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It is clarified that the so—called “helicity conservation law™ is never “the conservation equation
of the helicity K itself”, but is merely “the time change rate equation of K™, which is passively
and resultantly determined by the mutually independent volume and surface integral terms. It is
shown that since the total helicity K can never be conserved in the real experimental systems, the
conjecture of the total helicity invariance is not physically available to real magnetized plasmas in
an exact sense. The well-known relaxation theory by Dr. J. B. Taylor is clarified to be neither the
variational prindiple nor the energy principle, but be merely a mathematical calculation, using the
variational calculus in order to find the minimum magnetic energy solution from the set of solutions
having the same value of K. With the use of aunto-correlations for physical quantities, it is presented
that a novel basic formulation of an extended generalized self-organization theory, which is not
based on neither the variational principle nor the energy principle. It is clarified that conservation
equations concerning with all physical quantities for the dynamic system of interest are naturally
embedded in the formulation of the geperalized self-organization theory. The self-organized states
of every physical quantities of interest may be realized during their own phases and the dynamical
system may evolve repeatedly those out of pbase organizations, depending on boundary conditions
and input powers. It is shown that the conservation laws can be used to extend conventional methods
of plasma current drives by energy injections with use of various types of energies, such as magnetic
energies, electromagnetic wave energjes, internal energies of plasmoids by plasma guns, which induce
the thermal plasma flow velocity, various particle beam energies, and so on.

Keywords : magnetic helicity, equation of change rate, conservation law, variational calculus, self-

organization, auto-correlations, minimum change rate auto-correlation

L INTRODUCTION

Since Dr. J. B. Taylor published his famous theory [1,
2] to explain the appearance of the reversed field pinch
(RFP) configuration [3], the magnetic helicity K has
been believed to have important role as a global invariant
in the self-organization process or the relaxation one of
magnetized plasmas [4-12]. On the other hand, one of the
authors {Y.K.) has been proposed the partially relaxed
state model (PRSM) of the RFP in order {o explain ex-
perimental data [13, 14], and published some theoretical
works to deduce the PRSM by taking account of partial
losses of the magnetic flux and the helicity K [15-19}.
Without using the concept of the magnetic hehaty, an
energy integral was derived to deduce the PRSM and the
mode transition point of the self-organized state in order
to explain experimental data on the RFP [17-19].

In this paper, keeping the authors’ sincere respect for
the great scientist Dr. J. B. Taylor, we study again the
meaning of the magnetic helicity itself from the thought
analytical stand point of view [20-23], because of many
evidences showing no invariance of the total helicity in
sipulations [24, 25] and various experiments {26-36]. In

Section II, the so-called “helicity conservation law” is an-
alyzed to show how it works. In Section III, a novel basic
formulation of the generalized self-organization theory is
developed that is applicable to various nonlinear dynamic
systems and deduces the Taylor state [37-44]. A typical
application of the generalized self-organization theory to
fusion plasmas is also presented in Section III to lead to
some proposal for plasma current drive by using various
types of energy injections.

II. THEORETICAL THOUGHT ANALYSIS

We show here that although the energy conservation
law is always physically correct, the so-called “helicity
conservation law”, which has been believed useful by
many scientists in the fusion plasma physics {1, 2, 5-8,
10, 11], is never “the conservation equation of the helic-
ity K itself” but merely “the time change rate equation of
K?”, as will be shown below from the thought analytical
stapd point of view [20-23].

Both of the energy conservation law and the so-called
helicity conservation one are derived from the following
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axiom set of physical laws of Maxwell’s equations written
in the MKSA unit used in the usual text books:

B

S = - E 1
a1 VxE, {1)
dD

—_— = = H 2
50 i+ VxH, (2)
v-D =p, (3)
vV-B=20. (4)

We can get Poynting’s energy conservation law by the
following processes.

1) After applying the scalar product of H on both sides
of Eq.(1), we integrate both sides of the resultant equa-
tion over the volume V.

2) After applying the scalor product of E on both sides
of Eq.{2), we integrate both sides of the resultant equa-
tion over the volume V.

3) Adding both sides of the two equations by 1) and
2), using vector formulae and Gauss theorem, we obtain
the following familiar Poynting’s energy conservation law
Eq.(6) concerning with the field energy W which is writ-
ten by

Wf:fv(¥'+ﬂ2l)dv, (5)
ow, _ [ .. _ 1 _
L = j;; EdV mfs(ExB) ds. (6)

It should be emphasized here that using the two dynamic
equations of (1) and (2), we can determine the full time
evolution of E and B, and that Eqs.{3) and (4) are known
to play the role of initial conditions of E and B, as is
shown in usual textbooks. Furthermore, we should no-
tice that there exist complete mathematical connections
between Poynting’s energy conservation law Eq.(6) and
the two dynamic equations of (1) and (2) which give the
full time evolution of E and B. Because of these physical
and mathematical background, the total energy dealt in
Eq.{6) are conserved in the dynamic system by changing
the types of energy such as the field energy, the kinetic
energy of charged particles, the thermal energy of parti-
cles, the radiation energy, and so on.

The two physical laws of Eqs.(1) and (4) are rewritten
equivalently by the following two equations with the use
of the scalar and the vector potentials; '

OA
5 =~ V4 -E, (7)
B =VxA,. (8)

We now discuss and check physically the derivation
process of the socalled “helicily conservation law™ along
its process step by step. The magnetic helicity K is ba-
sically defined by the following equation [1, 2]

!

— A-BdV.
Ho Jv

K

= (9)
Here, we emphasize that even if we include “the external
helicity”, taking account of the gauge invariance (2], the
following argument is still essentially correct and applica-
ble. Afier the partial derivative of the definition Eq.(9)
with respect to 1, and using only two physical laws of
Eqs. (1) and (4) with their equivalent Eqs. (7) and (8},
the vector formulae V-{a xb) = (V xa)-b— a-(V xb)
and V- (aa) = (V-a)a+a-(Va), and Gauss theorem, we
obtain the following equation for “the time change rate
of K7, '
oK

at

I}

1 gA aB
ﬂ_o ,[V(EB + A-E—)dV

—i/{B-Vtﬁ-i- E-B
Ho Jv

+(V xE)-A)at) dV
2

Ho Jv

+if(ExA—¢B)-dS,
Ho Js

B . EdV
(10)

whete V - (¢B) = B - (V¢) is used. Using the same
derivation process for the energy conservation law Eq.(6),
we can also obtain “the time change rate of K, Eq.(10)"
from only one dynamic Eq.(1) and its equivalent Eq.(7),
as follows: a) Applying the scalor product of A on both
sides of Eq.(1), we integrate both sides of the resultant
equation over the volume V. b} After applying the scalor
product of B on both sides of Eq.(7), we integrate both
stdes of the resultant equation over the volume V. ¢)
Adding both sides of the two resultant equations by a)
and b), using vector formulae and Gauss theorem, we
come to “the time change rate of K, Eq.(10)".

It should be emphasized here that “the time change
rate of K, Eq.(10)” is derived from merely one physical
law of Eq.(1), which can never lead to any deterministic
time evolutions of A and B without another physical law
of Eq.(2). The quantity of K composed only by A and B
does have no physical grounds to restrict the time evo-
lution of the magnetized plasma system. Even though
the value of K always exists along the time variable ¢ by
the definition Eq.(19), the value of K /3t is passively
and resultantly determined by the mutually independent
volume and surface integral terms in Eq.(10). This fact
indicates definitely that Eq.(10} is not “the conservation
equation of the helicity K itself”, but is merely an equa-
tion for “the time change rate of K”. Because of these
physical and mathematical background, the total helic-
ity K can never be conserved in the dynamic system, due
to the volume integral term of B - E in Eq.(10), which

_2_



arbitrarily changes 1ts value between positive and neg-
ative ones We cannot find any associale quantities for
the changed part of the total helicity A, This is because
that the helicity I 1s not the physical quantity, but only
represents the topological property of the magnetic field
lines “at each instant”

We next derive the so-called familiar “helicity conser-
vation law” and the familiar energy conservation one used
in the fusion theory. Assuming {(E-D}/2 < (H-B)/2
1n the plasma confinement experiments, we obtan the
foliowing equation for the field energy W; ,

E-D H-B H-B

w; = —-——+—dvz/——dv
=[5 3 ) y 2
=W, (11)

where W, is the magnetic field energy component of W.
From Egs.(11) and (6}, we obtain

W, _ 0Wa
a8

—/j-EdV-—
v Ho Js

Using the following simplified Ohm’s law of Eq.(13),
Egs.(12) and (10) are rewritten to the following famil-
iar energy conservation law of Eq.(14) and the so-called
final familiar “helicity conservation law”, respectively :

(E x B)-dS . (12)

Ohm's law: E + vxB = nj. (13)
oWy  0Wn
ot~ ot
=~ [{nii+ GxB)viav
v
_ L fExn)-ds. (14)
Ho Js
oK 2
Ok _ _ 2 [ 4 Bav
ot o Vm
+ij£(ExA~¢B)-ds. (15)
Ho Js

The misunderstanding on the so-called “helicity con-
servation law” has been established from the following
argument, using “the time change rate equation of K
written by Eq.(15)” [1,2].

(A) At first, we consider “the ideal case” where the
whole region of plasmas inside the boundary is filled with
the ideally conducting plasma and the boundary surface
is the ideally conducting wall, i.e., =0 and E =0 and
B -dS = 0 at the ideally conducting wall. We then get
from Eq.(15) in this “ideal case” that “the time change
rate of K becomes as 0K /ot = 0.

(B) From this result, we may conclude followings.
Since the value of K is constant along the time variable
t, the total helicity K is conserved and therefore it must
be “the time invariant in the dynamical system in the
case of ideal plasmas”.

However. the part of (A) declares only that the value
of K defined by Eq.(8) does not change along the time
variable £ 1n “the special or the trivial case” of y = 0 plas-
mas filling fully within the ideally conducting wall. From
the following simple thought experiment, we can easily
find that the total helicity A is never “ the time invariant
inside the ideally conducting wall”. We consider a case,
where there exists some vacuum field region, i.e., = oo,
near the ideally conducting wall, and the other region is
still filled with the ideally conducting plasma. We then
have to come back to Eq.(10), and we can put E = ( m
the plasma but have to leave E in the vacuum field region.
in this simple case, the value of 3K /&t is passively and
resultantly determined by the volume integral of B -E 1n
Eq.(10) along the time variable {, as was discussed after
Eq.(10). The decrement of K in this simple case is by no
means “the resistivity loss of K, because of no current
in the vacuum field region. On the other hand, we defi-
nitely know that the changed part of Wy, transfers to the
other type of energy, such as the kinetic energy, inside the
ideally conducting wall by Eq.(12). However, the total
helicity K can never be conserved in the dynamical sys-
tem in this simple case. This is because that Eq.(10) is
merely an equation for “the time change rate of K, and
the helicity K is not the physical quantity but merely
represents the topological property of the magnetic field
fines at each instant.

The simple thought experiment shown above may lead
us to a conclusion that the total value of & is never “the
time invariant in the dynamical system”, like as it has
been believed by many scientists from misunderstanding
on the meaning of “the time change rate equation of K,
Eqs.{10) and (15)”.

On the other hand, the energy conservation law of
Eq.(14) declares that even if = 0 and E = 0 at the ide-
ally conducting wall, the left-hand side Wy, /3t always
balances with the volume integral term of (jxB)-v, which
is called the dynamo term, in the right-hand side. Fur-
thermore, when 1 # 0, then dW,, /0t still balances with
the two of the Joule’s heating and the dynamo terms.
The energy conservation law has also no power to deter-
mine the time evolution of the dynamic system only by
using itself.

The logical and mathematical process to derive the so-
called helicity conservation law described above is logi-
cally the same as the following simple example: We con-
sider here two functions of f(z,t) and g{z,t), which are
determined by their dynamic equations and further have
the following relation

df(z,t)/0z = g(z,1) . (16)

Here, the relation between f(z,t) and g(z,t) is corre-
sponding to that between A and B. Using the two func-
tions of f(z,t) and g(z,t), we can define a ghost helicity
K g, that corresponds to the helicity K, and get an equa-
tion of “the time change rate of Kg” with the use of the
time derivative of Kg, as follows,
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kg = [ flz, )g(z, 8} dV, (17)
dhg af(r. 1)
o [V[ FTRANE.

+f(x,t]agg;’t) v . (18)

Next, we use following two “Someone’s laws”, which are
correspoading to the simplified QOhm’s law of Eq.(13),

Someone’s law — 1 : @ =mhy(z,t}, {19)
Someone’s law — 2 : Q{g’{ﬁl =1pha(z,t) . {20)

Substituting Eqs.{19) and (20) into Eq.{18), we obtain
the final equation of “the tune change rate of Kg¢”, as
follows,

dKg
at

L[Thhl(zat)g(z!t)
+m2ha(z, 1) f(z, 1) 1AV {21)

We now use Eq.(21) instead of Eq.{15). and follow the
arguments at (A) and (B). (C} We consider here “the
ideal case” that 5, = ( and 5n; = 0, then we obtain
from FEq.{20) that the timme change rate of Kg becomes
as Kg/ot = 0.

(D) From this result, we may conclude followings.
Since the value of K¢ is constant, the ghost helicity Kg
is conserved and therefore it must be “the time invariant
in the dynamical system”.

Can we say that the above {C) and (D)} arguments
are logically correct ? No, we logically and definitely
know that the value of Kg defined by Eq.(17) does not
change in “this ideal or the trivial case”, but if 5; = co
or 1z = oo, we have to come back to Eq.(18). We know
from Eq.(18) that the value of K changes along the time
variable and “the total value of K¢ 1s never the time in-
variant in this dynamical system”. We also know that if
n # 0 and 02 # 0, then Eq.(21) merely declares that the
time change rate of the ghost helicity Kg is "passively
and resultantly determined” by the two mutually inde-
pendent terms of the right-hand sides of Eq.(21), because
mhi{z.t) and nehy(z,t) can have mutually independent
values. We should notice here again that the value of the
ghost helicity K¢ is always resultantly determined by its
definition Eq.(18) with the values of f{z,t} and g(z,%) at
each instant. Furthermore, we should notice that Kg it-
self does never control the dynamic system to determine
the time evolution of f{z,#) and g{z,¢). This is because
there are no mathematical connections between the dy-
namic equations, which determine the time evolution of
f(z,t} and g(z,t), and the definition of K g itself.

This analogical explanation shown above may give us
clearly the fact that the so-called “helicity conservation
law” of Eq.(15) is never “the conservation equation of

the helicity K itself” but merely “the time change rate
equation of K”.

The value of the helicity K has never been conserved in
the computer simulations by R. Hortuchi and T. Sato [24,
25], and also in all experiments on the reversed field pinch
(RFP)} by many authors [3, 26-30], on the toroidal Z-
pinch by K. Sugisaki [31-34} and on merging two sphero-
macs into one field reversed configuration {(FRC) or one
spheromac by Y. Ono, Katsura: et. al. {35,36]. Espe-
cially, in the case of the toroidal Z-pinch experiments, the
total helicity K increases to finite values from zero initial
value within a few tens of us [31-34]. These experimen-
tal resuits have been demonstrated that the conjecture
of the total helicity invariance by Dr. J. B. Taylor is
not physically available to real magnetized plasmas in an
exact sense.

Even if they believe the socalled helicity injection as
a technical method, the assumption of the steady state
@K /3t = 0 should be changed to the assumption of the
steady state GW /8t = 0 in real experiments. In other
words, the socalled helicity injection should be physi-
cally the magnetic energy injection itself. If the steady
state of OWn, /0f = 0 is realized by the socalled helicity
injection without no energy injection against the plasma
current decay due to the Ohm’s loss, then we have to face
a strange conclusion that the process “violates the more
important physical law of the energy conservation I’

As is well known, the variational principle and the
related or resultant dynamic equations are physically
equivalent, i.e., we can start with either the variational
principle or the related set of dynamic equations. This
fundamental physical thought is also the same for the en-
ergy principle and the related dynamic equations. Phys-
ically and mathemathically important point is that the
set of retated or resultant dynamic equations give us all
time evolutions of the dynamic sysiem itself, including
not only self-organized states of equilibria but also the
relaxation processes and all time change processes.

The relaxation theory by Dr. J. B. Taylor {1,2] has nei-
ther been the variational principle nor the energy princi-
ple, but his calculation is merely the variational calculus
with global constraint with respect to the value of K.
That is to say, his calculation is the mathematical calcu-
lation to find the minimum energy solution from the set of
solutions, which have the same value of K. The so-called
Taylor state of V x B = A1rB has never heen satisfied in
the boundary region of experimental RFP-, spheromack-,
and toroidal Z-pinch plasmas, i.e., the experimental spa-
tial profiles of At have never been constant from the cen-
tral region of plasmas to the wall. Without using the
concept of the helicity K, we can derive the equation of
the relaxed state of MHD plasmas as V x (7V x B) = AB,
which includes the solution of V x B = ApB for a special
case where 7 is spatially uniform [38,39]. In other words,
experimental results of relaxed plasmas can be explained
without using the concept of magnetic helicity, and the
relaxed states depend on the resistivity profile 5 [39].
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Relaxations, the magnetic field generation, and the
transformation between the toroidal- and the poloidal
magnetic fields are due to the dynamo term of jxDB) v
in the energy conservation law of Eq.{14), where the ve-
locity v comes from the Lorentz force and /or the thermal
convection of the conducting fluids The earth dynamo
to mduce the polar magnetic field are originating from
the dynamo term of (j x B) - v with the thermal con-
vection velocity v. In order to realize the steady state
8We /0t = 0 in experimental plasmas, the energy con-
servation law of Eq.(14) may suggest us various methods
of the plasma current drive by external energy injections
with use of various type of energies.

I1I. A GENERALIZED
SELF — ORGANIZATION THEORY

III — 1. BASIC FORMULATION

We develop here a novel basic formulation of the gen-
eralized self-organization theory that is an extension of
the last report in [38]. It should be emphased here that
the generalized self-organization theory with the use of
auto-correlations for physical quantities is not fundamet-
ally based on neither the variational principle nor the
energy principle, and the auto-correlations is never time
invariants.

Quantities with n elements in general dynamic sys-
tems of interest shall be expressed as q{t,x) = {g:(¢,x),
g2(t,x), ---, gu(t,x)}. Here, 1 Is time, x denotes m-
dimensional space variables, and g represents a set of
physical quantities having n elements, some of which are
vectors such as the velocity u, the magnetic field B, the
current density j, - - -, and others are scalars such as the
mass density, the energy density, the specific entropy and
so on. We consider a dissipative nonlinear dynamic sys-
tem which may be generally described by

B4

5t G: {qJ :

where G;[q] denotes linear or nonlinear dynamic opera-
tors, which may include nondissipative and/or dissipa-
tive terms. In some cases, the operator Gi[q] may in-
clude negative dissipation terms such as emergy input
terms. After taking the product of g;(t, x} and both sides
of Eq.{22), and integrating both sides of the resultant
equation over the volume V', we obtain the conservation
equations concerning with the quantities g;(t,x) for the
dynamic system of interest, as follows,

[ 1 platmint ]y av

= [ {atxciayav .
14

When the dynamic system has some unstable regions, the
nondissipative terms in the dynamic operator Gi[q] may
become dominant and lead to the rapid growth of per-
turbations there and further to turbulent phases. This

(22)

{23)

may yield spectrum transfers ot spectrum spreadings to-
ward both the higher and the lower wave number re-
gions 1n g, distributions, as in the normal energy cascade
and also the inverse cascade shown by 3-D MHD simula-
tions in [24,25}. When the higher wave number becomes
a large fraction of the spectrum, the dissipative terms
in the dynamic operator G,[q] may become dominant
to yield higher dissipations for the higher wave number
components. In this rapid dissipation phase, which is far
from equilibrium, the unstable regions in the dynamic
system are considered to vanish to come toa relaxed and
quasi-steady configuration again.

If we trace over all time evolution of the dynamic
system, we may find that the dynamic system may go
through various phases, some of which the spatial profiles
of ¢,(1,x) [{ = 1,2,3,...] has changeable structures and
other phases its profiles does have unchangeable ones.
Here, we should expect that every spatially unchange-
able structure of gi{t,x} [ i = 1,2,3,.. ] may occur
repeatedly at different peculiar time for every ¢{t,x) ,
as have been observed in most of all experiments, such
as the sawtooth oscillations, the transport barrier by the
shear flows and so on. From this standpoint of observa-
tion on over all time evolution of the dynamic systern,
we can identify or define “the self-organized state” as
“he self-similar state in the phase with the most un-
changeable structure”. In order to describe quantita-
tivly those most unchangeable structure, we inevitably
introduce the anto-correlations as a suitable measure.
The definition may be mathematically expressed by using
auto-correlations, ¢:{£,%)g(t + At,x), between the time,
t, and slightly transferred time, { + At, with a small Ad,
as follows

Self — organized state =
min | f q:(t, x)q: {1 4 At, x)dV
q:{t,x)q. (¢, x)dV

Substituting the Taylor expansion of g:;{t + At,x)
g:(t, %) + [0gi(t, x)/B1)AL + (1/2)[0%q:(t, %)/ 07} A2)* +
.- - into the definition Eq.(24), and taking account of the
arbitrary smallness of At, we obtain the following equiv-
alent definition for of the self-organized state from the
first order of Af in the definition Eq.(24):

— 11 state. (24)

Self — organized state =

[ a6, %)] Bqs(t, )/ 1AV
[ @t x)g:(t, x)dV '

Substituting the original dynarnic equation, Eq. (22), into

Eq.{25), we obtain the following final condition for the

self-organized state

min state .

(25)

Self — organized state
J a:(t,x)G:[qldV

[ qi(t, x)g:(t, x)dV
We find from the definition of Eq.(25) that realization of

the self-similar coherent structures in dissipative dynam-
ical systems is equivalent to that of self-organized states

min | | state . (26)
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with “the minimum change rate of auto-correlations for
their instantaneous values”. Furthermore, since we have
substituted the original dynamic equations into the def-
inition of the sell-organized state, we can recognize that
“whole properties of the dynamic system is essentially
embedded in the process of calculations to derive the self-
organized state from the final condition of Eq.(26)”.

The mathematical expressions with the use of the vari-
ational calculus for the definition of Eq.(25) and further
the final condition Eq.(26) are written as follows, defining
a functional F with use of a Lagrange multiplier A;:

F = /V{%%[Q-‘(t,x)m(tlx)]
+ Aigilt, x)qi(t, x) } dV
= [ { attxGial
+ Mgt x)gi(t,x) }dV . (27)
§F =0, (28)
§F > 0, (29)

where 8 F and 62 F are respectively the first and the sec-
ond variations of F “with respect to the variation dq{x)
only for the spatial variable x”. Comparing Eqs.(23)
and (27), we can find that the conservation equations
concerning with the quantities ¢;(¢,x) for the dynamic
system of interest are naturally included in the present
formulation of the generalized self-crganization theory.
We should remind here that the global auto-correlation
[ 4i(t, x)qi(t, x)dV is never the time invariant but strictly
the global constiraint. The implicit assumption in this
theory is that the dynamical system evolves all possible
area in state phases.

ITT - 2. APPLICATION TO PLASMAS

We apply here the generalized self-organization theory
shown above to fusion plasmas.

According to the general type of the dynamic equa-
tions, Eq.(22), we rewrite Eqs.(1) and (2) as follows

JaB

5 = —-VxE. (30)
0E .

EOE‘:VXH_J' (31)

We use here the following three more physical laws, i.e.,
the conservation laws of the mass, Eq.(32), and the
momentum, Eq.(33), and the generalized Ohm’s law,
Eq.(34).

%‘-:—V-(pmv). (32)
dv .
Pma = —pm{v-V)v 4+ [pE 4+ jxB
~V(FP. + A)]. (33)

dj _ e'n,

o m,

{E+ vxB-nij— (jxB)
+;:-;: [VPe— (m/m)ZiVP ]} (34)

These three equations come from the Boltzmann ki-
nctic equations for electrons and ions. Therefore, we
start with an axiom set of seven physical laws, ie.,
Eqs.(1),{2),(3), (4, (32), (33) and (34), where Eqs.(1)
and (2) are rewritten to Eqs.{30) and (31}, respectively,
and the charge conservation law is included in Maxwell’s
equations, Egs.(1) - (4). We can get Poynting’s energy
conservation law by the following processes.

1) After taking the scalor product of B/puo with both
sides of Eq.{30), we integrate both sides of the resultant
equation over the volume V.

2) Afier taking the scalor product of E with both sides
of Eq.(31}), we integrate both sides of the resultant equa-
tion over the volume V.

3) Adding both sides of the two equations by 1) and
2), using vector formulae and Gauss theorem, we obtain
Poynting's energy conservation law concerning with the
field energy Wy, which is the same as Eq.(7), as follows

My [smav - L fmanyas.
v HFods

ot
(35)

In the same way, after taking the scalor product of v with
both sides of Eq.(33), and integrating hoth sides over the
volume V, we obtain the conservation law of the kinetic
energy Wi = [, (pm/2)v v dV , as follows

%Wk :‘/; {—%v-vv-(pmv) = pm V- [{v-V)v]
+ [peE-v + (xB)-v
—pmVv-V{F + B)]}dV.

Similarly, after taking the scalor product of j with both
sides of Eq.(34), and integrating both sides of the re-
sultant equation over the volume V, we obtain an-
other conservation law on the current by defining W, =

f, (1/2)j -3 dV , as follows

8 eln. ] . .
F Ve = e {J-E-(xB) v-rnij-j
1
+—j-[VP. — (m./m;)Z;VP]}dV. (37}

en.

According to Eq.{27), we obtain the functional for the
field energy Fy, for the kinetic energy Fy, and for the
current F_, respectively, as follows,

. E-E B
Ff=[{—J'E+)\f(€U +
v

2 2
——l—f(ExB)-dS,
HPo Js

B ) Jav
B0

(38)
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o= [ 459 ¥F (omv)= pnv v TN
g
+ [pE v+ xDB)v
— v VP + P+ A\.%'iv vV, (39)
ne .. . ..
Fo = {i-E - (ixB)-v—r1nd Jj]
v M

+- 5 [ VP = (me/m) 2V P, ]
Me

+Acj-jrdv. (40)

In general, we take variations with respect to dE, éB,
év, 83, 8po, 8pe, 8Fe, 8P, 8., &n,, and dn.;. From the
Euler-Lagrange equations for the solutions of Eq.(28), we
wili get new various equilibrium configurations of the self-
organized states with the plasma flow, the shear flow, the
space charge, the space potential, the deviation between
the ion and the electron density profiles, the resistivity
profile, and so on, depending on the boundary conditions
and the external input sources such as the various energy
injections and the particle beams. The resultant equi-
librium configurations are far beyond the conventional
MHD equilibrium ones by the Grad-Shafranov equation
based on the equation of j x B Vp. The results of
the present calculation will appear elsewhere.

Dividing Eq.(37) by e¢’n./m., we find the resultant
equation to become a power balance equation. In order
to realize the steady state of the confinement system of
plasmas, we can extend conventional methods of plasma
current drives with the use of the three conservation laws
of Eqs.(35),(36) and (37), using energy injections with
use of various types of energies, such as magnetic en-
ergies, electromagnetic wave energies, internal erergies
of plasmoids by plasma guns, which induce the thermal
plasma flow velocity, various particle beam energies, and
50 om.

IV. CONCLUDINGREMARKS

Analyzing the logical and mathematical structures of
the derivation process for the socalled “helicity conser-
vation law”, and using the simple thought experiment
for the case, where there exists some vacuum field re-
gion, i.e., n = oo, near the ideally conducting wall, and
the other region is still filled with the ideally conducting
plasma, we have clarified the followings in Section I:

1. Even though the value of K always exists along
the time variable ¢ by the definition Eq.(19), the value
of K [t is passively and resultantly determined by the
mutually independent volume and surface integral terms
in Eqs.(18) and (15). This fact indicates definitely that
Eqs.(10) and (15) are not “the conservation equations of
the helicity K itself”, but are merely the equations for
“the time change rate of K.

2. The total helicity A can never be conserved in the
dynamic system, due to the volume integral term of B-E

m Iq.(10) or nj - B in Eq (15), which arbitrarily change
their values between positive and negative ones

3 Since the total helicity K can never be conserved in
the real expenmental dynanuc systems, as was observed
in the toroidal Z-pinch experunents [31-34], the conjec-
ture of the total helicity invariance by Dr. J. B. Taylor
15 not physically available to real magnetized piasmas in
an exact sense.

4  We cannot find any associate quantities for the
changed part of the total helicity A shown by the second
terms of Eqs {10} and {15). This is because that the he-
licity K is not the physical quantity, but only represents
the topological property of the magnetic field hnes “at
each instant”.

These facts shown above indicate definitely that the
so-called “helicity conservation law” 15 never “the con-
servation equation of the helicity R itself” but merely
“the time change rate equation of K™. From the present
logical analysis, we have clarified that the relaxation the-
ory by Dr. J. B. Taylor is neither the variational principle
nor the energy principle, but is merely a2 mathematical
calculation, using the variational calculus in order to find
the minimum magnetic energy solution from the set of
solutions having the same value of K.

The so-called helicity conservation law is derived from
merely one physical law of Eq.(1), whick can never lead
to any deterministic time evolutions of A and B without
another physical law of Eq.(2). The quantity of K com-
posed only by A and B does have no physical grounds
to restrict the tirne evolution of the magnetized plasma
system.

In Section 11}, we have presented the basic formulation
of the generalized self-organization theory that is the ex-
tension of the last report in [23]. It is emphased here that
the generalized self-organization theory with the use of
auto-correlations for physical quantities is not fundamet-
ally based on neither the variational principle nor the
energy principle, and the auto-correlations is never time
invariants.

We have clarified from the definition of the self-
organized state given by Eq.(25) that the realization of
the self-similar coherent structures in dissipative dynam-
ical systems is equivalent to that of self-organized states
with “the minimum change rate of autocorrelations for
their instantaneous values”. Furthermore, we have shown
that since the original dynamic equations are substituted
into the definition of the self-organized state, “whole
properties of the dynamic system is essentially embedded
in the process of calculations to derive the self-organized
state from the final condition of Eq.(26)”. From the
comparison between Eqs.(23) and (27), the conservation
equations concerning with the quantities g;(1,x) for the
dynamic system of interest have been shown to be nat-
urally included in the formulation of the present gener-
alized self-organization theory. It should be emphasized
here that the generalized self-organization theory can de-
duce the Taylor state without using the concept of the
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helicity, and further be applicable for any nonlinear dy-
namical systems [37—-44].

It its important to point out that the self-orgamized
states of every physical quantities of interest may be real-
ized during their own peculiar phases and the dynarmcal
system may evolve repeatedly, having those out of phase
organizations due to boundary conditions and mput pow-
ers, as have been observed in most of all experiments,
such as the sawtooth oscillations.

In order to realize the steady state of the confinement
system of plasmas, we can extend conventional methods
of plasma current drives with the use of the three con-
servation laws of Eqgs.(35),(36) and (37), using cnergy
injections with use of various types of energies, such as
magnetic energies, electromagnetic wave energies, inter-
nal energies of plasmoids by plasma guns, which induce
the thermal plasma flow velocity, various particle beam
energies, and so om.
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