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Abstract

Density oscillations induced by MHD activities were observed in NBI heated plasmas on CHS

by using an HCN laser interferometer.

The accompanied changes of the density profiles were also

observed.  The oscillations are composition of m=0 sawteeth like crash and m=2 sinusoidal oscillations
as a post courser of the crash.  Possible models of the osciilation structure are examined in order to

explain experimental data of the interferometer.

Rotating plasma core, which is hollow profile and

keeps constant elongation of the flux surface can explain amplitude and phase distribution of the

sinusotdal oscillation.
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1. Introduction

In the Compact Helical System (CHS)
heliotron/torsatron it has been observed that
repetitive MHD burst phenomena occur under certain
discharge conditions. In previous investigations' a
heavy ion beam probe has been used to study
periodic changes in the electrostatic potential profile
and io correlate these changes with magnetic field
fiuctuations as they were detected by an array of
Mimov coils. Concomitant oscillations of the
electron density distribution have been noticed, but a
detailed analysis of the relevant data, which were
provided by a far-infrared interferometer, has been
hindered so far by instrumental limitations and by the
intricacy to convert line-integrated measurements
into local information. It is the aim of the present
work to address these problems and to complement
the existing data base on MHD burst phenomena in
CHS by additiona! information about the behaviour
of the electron density profile.

In order to improve the spatial resolution of the
three-channel interferometer, a series of very similar
discharges was made, and one of the (horizontal)
probing beams was shifted from shot to shot in
vertical direction. In this way, twelve lines of sight in
the lower half of the plasma cross-section became
available, although with irregular spacing due to
access limitations. Te account for shot-by-shot
variations, the signals were normalised, and the data
were combined so as to represent a set of

interferometric phase shift signals for one typical
discharge.

In this typical discharge the temporal evolution of
the density profile was investigated by using a
generalized Abel inversion technique. For this
purpose, the non-circular magnetic surfaces in CHS
were approximated in analytical form by a set of
nested contour lines, and it was assumed that the
density was constant on a given flux surface. Owing
to the fact that only horizontal lines of observation
were available, it was impossible to distinguish
unambiguously between deformations of the
magnetic surfaces (i.e. deviations from the vacuum
magnetic field structure) and local changes of the
electron density. Nevertheless, in order to gain some
insight into the global (or macroscopic) evolution, the
analysis was performed under the assumption that the
shape of the magnetic flux surfaces remained
constant throughout the discharge. Since this
supposition is obvicusly not justified during stong
MHD activity, the experimental data were averaged
in time to “smooth out” periodic oscillations. As a
result, only perturbations with poloidal mode number
m = 0 could be detected.

A more detailed investigation of higher-order
perturbations was impeded not only by the limited
number of probing beams and their parallel
orientation but also by a rather poor reproducibility
of fast signal oscillations in subsequent discharges.
However, since only one of the three interferometric
beams was moved from shot to shot, the two fixed
channels could be used to synchronize the burst



events in different shots and to establish amplitude
and phase relations among the signals measured at
different positions. From these it became clear that
the MHD activity introduced a fairly strong m = 2
perturbation of the density profile. Attempts were
made to localize this mode and to determine its
spatial extent by performing model calculations for a
variety of different shapes and sizes and by
comparing the results with the experimental data. It
was found, however, that the available signals are
still too sparse for obtaining an unambiguous picture
of the deamsity perturbation during MHD burst
phenomena in CHS.

2. Evaluation of the Global Density Profile

This section describes the techniques and
procedures by which the experimental data of the
laser interferometer are combined to form a
consistent data set for a “typical” discharge, and by
which this set of data is analysed with respect to
global (or macroscopic) changes of the electron
density profile. Since the magnetic field structure is
assumed to be fixed (corresponding to the vacuum
field distribution) and since the measured signals are
averaged in time to suppress fast oscillations, the
results represent only those changes which
correspond to a m = 0 mode pattern. Fine structures
due to higher-order modes willi be discussed in
section 3,

2.1. Preparation of the experimental data

The far-infrared interferometer operates at a
wavelength of A = 0.337 mm and comprises three
horizontal probing beams®. Two of these beams are in
a fixed position, while the third one can be moved in
vertical direction. The locaticns of the beams in the
non-circular cross-section of CHS are shown in Fig.
1.

The free electrons in the plasma cause in
each probing wave a phase shift Ap which is given

by

A(pzr,ljneds (n

L)

where r, = 2.818x10"¥ m denotes the classical
electron radius, n, is the electron density, and ds is
the path element of the beam. The quantities Ag are
measured by digital phase counter™. A 620kHz
intermediate frequency (IF) signal for heterodyne
detection was digitized at 100kHz and the effective
IF signal frequency was 20kHz. Then, phase shift
A@ was numerically calculated by using digital phase
demodulation techniques. The calculated phase
have a limited range from —180° to +180° and cause

phase jumps at overflow, which have to be
eliminated prior to further data processing (a suitable
FORTRAN routine may be found in Appendix 5.1).
Figure 2 shows an example of typical time traces
obtained from the interferometer after correction of

phase jumps.
21.1. noise reduction

As can be seen in Fig. 2, all traces return to their
base line after the plasma pulse, which indicates a
fairly high mechanical stability of the interferometric
set-up. However, the signals are infested by
considerable noise. The spectral composition has
been determined in the time interval from 0 to 10 ms
(that is, before plasma ignition) by means of a FFT
routine, and the results are shown in Fig. 3.
Obviously, by filtering out a spectral band between
12 and 17 kHz, the purity of the signals can be much
improved (black lines in Fig. 3).

The fast signal oscillations caused by MHD
activity during the burst phenomena have frequencies
of a few kHz. Therefore the noise reduction will not
significantly impair the plasma-induced features.
Since, at this stage of the data analysis, we are only
interested in the “average” behaviour of the density
profile, we apply a low-pass filter with a cut-off
frequency of 500 Hz or, alternatively, form a sliding
average over 120 data points {(corresponding to a time
interval of 1.2 ms; both procedures result in fairly
smooth and very similar signal traces).

2.1.2. combination of different shots

The discharges selected for analysis are listed in
the foHowing table together with the respective
position of the movable probing beam and the

average phase shift A@,, .. in the central beam for

the time interval from 80 to 120 ms {the latter is
formed by calculating the mean value of the data
points number 8000 to 12000 of the raw signals after

correction for phase jumps). The quantity A@_,_

serves to adjust all signals to a common level and
thereby account for shot-by-shot variations (the
normalisation factors are also given in the table).

In Fig. 4 the phase shift signals (after filtering
and normalisation) are superimposed. The central
channel yields nearly identical signal traces (with the
exception of shot #72210, where the lower beam is
close to the plasma edge at a position of -13.6 cm
and is, therefore, of minor importance). By contrast,
the fixed beam in the upper half of the plasma cross-
section exhibits some scatter which points to a slight
irreproducibility of the shape of the electron density
profile in the selected series of discharges. For our
purposes we will use the data of the moved channel
(lower subfigure) and regard them as being measured
in a single representative shot.
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2.2. Abel inversion in non-circular geometry

Having avaiiable a set of phase shift data,
which covers one half of the plasma cross-section,
and assuming that the local electron density is
constant on (given) magnetic surfaces, the density
profile in CHS can be found in the following way
(see Fig. 5 for illustration):

By using a set of closely spaced surfaces, the
plasma cross-section may be divided into a number
of anpular zones, on which n, is approximately
constant. Hence, the path of a probing beam
intersecting these zones is split up into small
segments, and the line integral for the phase shift
{equation (1} on page 2) may be expressed as a finite
sum of these segments. A beam traversing just the
outermost zone 1s represented by a single term only,
which provides immediately the local density at the
plasma edge. This information is then used to
calculate the edge contribution to the signal of the
adjacent beam passing through the next inner zone,
which leaves us after subtraction with the local
density in the second ring. Continuing this procedure,
we can gradually advance towards the centre.

In practice, the number of actual
measurements at different beam positions z is rather
small and has to be replenished by a reasonable
interpolation. For this purpose we will use a spline fit
as described in section 2.2.2. Moreover, for the ease
of calculation it is desirable to have an analytical
formula for the shape of the contour lines.

22.1. analytical description of flux surfaces

As a starting point, we use the results of a
numerical computation of the flux surfaces in CHS
under vacuum conditions. A closer inspection of
these contours rteveals that they are well
approximated by two semi-ellipses with a common
minor axis as shown in Fig. 6 (only the outermost
surfaces are not so well reproduced, but here the
density — and hence the contribution to the total
phase shift — will be small). Having in mind the
inversion procedure outlined before, we are mainly
interested in the distance L which the probing beam
covers inside a surface. It is easy to prove that this
distance depends only on the sum (b, + b,) of the
major axes of the semi-ellipses but not on their ratio
b,/b,. So, for our purposes 1t is sufficient to
characterise each surface by two numbers: the height
2a (where a is the common minor axis of the ellipses),
and the length 2b = (b, + b,). Taking the given data
of the numerical computation for the vacuum field
structure, we plot & as a function of a (Fig. 7) and
find that the dependence may be expressed as

b=(b +b,)/2=102-a-exp(0.036-a) ()

Hence, the distance L, which a probing beam at
vertical position z covers inside a flux surface of
height a, can be written as

L(z.a)=2.04-Va* — 2 -exp(0.036-a)  (3)

2.22. construction of the phase shift profile

As  has been mentioned before, the
experimental data (i.e. the actual measurements taken
at different beam positions) are rather sparse. For
inverting the phase shift data and calculating a
reasonable density distribution it is necessary to
construct a complete phase shift profile Aw(z) with
well-defined boundary conditions (the first derivative
of Ap(z) has to be zero at z = 0 and at the plasma
boundary z = a,,,; otherwise the resulting n_ -profile
would exhibit a non-zero slope in the centre and an
unphysically steep gradient at the edge). To satisfy
these conditions and to provide a sensible completion
of the few experimental points, a cubic spline
interpolation with prescribed slopes at the end poinis
can be used.

As an example, Fig. 8 shows the phase shifis
versus probing beam position measured in our
“typical” discharge during the time interval from 110
to 115 ms (cf. Fig. 4; the experimental data have been
averaged to suppress signal oscillations caused by
MHD activity). Because of access limitations at CHS,
the data points are mainly concentrated between z =
5.3 cm and z = 9.3 cm, and outside this range the
spline fit has to bridge rather large gaps. On the other
hand, the closely spaced points introduce some
structure to the phase shift profile. So, the function
Ag(z) is a combination of “smooth” segments (due to
the spline interpolation) and of “structured” segments
{prescribed by neighbouring data points), which can
lead to physically unreasonable vanations of the
density distribution, as will be discussed in the next
section

2.23. computation of the electron density

distribution

Following the procedure outlined in the previous
sections, a FORTRAN subroutine has been written
to reconstruct the electron density distribution from a
given phase shift profile (see Appendix 5.2). The
specific plasma geometry of CHS is taken into
account by using equation (3) for the path lengths,
and the calibration factor makes allowance for the
fact that the HCN laser beams (A = 0.337 mm) of the
interferometer traverse the plasma twice. Taking the
Ag-profile of Fig. 8, one obtains the electron density
distribution shown in Fig. 9. Note that the abscissa is
not a space co-ordinate but gives the minor axis a of



a contour line as described in section 2.2.1 (see
inserted Hlustration in fig.9 ). In order to convert the
abscissa info a more common surface label p, one
may use the area A within a surface and express it
with the help of equation (2) as A= mp® =mab=ra’
1.02 exp(0.036 a), which leads to the wransformation
formula.

p=a/1.02-exp(0.036- a) @

The sharp local minrima in the nprofile at a = 6
cm and a = 9 cm appear to be rather unrealistic. They
are due to the non-monotonic slope of the Ag-profile
as prescribed by the closely spaced data points.
However, keeping in mind that the experimental data
were measured in a series of discharges, it is clear
that slight irreproducibility and residual noise give
rise to some scatter. In order to check the effect on
the electron density distribution, the curve in Fig. 9
has been smoothed, and the phase shifts have been
re-calculated for the modified #n,-profile (a
FORTRAN routine is given in Appendix 5.3; the
program has been tested by using the original profile,
which results in a complete reproduction of the spline
interpolation shown in Fig. 8). As can be seen in the
lower part of Fig. 10, even a strong smoothing causes
only minor deviations from the experimental points.
So, unless the error bars are extremely small, one has
to be very cauticus to draw firm conclusions on
small-scale variations of the density profile (such as
local minima or a flat “shoulder™).

Unfortunately, it is difficult to assess the actual
error margins of the expenmental data. To make a
rough estimate we may use the scatter of the
norinalised time traces measured in the fixed upper
channel at z = +9.3 cm (cf. Fig. 4). A blow-up for the
time interval from 100 to 120 ms shows =a
“bandwidth” of 40 degrees, whereas the modulation
amplitudes of the individual waces are 25 degrees or
less (see Fig. 11). Therefore, as a lower limit we
obtain an uncertainty of 210 degrees, which is equal
to the maximum deviation from the calculated phase
shift profiles n Fig. 10.

2.3. Temporal evolution of the density profile

In order to establish a possible relation between
the onset of MHD activity and the global shape of the
electron density distribution, the evolution of the »,-
profile during the discharge has been investigated.
Figure 12 shows the signals of the central channel (z
= +0.0) and of the channel at 7 = -5.3 cm, which were
measured simultaneously in the same shot. In the
early times of plasma build-up (¢ < 50 ms) and during
plasma decay (¢ > 125 ms) the difference A@(30.0) -
AQ(-5.3) is close to zero, although the central beam
covers a longer path inside the plasma than the

probing beam at z = -5.3 cm. Consequently, the
density distribution must be rather flat or even hollow
in these phases of the discharge.

To study the global profile evolution in more
detail, the combined data of the “typical” discharge
(Fig. 4 )} have been Abel-inverted in time steps of 20
ms (the sawtooth-like signal oscillations have been
eliminated by taking time-averaged values for an
interval of 5 ms). Using a spline interpolation of the
experimental points, we obtain n,-profiles with very
pronounced fine-scale structures (see the dashed lines
in Fig. 13), which we smooth out by applying the
procedure described in the previous section. Ii must
be emphasised, though, that this action involves a
certain degree of arbitrariness and ihat, therefore,
caution is advisable in interpreting details of the
calculated eleciron density distribution.

Considering the unsmoothed 7,-profiles in Fig.
13, we notice that the fine-scale structures persist
throughout the whole discharge without major
changes. Hence they cannot be caused by a statistical
scatter of the experimental data points but must be
due to systematic reasons. A possible explanation
based on instrumental effects might be a slight
uncertainty in the exact position of the moved
probing beam, which would introduce additional
horizontal error bars. This suppositon is
corroborated by the fact that in shot #72226 the
signals of the moved beam and of the fixed beam
differ by a few percent, although for this discharge
both beams were in symmetric positions relative to
the horizontal midplane (z = £9.3 c¢m). Unfortunately,
a final conclusion cannot be drawn on the basis of the
presenily available data.

Concerning a possible dependence of the MHD
activity on the global shape of the density profile, it
appears — with the caveat emphasised before — that
the onset of MHD oscillations during plasma build-
up at ¢ = 60 ms is related to a wransition of the profile
shape from hollow to peaked. The sharp decay of the
plasma at ¢ > 120 ms causes the profile to become
hollow again, and the oscillations disappear.

3. Profile Changes during MHD Activity

3.1. Oscillatory behaviour of line-integrated data

So far we have concerned ourselves with the
macroscopic features of the electron density
distribution (specifically the iemporal evolution
during the discharge) and disregarded the oscillatory
behaviour during MHD activity by forming an
appropriate time average of the experimental data.
Now we want to take a closer look at the periodic
profile modifications induced by these effects. For
this purpose we split the measured phase shift signals
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into three components corresponding 1o different
temporal resolutions:

AP(z, 1) = A(pl(z,;H Ao, (z.0+ AQ,(z,1) (5)

The first term A, contains all frequencies below

~150 Hz and gives just the global time evolution of
the signal during the discharge. This part has been
discussed in the previous sections. The next term

A, adds the frequency components between ~150

and ~750 Hz. It is still a time average of fast signal
oscillations but resolves the periodic burst character

of the MHD activity. Finally, the third term AQ,

covers the remaining frequency components from
~750 Hz to 12 kHz (frequencies beyond 12 kHz are
excluded to reduce instrumental noise as described in
section 2.1.1).

The sum of the first two terms provides
information on the burst cvents but “smears out” the

details contained in AQ,. The sum (AQ, +A®,)

may, therefore, be regarded to represent the m = 0
mode pattern of ithe density profile during a burst and
can be treated by Abel-inversion on a system of
contour lines of fixed shape (see section 2.2). By

contrast, the fast oscillatory signal component AQ,

is most likely due to a combination of local density
variations and deformations of the contour lines
{corresponding to higher-order perturbations of the
magnetic field structure). A clear separation of both
effects would only be possible 1f measurements could
be made under different angles of observation.
However, the available data are limited to horizontal
lines of sight. So we have to resort to model
calculations and simulate the measured signals under
more or less reasonable assumptions in order to
extract some information on rapid profile changes.

3.1.1. combination of different shots

The data to be analysed were taken in a series of
discharges with the movable probing beam in
different positions. Consequently, the burst events are
not correlated in time and have to be adjusted relative
to each other on a common time axis. For this
purpose we use the signals measured in the fixed
probing beam (z = +9.3 c¢m) and select a time interval
of 5 ms in each shot, which contains a typical burst
(see Fig. 14). Next, we align these segments as
shown in the left column of Fig. 15 to synchronise
the events. Finally we plot the signals of the moved
channel for the same segments and alignment to
obtain a data set for a representative burst
phenomenon (right column of Fig. 15; the red lines
are the measured signals after removal of high-
frequency noise (> 12 kHz); the black lines are the
signals after low-pass filtering with a cut-off

_5_

frequency of ~750 Hz, i.e. they represent the sum
(A®, + A®,} as described above).

3.1.2 amplitude and phase relations among

different lines of sight

The amplitudes and phases of the filtered signals
(black lines) and of the fast oscillations (red lines) in
fig.15 are determined in relation to the corresponding
data of the fixed channel. In a first step, relative
amplitudes A (2VAq(z) are calculated for each shot.
Then, in order to obtain absolute values and to
eliminate shot-by-shot variations, these data are
multiplied by the amplitude Aq* measured in a
representative  discharge (shot #72234). For the
phases we find that the signals of the moved channel
are shifted by 180° relative to the signals of the fixed
channel, if z < 7 cm, and that they are unshifted for z
> 7 em. The results are plotted in Fig. 16 for the
peak-to-peak amplitudes as a function of beam
position. It is interesting to note that the filtered and
unfiltered oscillations have a very similar dependence
on z with the node being at the same position (z,.,. =
7 cm).

From the fact that the outer channels (z > 7 cm)
are strictly in phase with the fixed channel, which
traverses the opposite part of the plasma cross-
section, it must be concluded that the perturbation is
dominated by a mode with even poloidal mode
number m. However, the central part of the curves in
Fig. 16 (z < 5 cm)} does not conform to the standard
pictures of a m=0 or a m=2 mode. To illustrate the
characteristic features of these modes, Fig. 17 shows
the results of simple model calculations. The upper
part (m = 0} represents a periodic collapse of the
whole plasma core, where the initially peaked profile
is completely flaitened, and the expelled electrons are
re-distributed in the outer part of the plasma cross-
section (this sitvation correspeonds to a sawtooth
crash in a tokamak discharge). The lower part is a
simulation of a rotating m=2 island structure, where
the plasma core region is squeezed by the two shaded
areas, which mark flat regions in the density
distribution. In both cases the maximum amplitude of
the oscillating phase shift signals occurs for a probe
beam passing through the plasma center (z = 0). In
contrast to these models, the experimental data of Fig.
16 clearly show a decrease of the amplitude towards
the center. Although the large gap between the data
points puts a special weight on the central channel,
the measurement is reliable because here data could
be taken for each shot of the whole series.

3.2. Reconstruction of an “average” m = {
perturbation

The mildly filtered signals {black lines in Fig.
15) resolve the periodic MHD burst events but



“average out” the fast oscillations. Therefore they
reflect the slow, global change of the electron density
distribution and contain information on those regions
of the plasma cross-section, which are mostly
affected by a burst. These signals may be considered
as being due to a m=0 perturbation, which causes a
“symmetric” re-distribution of the elecirons in the
plasma cross-section without changing the shape of
the contour lines. It must be clear, though, that a
reconstruction of this “average” m={ perturbation
does not provide the true variation of the density
profile, but is — in a certain sense — just a low-
frequency Fourier component.

3.2.1. Abel inversion of the filtered data

We consider only the signal components Ag.,
which contain the frequencies between ~150 and
~750 Hz (see Fig. 18 for an illustration). They
oscillate with a peak-to-peak amplitude A4 (z)
depending on the probing beam position. If we
choose the times 1, and #, as indicated in Fig. 18, we
may plot two phase shift profiles
AQ,(z,1}=+A,,(z)/2and
AQ,(z,0,)=—A4,,(2)/2 where A_(2) is given by Fig.
16, and the node at z= 7 cm causes a change of
the sign of A, The profiles AQ,(z,f) and

AQ,(z,%,) can be inverted using the methods
described in section 2.2. The resulting differential
electron density distributions An, () and

An,(t,) are shown in Fig. 19.

In the lower part of Fig. 19 we have plotted
n,tAn

,,» where n, is the smooth density profile
calculated in section 2.2 (heavily filtered signals; see
Fig. 10 ). Before the MHD burst (time 7,) the electron
density distribution is rather flat up to @ = 7 cm.
During the burst (time #,) the density decreases on
average in an annular zone (2 cm < a < 8 cm), and
increases on average in the outer plasma region as
well as in the very cenire. Owing to large error bars
of the measured amplitudes and to missing data
between z = 0 and 5.3 cm, the apparent central
increase and the local minimum at @ = 7 cm during
the burst may be artefacts of the inversion process.
Nevertheless, it can be stated that the MHD burst
phenomenon causes a significant deterioration of the
electron confirement predominantly in a ring zone,
but not in the whole plasma core.

3.3. Modelling of fast oscillations by reiating island

siructures

The fast signal oscillations during a MHD burst
are nearly sinusoidal and have a pericd of T < 0.4 ms,

If they were caused by a periodic m=0 perturbation,
one would expect a sawtooth- like time behaviour
reflecting a rapid loss of confinement (i.e. a fast local
flattening of the density profile) and a comparatively
slow restoration of the density gradient, for which the
time ¥/2 = 0.2 ms would hardly be sufficient. It is,
therefore, more likely to attribute the fast oscillations
to a deformation of the density comtours, which
perform a poloidal rotation in the vacuum vessel at a
frequency of a few kHz. The signal amplitudes (and
hence the underlying MHD mode) show a rapid
growth and a slow decay (see Fig. 14). Half-way into
the burst, the amplitudes change on a time scale
much longer than T, thus indicating a quasi-stationary
deformation. However, owing to the fixed non-
circular shape of the plasma boundary, the deformed
structure cannot rotate like a rigid body but will
undergo a periodic compression and elongation (for a
schematic illustration see the m=2 case sketched in
Fig. 17 }. Clearly, the available experimental data are
insufficient to reveal these details unambiguously,
but we can try to gain some qualitative insight by
modelling the characteristic features of the measured
signals under more or less realistic conditions.

3.3.1. model assumptions

The simplest model, which is in rough
accordance with the amplitude and phase relations of
the observed signals, is a m=2 perturbation
comprising two crescent-shaped flat regions
(“islands™) as indicated by the shaded areas in Fig. 17.
If we allow such an island structure 1o rotate and
“smear out” periodic local variations by forming an
average over one revolution, we obtain a mean
density disiribution with a flattened ring zone as we
found in the previous section. Since the structure is
quasi-stationary with respect to radial expansion,
there is little net transport across the deformed
magnetic surfaces. Hence, we keep the total number
of electrons constant within the squeezed plasma core,
and we assume that the plasma boundary is not
affected by the rotating islands. Furthermore, we
simplify the plasma geometry by using two sets of
concentric ellipses to fix the density contours in the
boundary and core region, respectively, and we take
the density profile to be completely flat inside the
two opposite islands. With these assumptions our
model distribution has a form as shown in Fig. 20:
the outer zone and the islands make up a rigid
pedestal, on top of which rests a rotating peak that
touches the edge of the plateau at two opposite points.
Because we are interested in the oscillating part of
the signals only, we can ignore the pedestal and limit
our calculations to the phase shifts caused by the

peak.
Due to the elliptical shape of the pedestal, the

distance between the X-points (i.e. the points of
contact of the rotating plasma core with the edge of
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the pedestal) depends on the rotation angle. If we
keep the core elongation fixed, the area within a
given contour will decrease when the X-points move
from a horizontal to a vertical position. On the other
hand, since we expect little transport across the
contour lines within one period of rotation, we
require the total number of electrons in the core to be
unchanged. In order to satisfy this condition, we have
to keep constant the product of density and area
within a ring zone.

Our simulation program allows us to treat two
different models: (a) the case of fixed area and
density by matching the elongation, and (b) the case
of fixed elongation and variable area by matching the
electron density (for details see Appendix 5.5; the
calculation of the path length for a probing beam
intersecting a tilted ellipse is described in Appendix
5.4). A FORTRAN subroutine to compute the phase
shift Ag as a function of the rotation angle o can be
found in Appendix 5.6. It requires as input
information (i) the position 7 of the horizontal
probing beam, (ii) the minor and major semi-axes A
and B of the elliptical pedestal, (iii) the electron
density distribution #,(i) in the ring zones (where i =
l..n from centre to edge), and (iv} the prescribed
area [ =a-b=F/m of the contour containing
the X-points (model (a)) or the prescribed ellipticity €
of the plasma core (model (b)). The data are written
into an output array (o, A@)) for 0°< a, < 90° in
steps of 1°.

3.3.2. comparison with experimental data

In order to adapt our model to the experimental
conditions, we choose a pedestal with a major axis B

= 18 cm and a minor axis A=B/+2= 12.7cm.

The ratio B/A=~/2 conforms to the elongation
of a corresponding flux surface in CHS (see Fig. 7),
and the choice of A accounts for the fact that the
pedestal cannot extend much beyond z = 11.6 cm,
because the signals measured at this beam position
and further outward show little or no modulation. To
select an appropriate elongation and size of the
rotating plasma core, we argue that the major axis b
is continuously decreasing for & going from 0° to 90°,
while the minor axis @ must increase to keep the area
F = mab constant {our model requires that A(=0°) =
B and 5(a=90°) = A). Following the derivation of
b(a) in Appendix 535, it can be shown that the
condition a{a) < B{(cr) has to be satisfied. So, for the
maximum possible area, we have g(90°) = 5(90°) and
hence f= [B(90°)}* = B%/2. Taking this value, we find
for o0 = 0° an ellipticity of £ = @4/ by = f /by’ = ¥3,
which we use for our calculations according to model
(b). Fig. 21 shows a scaled drawing of the rotating
structure inside the cross-section of CHS.

For the electron density in the ring 2ones of the
plasma core we assume either a peaked or a holiow
distribution (nght part of Fig. 21: in model (b) we use
a scaling factor inversely proportional to the area fio)
= € [B(c)} 1n order to keep the total number of
electrons fixed). The calculations are performed for
the same probing beam positions as in the
experiment.

Figures 22 and 23 show the results of the modsel
calculations for a peaked and a hollow density profile,
respectively, The simulated phase shifts are plotted
versus the rotation angle ¢ for a full revolution of the
plasma core. For comparison, a set of experimental
data is also shown, where the time axes for the
different traces have been adjusted as described in
section 3.1.1. Irrespective of the density distribution,
model (a) produces signals of nearly trapezoidal
shape, whereas the signals resulting from model (b)
are much closer to the sinusoidal shape observed in
the experiment. We can, therefore, conclude that the
rotating plasma core largely retains its elongation,
while the island width undergoes a fairly strong
modulation. With respect to the density profile, we
obtain closer agreement between measurement and
simulation by wusing the holiow distribution.
Characteristic features like the change of amplitude
as a function of beam position and the location for
phase reversal are much better reproduced in Fig. 23
than in Fig. 22. As a matter of fact, the coincidence
of measured and calculated signals is surprisingly
high in view of our crude model, and the remairing
discrepancies could probably be further reduced by
some fine-tuning of the input parameters.

Nevertheless, there are contradictions to the
previous reconstruction of an “average” m=0
perturbation (section 3.2.). In our model the istand
covers for =0 the distance between ¢ cm and 12.7
cm along the vertical diameter. Consequently, the
“average” density profile should have a “shoulder”
{i.e. a local indentation) predominantly in this range.
However, the distribution shown in Fig. 19 (blue
curve) has its flat part between 6 cin and 10 cm.
Furthermore, the “average™ profile is peaked in the
center, whereas in our model a hollow distribution
provides a much better fit to the oscillatory part of
the measured signals.

4. Summary and Conclusions

In this report an attempt is made to gain insight
into spatial and temporal changes of the electron
density under discharge conditions of repetitive
MHD activity in the CHS heliotron/ torsatron device.
The investigation is solely based on experimental
data provided by a HCN laser interferometer
comprising three horizontal probing bearns, one of
which could be moved between shots. By combining
the signals of a series of reproducible discharges, a

set of phase shifis A(p(z)oc_‘-u T ds along
4
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twelve different chords L(z) through the plasma
cross-section has been compiled and used for the
analysis.

In a first step, these signals were low-pass
filtered to completely smooth out periodic MHD-
induced effects, and the giobal temporal evolution of
the density distribution was determined by means of
a generalised Abel inversion technique. It was found
that in the early times of plasma build-up (¢ < 50 ms)
and duning plasma decay the density profile is rather
flat or even hollow. The onset of the MHD activity
appears to be correlated with the transition of the
profile shape from hollow to peaked.

Next, the cut-off frequency of the low-pass filter
was raised such that the periedic burst events could
be resolved bui the related fast oscillations were stil}
“averaged out”. The analysis (again by Abel
inversion) of these data immediately before and
during a burst revealed that the MHD activity causes
on _average a deterioration of the electron
confinement in a ring zone of the cross-section, but
not in the whole plasma core.

Finally, in order to clarify the nature of the fast
signal oscillations in a burst, a simple m=2
perturbation model was used to simufate the
experimental data. The model assumes an electron
density distribution consisting of a rigid pedestal, on
top of which rotates a squeezed peak. By choosing a
hollow density profile for the rotating peak and
keeping its elongation fixed during one revolution, a
fairly close fit to the oscillatory parts of the measured
signals has been obtained.

Unfortunately, some of the features of the
pedestal model (in particular, the location of the
crescent-shaped islands and the hollowness of the
core distribution) are inconsistent with the findings
for the “average” profile change during a MHD burst.
In principle, this situation can be amended by
developing a more advanced model (possibly by
taking into account the true shape of the flux surfaces
and allowing for contributions of higher-order
perturbations with even mode number m). On the
other hand, any sophistication of the simple pedestal
model increases the number of free parameters at the
expense of unambiguity, unless additional
information provided by other diagnostics can be
incorporated. For example, a detailed analysis of the
Mimov oscillations might indicate the presence and
relative strength of higher-order perturbations, and
time and space resolved measurements of the
electron temperature and the soft x-ray emission
could help to determine the shape and size of the
rotating core strucivre. In addition, for the CHS
device rather wunique information about the
electrostatic potential profile under very similar
discharge conditions is available, and it is certainly
rewarding to use these data for a detailed comparison
— not only to improve the knowledge about the

— 8 —

density distribution but also to correlate potential and
density fluctuations for the purpose of transport
analyses.
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5. Appendix

5.1. removal of phase jumps in the interferometric signals
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! SUBROUTINE: JUMP
!

! PURPOSE: Eliminate overflow of phase detector and adjust base line to zero
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subroutine JUMP(signal,ndata)

implicit none

integer i,j.k.ndata !ndata = number of data points in input/output array
real signal(ndata) ! signal = phase shift data
real vor !'vor = offset prior to plasma ignition

do 1 j=1,ndata-1
if ((signal(3+1)-signal(j)).gt.250.) signal(j+1)=signal(j+1)-360.
if ((signal(j+1}-signal(})).gt.-90.) goto 1
do 2 k=1,20
signal(j+1)=signal(j+1H360.
if ((signal(j+1)-signal(j)).gt.-90.) goto 1
2 continue
1 continue

vor=0.0 ! calculate average phase shift for the first 300 data points
do 1=1,300

vor=vor+signai(i}

enddo

vor=vor/300.

do j=1.ndata ! subtract offset from phase shift data
signal(j)=signal(j)-vor

enddo

end subroutine JUMP

5.2, calculation of the density distribution for a given phase shift profile
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! SUBROUTINE: INVERS
!
I PURPOSE: inversion of phase shift profile for special geometry of CHS

! {calibration factor ,fac* valid for wavelength of HCN laser and double beam path)
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subroutine INVERS(x.y,a,nx)

implicit none

integer nx ! nx = number of data points in phase shift profile
integer i,j,k

real x{nx) !'x = abscissa of phase shift profile (input)
real y(nx) 'y = phase shift data (input)
real a(nx) 'a =electron density in ring zones {(output)

real ac,be.f,xs,sum,hil,h2,z0,zu,fac

parameter {ac=2.04,bc=0.036,fac=0.052)

f=fac*(y(nx)+y(nx-1))/2. ! calculate local value in outermost zone

xs=(x(nx}+x(nx-1})/2.
hl=ac*exp(bc*x(nx))
zo=h1*sqrt{x(nx)**2-x5**2)
a(nx-1)=f/zo



do 1 i=nx-2,1,-1 ! calculate local values in zones by
f=fac*(y(i+1)+y(i))/2. ! progressing from ouside to center
xs=(x(i+1)+x(i))/2.
sum=0.0
do 2 k=nx-1,i+1,-1
hl=ac*exp(bc*x(k+1))
zo=h1*sqrt{x{k+1)*¥*2-x5¥¥%2)
h2=ac*exp(bc*x(k))
zu=h2*sqri{x(k)**2-xs**2)
sum=sum+a(k)*(zo-zu)
2 continue
hl=ac*exp(bc*xz(i+1))
zo=h1*sqri{x(i+1)**2-xs**2)
a(i)=(f-sum)/zo
1 continue

end subroutine INVERS

5.3. caleulation of the phase skift profile for a given density distribution

!*# sk ke kg £ 2

! SUBROUTINE: PHASCOMP

!

! PURPOSE: calculation of phase shift profile for a given density distribution in geometry of CHS

! (calibration factor ,.con* valid for wavelength of HCN laser and double beam path)
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subroutine PHASCOMP(x.ne,phas.nx})

implicit none

integer nx ! nx = number of data points in phase shift profile
integer in,ip
real x(nx) 'x = abscissa of electron density profile (input)
real ne(nx) ! ne = electron density data (input)
real phas(nx) ! phas = phase shift data (output)

real con,ac,bc fac,delx,deln,a,xp
parameter (con=10.89,ac=2.04,bc=0.036)

delx=x(2)-x(1)
do 1 in=1,0x-1
deln=ne(in)-ne(in+1)
a=x(in)}+delx/2.
fac=con®ac*exp(bc¥*a)
phas(in)=0.0
do 2 ip=L,in
xp=x(ip)-deix/2.
phas(ip)=phas(ip)}+fac*deln*sqrt(a*a-xp*xp)

2 continue
1 continue
phas(nx)=0.0
end subroutine PHASCOMP



5.4. calculation of the chord length L

Y

a— N

i Sa(Xz, Vo)

Consider a tilted ellipse with semi-axes b and ¢ = eb according to subfigure (a), which is intersected by a
horizontal line at a distance z from the origin. If we rotate the graph by the angle - as shown in subfigure
(b), we can express the ellipse as

()

2 2
X
b—2+y—2:1 = y=gvb’—x* (where e=a/b),
a
and the line is given by
z —x-sinQ—z
y=—x-tano— = .
cosQL cos QL

For the intersection poinis S, and 5, we have

£Jb” —x coso=—(x sinot+z).

Solving this equation for x, yieids

—zsina*ecos raz,/bz(sin2 o+e’cos’ ) —z°
X2 = .

sin” o+ €” cos® o

From the shaded triangle in subfigure (b} we find immediately

XX
L

X, =X
cosel

cose = = L=

and by combining the last two equations, we obtain the result

2¢4fb? (sin’® a+ €2 cos’ o)) — 2
sin” ot +&” cos’ & ‘

I{z,b,e,00) =
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1 FUNCTION: CL

!
! PURPOSE: calculation of chord length in tilted elflipse
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function cl(z,alph,eps,bax)

implicit none

real z Ichord distance from origin
real alph Irotation angle [rad]

real eps tellipticity a_axis/b_axis
real bax 'major semi-axis of ellipse
real ¢l 'chord length

real aux1,aux2

ci=0.0

aux I=sin{alph)*sin(alph)+eps*eps*cos{alph)*cos(alph)
aux2=bax*bax*aux1-z*z

if (aux2.gt.0.0) cl=2.*eps*sqrt(aux2)/aux1

return
end function cl

5.5. calculation of the axis b

I 3 y
P(Xo: Yo)
e Yol
o
L
X >
(a) {b)

In owr model, the contour lines of the plasma core are ellipses which rotate on a static pedestal. Because the
outermost of these contours always touches the edge of the pedestal, the length & is a function of the rotation
angle o. For a given pedestal {axes A and B) and for a fixed ellipticity £=a/b of the rotating contour we want to
determine the axis &(cr).

Consider a fixed point P on the ellipse. For =0 (subfig. (a)) this point satisfies the equation

2 2
z'_;_;.y_g:l = yozg,sz—xg (where e=a/b).
a

A rotation of the ellipse by the angle a (subfig. (b)) moves P to the co-ordinates
X =xcostt—y,sin0t  and ¥, =x,sind+y,cos0.
If P is the point of contact with the pedestal {outer ellipse), then it has to satisfy the condition

2 2
_El_z_-[-y_lzzl_
B A

Combining all these formulas, we obtain



2 2
(xo cos o —€+4/b° — x] sin 05) (xﬁ sino+e4/b’ — x; cosa)

7 + Ve =1,

which we can solve for x,

Vb = 2uf + (Vb = 2uE) — A’ +v7)E
2u’ +v°)

2
(X3, =

u=B*(sin’ o —€° cos” o)+ A’ (cos’ e — €7 sin” o)
where: {v=2g(B*—A%) sinat costx

E=e’(B'cos’a+ A’sino)p’ —A'B* =w-b* ~5

Because we want P tc be a point of contact and not a point of intersection of the two ellipses, the root must be
zero:

(V'b* —2uE)* —4E (W +v) =0.

Replacing the quantities w, v and £, we can solve this equation for & and arrive at

b(o,e,A B)= \/5—1_2[“ +2w—Ju? +v2]
£

u=B’(sin’ o —&” cos® o)+ A’ (cos® ot —&” sin’ o)
where: { v=2&(B*~A’) sina cosa

w=g*(B’cos’ o+ A’sin’ )

For reasons explained in section 3.3.1. it may be more realistic, not to prescribe the ellipticity e=a/b of the

rotating contour but to keep the area F =7tab =7eh” constant during the rotation. In that case, we have to

substitute the ellipticity by €= f /b’ , where f = F /T . After some algebra we obtain:

b(cx,f,A,B)z\/p+Vp —4j ot

2c

p=A232+f2
where: 0= B’ sin’ o+ A’ cos’ o

7= B*cos’ e+ A’sin* o
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FUNCTION: BAX1

PURPOSE: calculation of serni-axis of circumscribed, tilted ellipse

{prescribed ellipticity}
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function bax1{alph,eps,aa,bb)

implicit none

real alph Irotation angle [rad]

real eps lellipticity a_axis/b_axis

real aa Iminor semi-axis of outer ellipse
real bb !major semi-axis of outer ellipse
real bax1 !'majer semi-axis of tilted inner ellipse

real aux1,auxZ,u,v,w

bax1=0.0

aux 1=sin{alph)*sin(alph)-eps*eps*cos(alph)*cos(alph)
aux2=cos(alph)*cos(alph)-eps*eps*sin(alph)*sin(alph)
u=bb*bb*auxl+aa*aa*aux2

aux1=2 *eps*sin(alph)*cos(alph)
v=(bb*bb-aa*aa)*aux1

aux I=bb*bb*cos(alph)y*cos(alph)
aux2=aa*aa*sin(alph)*sin(alph)
w=eps¥eps*(aux1+aux)

aux1=u*u+v*v

if(aux1.gt.0.0)aux i =sqrt(aux1)

aux2=n42 *w-auxl

if(aux2.gt.0.0) bax 1=sqri(aux2/(2. *eps*eps))

return
end function bax 1

Ed sk Lk *
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!
!
!

FUNCTION: BAX2

PURPOSE: calculation of semi-axis of circumscribed, tilted ellipse

{prescribed area)

!’FJF

10

function bax2(alph,f,aa,bb)

implicit none

real alph Irotation angle [rad}

real f larea of ellipse divided by pi
real aa Yminor semi-axis of outer ellipse
real bb Imajor semi-axis of cuter ellipse

real bax2 !major semi-axis of tilted inner ellipse
real aux,r,s,t

bax2=0.0

r=aa*aa*bb*bb+{*f
s=bb*bb*sin{alph)*sin(alph}+aa*aa*cos(alph)*cos(alph)
t=bb*bb*cos(alph)*cos(alph)}+aa*aa*sin(alph)*sin(alph)
aux=r*r-4.*f*{*s*

if(aux.le.0.0)goto 10

aux=(r+sqrit{aux))/(2.¥s)

if{aux.le.0.0)goto 10

bax2=sqri(aux}

retiim
end function bax2



5.6. calculation of signal modulation (pedestal model)
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SUBROUTINE: PHASMOD

PURPOSE: modulation of phase shift signal produced by rotating plasma core
(calculation for rotation of 90 deg)
{calibration factor FAC valid for double-pass HCN laser)

!**************3}'*************************************************************

!
1
!
'
!

subroutine phasmod{z,a,b.ne.n,eps.f,model.phidat)

implicit none

real z !position of probe beam

real a.b !minor and major axis of elliptical pedestal

integer n 'number of ring zones

real ne(n) lelectron density in ring zones (i=1: center; i=n: edge)

real eps !prescribed ellipticity of plasma core (model=1)

real f Iprescribed area of outermost rotating ellipse (model=2)
integer model 'fixed ellipticity OR fixed area

real phidat(2,91) !2-d array for phase shifts vs rotation angle

real fac,pi.adeg,arad.b0,f0,eps0,bd.dne,chord,phi,bax 1 ,bax2 ¢}
integer ia,id

parameter (fac=10.89) 'ne in 10713 cm”-3; path length in cm
pi=2 *asin(1.)

do 1ia=1,91
adeg=float(ia-1)
phidat(1,1a)=adeg
if(abs(z).ge.a)then
phidat(2,ia)=0.0
goto |
endif
arad=(pi/180.)*adeg
if(model.eq. 1Ythen
bO=bax 1(arad.eps,a,b)

epsO=eps
f0=eps*b0*bl)
else
b{l=bax2{arad.f,a,b)
eps(=t/(b0*bi})
fO=f
endif
phi=0.0
do 2 id=1,n
bd=fleat(n+1-id)*b0/float(n)
iffabs(z).ge.bd)goto 10
dne=ne(n)
if(id.gt.1) dne=ne{n+1-i1d)-ne(n+2-id)
chord=cl(z,arad,eps0,bd)
phi=phi+dne*chord
2 continug
10 phidat(2,ia)=fac*(f/f0)*phi
1 continue
return

end subroutine phasmod
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Fig. 1: positions of the interferometric probing beams in the non-circular cross-
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Fig. 2: interferometric signals (after correction for phase jumps) measured in CHS shot
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Fig. 8: phase shift profile calculated by a spline interpolation of the
experimental data (averaged over MHD activity in the time interval
between 110 and 115 ms).
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Fig. 9: electron density distribution corresponding to the phase shift profile
of Fig. 8.
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Fig.13: electron density distributions at different times in the discharge (the dashed
lines result from Abel inversion of phase shift profiles, which were constructed by
means of spline interpolation; the coloured lines are smooth distributions, for which
the re-calculated phase shift profiles conform to the experimental data within
reasonable error bars).
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Fig. 14: interferometric signals measured by the fixed probing beam In a series of
discharges; the shaded regions indicate the selected time intervals (black lines:
signals after low-pass filtering).
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Fig. 20: three-dimensional view and
contour lines of the electron density
distribution used for model calculations
(rotating plasma core on top of a
stationary pedestal).
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Fig. 21: left: illustration of the rotating plasma core used for model calculations (red
circumferences indicate cross-section of CHS); right: assumed electron density in the
ring zones of the plasma core (distributions are normalised to yield the same total
number of electrons).
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