drodynamics, but, while distinct, this selective growth of fluc-
tuations at £ = k., is not so sharp as in the hydrodynamic
simulations.

For thermodynamics the typical value is 6 &= 4. One can es-
timate the relative level of critical fluctuations using the power
law (28). If the total mass of the system is Mo, and the

number of particles is V,, then the instant density is

1 Mo .. 1 (M)y+46M cnr
PTVN, *'P*viw—iiﬁ“f"”"”)“
N 26N {p)
N<p)+(p> (]\’r) (p>+ T\rpa

and thermodynamic fluctuations of density ép are

) 1
8p ~ (p) —r==- (36)
P

Since
. a
SF, = idnG 2L, 37)
k1
where §p, and F) are, respectively, the Fourier components
of fluctuations of the density and acceleration for m — 1.
Therefore
§A~ N7V a g=0 (38)
If N, = N4 = 6- 1073, then thermodynamic fluctuations are
~ 10 larger than the gravitational ones.
Equation (38) together with equation (20) gives the estima-
tion of the width of the critical area A8, where chaotic dy-
namics are of the same importance as deterministic ones, i.e.

Ars A, 39

SO
Al ~ N, (40)

For N = N4 and for the case of thermodynamics with § = 4
and 5 ~ 0.3

A8y, ~ 1077,
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FIG. 7: Saturation time ¢, as a function of 0 and Ag, tsar = £50¢(0, Ag), F1 = 0.

In the case of gravitation with 4 ~ 1.54, 8 ~ 1.91
Abyr ~ 1074,

which is in 10° times greater then for thermodynamics.
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APPENDIX A: PROOF OF THE WIDOM EQUALITY FOR
THE GRAVITATIONAL DYNAMICS

Let for simplicity change the sign of the power index at v
variable, i.e. the homogeneity condition (31) for f,, is rewrit-
ten as

Fn(0%, A"y, X%Q, A% Ay AT ) =

:Afm(t,v,e,AO,F]_), (Al)

Integration of (A1) on v variable gives for A,, components

A% A (A%, %99, M40 Ay, AYFFY) =
= AAn (4,8, Ag, F1). (A2)

Because of A,, is considered at the moment ¢ = tsas it allows
to exclude its time dependence and to write for A = A,

A% A(A%G, A0 Ay, AP F) = AA(6, Ao, F1).  (A3)

If the initial perturbation Ag = |p1 (¢, 8)] at¢ = 01is taken such
as {p1{0,6)| < po. then, as calculations show A, is almost
independent on Ay, and therefore one can write

A% AN, A )y = AA(0, Fy ). (A4)

Equation (A4) is the same as equation (11.32) in Stanley [13]
and the following treatment is siraightforward. For the case
@ — O and Fy = 0 equation (A4) becomes

A(6,0) = A% A{X% 8, 0). (AS)

Without loss of the generality one can choose A = (—1/8)1/¢
S0

A(8,0) = —gli—awfaa o(_1 0). (A6)
But from equation (20) A(#, 0) ~ (—6)?, and therefore

3:1_—%_ (A7)

ag



Iftosetd = 0. F; — 0, then

A0.F) = A" 1A, AT F), (A8)

and by the same way, with A = F{"I/“F equation (AR) be-
comes
A(0, Fy) = FU7oer 400, 1), (A9)
But according to equation (28) A ~ Fll/ % whence
§= 2 (A10)
1-—a,

On differentiating {A4) with respect to £ one can obtain

Xoetery (X% 9 X\OF ) = Ax(8, £1). (A1D)

For the particular choice A = (—8)72/%¢ and F; = 0

x(8,0) = g~levtar—1/asy (1 0), (A12)
and according to the equation (26} x(8,0) =87 atf - -0
whence

Aaz‘-+apfl

Y- (A13)

Gg

If to consider A = (#)~1/%¢ one can wrile for v, in the same
way

a, +ar —1

=—— Al4d
Y+ ag 3 ( )
and therefore
_ a, +ap —1
T-=7+=7= 8 =

v — 1

=2 + 2 _ 5158 (A15)
ag ag

and finaily

N=B(6-1). (A16)
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