' | | - iSSN D915-633K
& - -

INTERNATIONAL ATOMIC ENERGY AGENCY

.18th IAEA Fusion Energy Conference
Sorrento, Italy, 4 to 10 October 2000

IAEA-CN-77/TH6/2

NATIONAL INSTITUTE FOR FUSION SCIENCE -

- Fokker-Planck Simulation Study of
Alfvén Eigenmode Burst ay

Todo, Y., Watanabe, T.-H., Park, H.-B., Sato, T.

(Received - Aug. 30, 2000)

NIFS-645

This report was prepared as a preprint of work performed as a collaboration
reserch of the National Institute for Fusion Science (NIFS) of Japan. This documcnt is
intended for infomation only and for future publication in a journal after some rearrange—
ments of its contents. -

ﬂ Inquiries about copyright and reproduction should be addressed to the Research
B| Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi, |
Gifu-ken 509-02 Japan.

RESEARCH REPORT
NIFS Senes

f_;_@ﬂl Gk
‘I‘“@vﬁo f:@m--

5 @ L“:r \zation(s). In particular, neither the IAEA nor any
¥2%n be held responsnble for any material reproduced in :

‘TOKI JAPAN



(FEw

i)

e INTERNATIONAL ATOMIC ENERGY AGENCY

18th YAEA Fusion Encrgy Conference
Sorrento, Italy, 4 to 10 October 2000

IAEA-CN-77/TH6/2

This is a preprint of a paper intended for presentation at a scientific meeting. Because of the
provisional nature of its content and since changes of substance or detail may have to be made before
publication, the preprint is made available on the understanding that it will not be cited in the literature or in
any way be reproduced in its present form. The views expressed and the statements made remain the
responsibility of the named author(s); the views do not necessarily reflect those of the government of the
designating Member State(s) or of the designating organization(s). In particular, neither the IAEA nor any

other organization or body sponsoring this meeting can be held responsible for any material reproduced in
this preprint.
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Abstract. Recurrent bursts of toroidicity-induced Alfvén eigenmodes (TAE) are reproduced
with the Fokker-Planck-magnetohydrodynamic simulation where fast-ion source and slowing
down are incorporated self-consistently. The bursts take place with a regular time interval and
behaviors of all the TAEs are synchronized. The fast-ion transport due to TAE activity spatially
broadens the classical fast-ion distribution and significantly reduces its peak value. Only a small
change of the distribution takes place with each burst, leading to loss of a small fraction of fast
ions. The system stays close to the marginal stability state established through the interplay of
fast-ion source, slowing down, and TAE activity.

1. Introduction

Toroidicity-induced Alfvén eigenmode (TAE) is a shear-Alfvén eigenmode in toroidal plas-
mas [1]. TAEs can be destabilized by fast ions which have velocities comparable to Alfvén
velocity. Several vears ago, recurrent bursts of TAEs were observed with drops in neutron
emission during neutral beam injection in TFTR [2] and DII-D [3]. The drops in neutron
emission have been recognized as a manifestation of TAE-induced fast-ion loss. Nomnlinear
evolution of TAEs, especially the TAE burst, is an important issue for fusion reactors,
since successful confinement of energetic alpha particles is required for self-sustained op-
eration. It must be noted that multiple TAEs are destabilized during TAE burst and
bursts take place at regular time intervals. The fraction of the drop in neutron emission
to the total emission in TFTR plasma was typically less than 10% (Fig. 4 of Ref. {2}).

It was demonstrated with numerical simulation of a system reduced by a mapping method
that the resonance overlap of multiple TAEs enhances the energy release from fast ions
to TAEs and synchronizes the behavior of multiple TAEs [4]. More realistic simulations
which incorporate the TAE mode structure and the resonance conditions in a realistic
tokamak are needed to make more quantitative comparisons with experiment. Recently,
Candy et al. [5] carried out §f particle simulation where linear eigenmodes are coupled
with fast-ion dynamics and reproduced a bursting behavior of TAE with realistic plasma
parameters. In Ref. [5] a single dominant TAE which grows up to an amplitude of
6B/B ~ 2 x 107% creates orbit islands in the phase space. Overlap of orbit islands makes
the entire phase space stochastic and allows rapid conversion of particle free energy to
wave energy. The large stochastic region causes a complete flattening of the fast-ion
density profile. Although this is one possible mechanism of periodic bursts due to neutral
beam injection, it seems unlikely for TFTR and DIII-D experiments since multiple modes
were observed.

Another simulation method, namely the Fokker-Planck-magnetohydrodynamic (MHD)
simulation, has been developed [6, 7, 8]. Results of the Fokker-Planck-MHD simulation
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FIG. 1. The fast-ion source profile and the g-profile as functions of the minor radius.

have shown that TAE bursts take place if the fast-ion slowing-down time is sufficiently
longer than the TAE damping time and the heating power is sufficiently high. In this
paper we report new simulation results where a few percent of fast ions are lost with
each TAE bursts and all the TAEs have a syuchronized behavior. We analyze the time
evolution of fast-ion distribution and show that the change of distribution with each burst
is relatively small compared with the distribution itself.

2. Simulation Model

A kinetic-MHD hybrid simulation model, which was used to investigate the saturation
mechanism of collisionless fast-ion driven TAE [9, 10], is employed. In this model plasma
is divided into two parts, the background plasma and fast ions. The background plasma
is described by the nonlinear full MHD equations and the electromagnetic field is given
by the MHD description. This approximation is reasonable under the condition that the
fast-ion density is much less than the background plasma density. The MHD equations
are,

dp
E - -V (pV), (}-)
p%v+pv-Vv: —Vp—i—l%o(VxB)xB—l—Vp/_\v, (2)
oB
E = -V x E, (3)
a
= V-G -10pv-v, (4)
E= —V X B: (5)

where pp is the vacuum magnetic permeability and v is the adiabatic constant, and all
other gquantities are conventional.

We use a four-dimensional phase space (R, ¢, z.v), where v is the parallel velocity and
(R,,z) are the cylindrical coordinates. Only the parallel velocity component is taken
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FIG. 2. Time evolutions of radial magnetic field fluctuations of m/n = 2/1,3/2,5 /3, and 6/4
harmonics.

into account for simplicity. We, however, adopt a Jacobian for the three-dimensional
velocity space to be consistent with the slowing-down term. The grid numbers used are
(65,72,65,20) for (R, ,z,v) coordinates, respectively. The initial condition is an MHD
equilibrium where the aspect ratio is 3. For analysis of simulation data a flux coordinate
system (r, o, #) is constructed. The unit of length is the Larmor radius of a fast ion whose
velocity is equal to the Alfvén velocity (= vamy/q;B) at the initial magnetic axis. The
minor radius denoted as a is taken to be 16, and the simulation domain is (32 < R < 64,
0 < z < 32). The initial magnetic axis locates at (R = Ry = 50.5,2 = 2 = 16). The unit
of time is the Alfvén time (74 = Rp/va).

The effect of fast ions on the MHD fluid is taken into account in the MHD momentum
equation through the fast-ion perpendicular current [10, 11]. Time evolution of the fast-
ion distribution is described by the following Fokker-Planck equation:

Of = V(o) e
b L i = 2 - )
vp = %[B+TZ—;Ube]+%[Exb], %
b = B/B, (8)
ay = %v xb-E (9)
S(x) = Spexp{—a®[(R— Ro)* + (z — 2)]} (10)
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F1G. 3. Contours of the toroidal electric field on a poloidal cross section at t = 71374 for toroidal
mode numbers of (a) n =1, (b) n=2.(c) n=3, and (d) n = 4.

Here, veqy is the critical velocity above which the collision with background electrons
dominates over that with background ions, and vy is the birth velocity of fast ions. We
choose Ve = 0.3v4 and vy = 1.5v4, respectively. On the right-hand-side of Eq. (6),
the slowing-down time is denoted as 7, and chosen 7, = 200074. The fourth term of
Eq. (6) represents the source of fast ions. In Eq. (10) a is set to be equal to 1/0.4a,
and Sy is chosen so that the ceniral fast-ion beta value of the classical distribution is
2%. The classical distribution is realized through a balance between the source and the
slowing down and is a steady solution without any nonaxisymmetric modes, especially
TAE activities. The source profile is shown in Fig. 1 with the g-profile. A finite viscosity
of 2 x 107°v4 Ry is considered to mimic the damping of TAEs. It yields, for example, an
e-folding damping time of 13074 for an n = 2 TAE which is the most unstable TAE in
the simulation described below. The Fokker-Planck equation and the full MHD equations
are solved with a finite difference method of a fourth-order accuracy in space and time.

3. Results

Time evolutions of radial magnetic fluctuation harmonics in the simulation results are
shown in Fig. 2. Four TAEs with the toroidal mode numbers from 1 to 4 are destabilized.
Figure 3 shows contours of the toroidal electric field of the four TAEs on a poloidal cross
section at ¢ = 713. The frequencies of m/n = 2/1,3/2,5/3, and 6/4 harmonics are 0.28w 4,
0.35w 4, 0.28w4, and 0.30w,, respectively, and these are reasonable values for TAE. At
¢ = 0 there is no fast ion and as time passes fast ions gradually accumulate due to the fast-
ion source. Accumulated fast ions destabilize the n = 2 TAE first at ¢t = 300. Later than
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FIG. 4. Time evolutions of total TAE energy and the fast-1on distribution peak value for v = v 4.

this precursory growth of the n = 2 TAE. the other TAEs grow up to levels comparable
to that of the n = 2 TAE and behaviors of all the TAEs are svnchronized.

We turn to the detailed behavior of the burst. In Fig. 4 we show time evolutions of the to-
tal TAE energy and the peak value of the fast-ion distribution function at v = v4. \We can
see correlation between drop in fast-ion distribution and growth of TAE energy. Figure 5
shows as a bird’s-eyve view plot in (¢. R) space the time evolution of fast-ion distribution
averaged in the toroidal angle with v = 24 on the midplane. Bright parts are regions
flattened due to TAE activity. TAEs flatten the fast-ion spatial distribution through the
E x B trapping. In contrast to the bright flattened regions, we can see dark regions elon-
gated in R-direction around ¢t = 700, 1400. 2100, and 2800 accompanying the TAE bursts.
These dark regions are rapid temporal changes of the fast-ion distribution. To see more
clearly, the fast-ion distributions are plotted in Fig. 6 as functions of the major radius (a)
at t = 2000 (before burst) and (b) at ¢ = 2300 (after burst) with the classical distribution
which is a steady solution obtained with a simulation suppressing any nonaxisymmetric
modes, especially TAE activities. Comparing the distributions before and after the burst,
it can be seen that the fast ions are transported outwards across a distribution precipice
at R = 59. We must pay attention to the following: (1) compared with the classical
distribution. the two distributions before and after the burst are significantly broadened
in the radial direction and their peak values are also reduced by half, (2) the change of the
distribution function during the burst is relatively small compared with the distnbution
itself. The former means that the fast-ion distribution is significantly affected by the
TAE activity. The latter indicates thai the difference between the unstable state {(before
burst) and the stable state {(after burst) is small. Thus. we conclude that the system
stavs close to the marginal stabilitv state which is established through the interplay of
fast-ion source, slowing down, and multiple TAEs" activity. This is a behavior different
from that found in the particle simulation (5] where with each burst the fast 1on density
is completely flattened from a steep-gradient state.

We show the time evolutions of total fast-ion energy and total TAE energy in Fig 7. It
can be seen that the drops in fast-ion energy of 3% take place accompanying TAE bursts.



FIG. 5. Bird’s-eye view plot of the time evolution of the fast-ion distribution on (¢, R) plane.
The distribution is averaged in toroidal angle on the midplane (z = 16) at v = v4.

These drops are due to fast-ion loss and are similar to those in neutron emission in neutral-
beam-injected plasmas [2, 3]. The fast-ion loss is a result of the outward transport of fast
ions.

4. Discussion and Summary

TAE burst with such a loss of small fraction of fast ions has been discussed in the res-
onance overlap scenario of multiple modes [12]. The synchronization of multiple TAEs
in the present simulation results is consistent with the resonance overlap scenario [4].
Bursting behavior of TAEs has been explained by the simple predator-prey model [13].
It, however, cannot discuss many characteristics revealed in the present simulation such
as the synchronization of multiple TAEs and the spatial broadening of the fast-ion distri-
bution. Furthermore, we would like to emphasize that the present simulation is based on
the fundamental physics principles.

Finally, let us compare the simulation and experimental results. If we apply the param-
eters By = 1 [T], Ry = 2.4 [m], and ny = 3 x 10" [m~?], which are typical for the TAE
bursts in the TFTR deuterium plasma [2], the bursting period of 700 74 in the simulation
results corresponds to 0.6 [ms]. This is shorter than the typical experimental value of 2
[ms]. This discrepancy arises from the shorter heating time scale, which we define as the
ratio of the accumulated fast-ion energy to the heating power, in the present simulation
than in the typical TFTR experiment by a factor of 7. The simulation time step is limited
by the time for the MHD fast mode to propagate the grid size, whereas we must simulate
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FIG. 6. Fast-ion distributions before {¢# = 2000) and after (f = 2300) the TAE burst and the
classical distribution, as functions of the major radius.

a time span of the several burst periods which is roughly comparable to the heating time
scale. The purpose that we have employed such a short heating time scale is to reduce
the time span simulated and make the CPU time reasonable. Nevertheless, even on the
present simulation run we have spent 70 hours using 15 CPU of NEC 5X-4/64M2. The
short burst period in simulation results also leads to the small ratio of the maximum am-
plitude to the minimum amplitude of n = 1 and 2 TAEs, since these modes do not have
enough time to damp in the short quiescent period. Therefore, more realistic simulation
is needed to make more strict comparison. We must note, however, that the volume-
averaged fast-ion beta value at the end of the simulation is 0.6% which is comparable to
the experiment. Since the fast-ion beta value is crucial for the TAE evolution, we have
chosen the slowing-down time and the source intensity Sy to meet the fast-ion beta with
experiment.

In conclusion, we have successfully reproduced the recurrent TAE burst and TAE-induced
fast-ion loss with the Fokker-Planck-MHD simulation. The TAE bursts take place at
a regular time interval and behaviors of all the TAEs are synchronized. The fast-ion
transport due to TAE activity spatially broadens the classical fast-ion distribution and
significantly redunces its peak value. Only a small change of the distribution takes place
with each burst, leading to loss of a small fraction of fast ions. The synchronization of
multiple TAEs and the loss of small fraction of fast ions are consistent with the resonance
overlap scenario. The system stays close to the marginal stability state established through
the interplay of fast-ion source. slowing down, and TAE activity.
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