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Abstract: Self-orgamized dynamics of toroidal helical plasma. which 1s induced by the nonlinear
transport property, s discussed. Neoclassical ripple diffusion is a dominant mechanism that dnives the
radial electric field. The bifurcation nature of the electric field generation gives rise to the electric field
domain interface, across which the electric ficld changes strongly. This domain interface is an ongin of
internal transport barrier in helical systems. This nonlinearity gives rise to the self-organized oscillations,
the electric field pulsation 1s one of the examples. Based on the model of density limit. in which the
competition between the transport loss and radiation loss 15 analyzed. dynamics near the density limit of
helical systemns is also discussed.

1. Introduction

In "steady-state” plasmas, plasma parameters evolve into self-regulated dynamical
states, often being associated with self-organized oscillations [1]. In long plasma
discharges, plasmas exhibit the features which are controlled by the nonlinear transport
property, being free from the initial conditions. Such a property is the central issue of the
physics of steady state plasmas. An example is the self-organized dynamics of the

internal transport barrier of high-3, tokamaks, in which the toroidal current is almost

completely sustained by the Bootstrap current [2]. The nonlinear transport drives, in one
hand. the transition causing the spatial interface between two different radial domains. On
the other hand, it induces the temporal evolution, 1.e., the self-organized dynamics. The
bifurcation of transport property, which generates the transport barrier like H-mode, gives
rise to the self-organized dynamics like dithering ELMs [3]. In this article, physics of
domain interface, barrier and self-organized dynamics is discussed for toroidal helical
plasmas, from the generic view point of theory and modelling.

2. Model
A simple set of transport equations is taken in order to study the dynamics of
helical plasmas. The electron density 7 , temperature 7 , and radial electric field £, are

chosen as parameters that characterize the plasma state. The dynamical model consists of
the particle balance equation, the equation of momentum or radial electric field, and the
equation for temperature, as

dnidt=—VI,+§, ey
dE jdi=V u NV E —1J, (2)
d(nT)ldt = —Vq,— P, /(3V) + P, /(3V). 3

Transport relations between plasma parameters and fluxes I', , ¢, , and |t \V.E, are
nonlinear function of plasma gradient as shown in, e.g., [1]. The particle sources 5,

radial current jr, energy input source P, and radiation loss P,,; play the role of source

terms in this dynamical system. The magnetic field is assumed to be constant in time.
This simplification excludes the self-organized dynamics like the one of ref.[2] in

improved confinement state, but is relevant for low-B helical plasmas. The systemn of

these equations allows a variety of dynamical solutions being associated with transport
barrier.



In helical systems, the neoclassical ripple transport could play a dominant role in
the term J, ,[E,] . Bifurcations of electric field and transport have been studied. The

electric field interface, across which radial domains with different electric field polarity
touch, has been predicted as a possibility for the internal transport barrier.

The particle flux associated with the helical-ripple trapped particles 1s employed
after {4] in order to have an analytic insight as

-1
¥ =nD, { 1+Ca%E2T; 2} (- 1 eE, T @)

2 -2 .
with D; = 24e%}?v; 'vj andC, =36¢'"g; '”T;(V JrBea) . Notation is as follows:

e = r/ R is the inverse aspect ratio, €, is the helical ripple, v;; = T/eRB is the toroidal drift
velocity, v is the pitch-angle collision frequency, 7 is the minor radius, R is the major
radius, @ is the plasma minor radius, and the prime " denotes the radial derivative d/dr,

and suffix j denotes species (e, i). The coefficient C, is small and is neglected. Hence
the neoclassical electron energy flux is expressed in the regime of ripple diffusion as

(4]

NCo_g T, Dylan' n ' +aeE, T.' +n,,al, T;’) (5)

where coefficients Y. =5 , N =4.5 and M ,> = 3.5 are numerical constants. The total

flux is given as a sum of the neoclassical flux and anomalous flux. The particle and
electron energy fluxes are put as

Uior = rve - Dyrom n (6)
Qe o1 = 42C —xnT, (7)

3. Domain Interface
The bifurcation is studied by solving the stationary solution of Eqgs.(1)-(3) for the
circumstance of the ECH plasmas. Figure [(a) illustrates the normalized radial electric

field X = 4/C, eaEJT, and normalized temperature gradient ¥ =— y/C N, aT /T, asa
function of the normalized radial energy flux Q, = v/C; (2D, T,) 'q e 1o ( Inthe case
of ECH plasma, density gradient is much weaker than the temperature gradient, and we
employ the simplification of ¥ >> | an'/n | .) At critical energy flux, the electric field
Jumps to a higher branch on which the neoclassical energy diffusion is much smaller. The

transition between two branches takes place at the critical heat flux @, , at which the
Maxwell's construction rule is satisfied,

f h {F,NC — Ff,"c}dX =0 (8)

Xy

where X; and X, are two stable solutions of the equation T?’C(X ) -T frC(X ) =0.
Depending on the magnitude of anomalous transport and the electron-to-ion
temperature ratio, the transition could be a soft transition. Figure 1(b) illustrates a soft
bifurcation. Figure 2 illustrates the parameter region where the hard transition is possible
to occur.
Analyses of Figs.1 and 2 are applied to understand the radial structure.
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Fig.1 Radial electric field X (solid line} and temperature gradient ¥ (dashed line) as a function of the
heat flux. (F/T.=2 . DJ/D, =026 b=T7/9 , y,=xM-D7v, =05 ; case (a}) and that for soft transition
(TJT,=3,DJD,=1.09  6=7/9 . x,=3 ; case (b))
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Fig.2 Region of hard transition is illustrated. (}.= %MDY, denotes the normalized anomalous

thermal transport coefficient.) Mass ratio is chosen as m /m, = 1836 . Below this critical line, hard
transition can take place.

For a fixed central heating power, the normalized heat flux @, is a function of radius.

The higher Q, denotes the inner region and the lower O, indicates the outer region. On
the magnetic swface where

0,=0; &)

is satisfied, the domain interface for radial electric field exists. (Inside of this radius, the
electric field is on the "electron branch' and outside is on the 'ion branch'.) Across this
domain interface, the radial electric field changes noticeably, so as to induce a large
electric field inhomogeneity. The internal transport barrier (ITB) is established if the
inhomogeneity is strong. This models the ITB formation in CHS [3]. Application to
LHD plasma is discussed in [6].

4. Dynamics of Barrier
The normalized electron energy flux has a dependence @, < g, 11 *3  Therefore,

the normalized heat flux is perturbed in the presence of temperature modulation 8T as
Q,=(1-4557) 0, (10)

Change of temperature 81 and that of electric field 8X are related as 8T = 8X through
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Fig.3 Radial electric field X as a function of the heat flux {a). Self-generated osciliation 1s possible (b).
Solid and dashed lines indicate 8X/0r =0 and 90 /9t =0 | respectively.

the relation of ¥ = (1 + Xam)—] (Q, +X ) . Substitution of the approximation 87 =~ 8X
into Eq.(9) gives an estimate

Q. =(1-4538X) 0, (11)

where O is the unperturbed value. Figure 3 illustrates the flow diagram in the (X. Q,)

space. The solid line shows the condition dX/dt =0 and the dashed line indicates

dQ/dt =0 . The cross-point is a fixed point. If the heating power is chosen as
appropriate value, the fixed point could be an unstable fixed point. The limit cycle
oscillation is possible to occur. This is a model of electric field pulsation which has been
found in CHS [5].

The edge transport barrier is also studied. The self-organized oscillation takes
place for the edge transport barrier for helical plasmas [7]. The 1-D transport equations
(2) and (3) are soived for edge plasma (fixed density). A simple model of transport

coefficient is employed as X = Yo/ (1 +X 2) , in order to model the influence of strong

localized electric field. An edge transport barrier is established if the heat flux exceeds a
critical vatue. In the vicinity of the critical heat flux, the repetitive establishment and decay
of the barner occur, as is illustrated in Fig.4. This 1s attributed to the dithering ELMs of
helical systems.
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Fig.4 Temporal evolution of edge temperature (a) and heat flux across the edge 4., (b). Trajectory on
the T —gq,, is also illustrated (c).



5. Density Limit Oscillation
In impure plasmas. the radiation loss plays an important foic in the long time
evolution of confined plasmas. The dependence of the radiation loss on the temperature

and density. P, = n;-”,r<Lz(T)>V with (LZ(TD =& 777 _is known to cause the radiation

instability, which would bound the operational density of toroidal plasmas. Combinations
of transport equations also predict the self-organized dynamics near the density limit. By
the growth of the symmetry-breaking perturbations, the rapid loss takes place. The
critical condition for this instability is given in terms of the density and temperature as

)”(Y*“}

T~ < {E4°Rn /3. , (12)

where ¥y = 2/(W{ + 3.5) and the paralle! transport coefficient is assumed to have a form

=X f 'T?" _ When this instability occurs, the rapid plasma loss happens. By the
onset of the reduction of density, the radiation collapse stops to continue, and the high
temperature plasma can be recovered. This process repeats itself. This self-generated
oscillation of density and radiation loss is a model of density limit oscillation in W7-AS
stellarator [8].

Other possible self-organized dynamics in helical plasmas is the thermoelectric
oscillation. Under the constant external heating, the absorbed power depends on the
plasma parameter and electromagnetic field. This dependence causes another self-
organized dynamics in helical plasmas.[9].

6. Summary

'Steady state’ plasmas are often considered to be realized in confinement devices,
in which the confining magnetic field is constant in time. In such plasmas. however, the
nonlinear property of transport is the key for the spatio-temporal structure. The spatial
domain interface is predicted to appear, being associated with the transport barrier. This
mechanism, at the same time. induces the self-organized dynamics. This self-sustained
dynamics is the key issue of the long-time asymptotic nature of the confined plasmas.
Helical plasmas could be associated with the variety of dymanical phenomena in the
absence of violent MHD activities.
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