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Abstract: An ICRF Heating experiment was conducted in the third campaign of the LHD in 1999.

1.35 MW of ICRF power was injected into the plasma and 200k] of stored energy was obtained, which
was maintained for 5 sec only by ICRF power after the termination of the ECH. The impurity problem
was so completely overcome that the pulse length was easily extended to 68 sec at a power level 0of 0.75
MW. The utility of a liquid stub tuner in steady state plasma heating was demonstrated in this shot. The
energy confinement time of the ICRF heated plasma has the same dependences on plasma parameters as
the ISS95 stellarator scaling with a multiplication factor of 1.5, which is a high efficiency comparable to
NBI. Such an improvement in performance was obtained by applying various rmeasures, including
1)scanning of the magnetic field intensity and minority concentration, 2)improvement of particle orbit
due to a shift of the magnetic axis, and 3) reduction of impurities by means of Ti-gettering and the use of
carbon divertor plates. In the optimized heating regime, ion heating turned out to be the dominant
heating mechanism, different from that of in CHS and W7-AS. Due to the high quality of the heating and
the extended parameter range far beyond that of previous experiments, the experiment can be regarded as
the first complete demonstration of ICRF heating in stellarators.

1. Introduction

Jon Cyclotron Range of Frequency Heating is presently an established heating scheme in
tokamaks though there have been a difficulties where impurity problems ultimately limited the
high power injection, causing disruptions of the plasma. Whether ICRF heating works as well in
helical systems as in tokamaks has been the subject of increasing attention. The establishment
of ICRF heating has special importance in helical systems because it is directly related to the
improvement of the orbits of the trapped ions [1]. Since helical systems have advantages over
tokamaks with regard to the issues of the current disruption and current drive, study of the high
energy particles associated with ICRF heating is one of the most important subjects of current
reserch.

ICRF heating in helical systems has rather a longer history than that in tokamaks. It has been
investigated in C-stellarator[2], Heliotron-E[3], L-2[4], ATF{5], CHS[6-7] and W7-AS[8],
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which report improved performances in recent experiments.

An ICRF heating experiment was first conducted on the Large Helical Device (LHD) in the
second campaign conducted in 1998[9-10]. The experiment , however, ended with limited
success for the LHD device was in the starting-up phase.

This paper reports results of the experiments carried out in 1999, in which a significant new
measure was taken. The experimental set up is explained in section 2. Typical shots are shown
n section 3 to summarize the achievements of the third campaign. It is followed by the
descriptions of 1) impurity control methods, 2)optimization of the heating regime and
understanding of the physics of ICRF heating in LHD configuration reached, and 3)the behavior
of high energy particles, which suggests improved particle confinement. In section 4, the effect
of an inward shift of the magnetic axis is discussed as a possible explanation of the improved
performance of the ICRF heating compared to that in the experiment in the 2nd campaign.

2. Experimental setup

The LHD is a Large Helical Device of Heliotron/Torsatoron type with super conducting
1=2/m=10 windings [11-12]. The major radius R and averaged minor radius are 3.75m and 0.5m,
respectively. ICRF heating in the LHD has the final goal of injecting 10MW for 10 sec. and
3MW in steady state. Seven years (from 1991 to 1997) were devoted to the R&D in order to
support this mission technologically. The results of the R&D are reported in previous
publications| 13-16}]. The hardware developed includes steady state amplifiers{13], water-cooled

antennas!12-141 and liquid stub tuners[ 151
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Fig.1 The ICRF antenna used in the experiment. ) .

The antenna is located in the foroidal section where Fig.2 The location of the cyclotron-,

th tion i teally el ted. two-ion-hybrid-, and cutoff- layers in
€ Cross sechion is verticatty etongate the optimized heating regime in LHD.

As depicted in Fig.1, the antenna is located in the toroidal section, where the plasma is
vertically elongated. The antenna surface is twisted so as to follow the shape of the plasma
surface, and its position is variable in order to adjust the distance from the plasma. In the ICRF
experiments in the LHD, helium plasma was mainly used and hydrogen minority ions were
introduced to facilitate minority heating or two-ion-hybrid regimes. Figure 2 shows the
locations of cyclotron, cut-off, and two-ion-hybrid resonance layers by which heating regimes
are characterized. They are dependent on @/ @_ ,,, the frequency normalized to the cyclotron
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frequency on the magnetic axis.

[CRF heating had been attempted in the second campaign. However, the results were not
conclusive where BT was set to 1.5 T with a frequency of 25.6MHz, as the LHD itself was in its
starting phase [9-10]. ICRF heating was attempted again in the third campaign (1999) and a
drastically improved heating performance was obtained [17-20]. The improvement is partly
attributed to the increase in the magnetic field, now 2.75 T in most of the experiment. The
frequency was accordingly raised from 26.5MHz to 38.47MHz and brought about an enhanced
loading resistance. The liquid stub tuner was modified from a phase shifter type to a three-stub
tuner type to enhance the over-all stand-off voltage of the tuner. In order to avoid arcing in the
transmission line, a voltage limit of 35kV was imposed. The utility of liquid stub tuners was
thus demonstrated in experiments.

Another factor to be noted is advances in the condition of the wall. The I.LHD has a well defined
natural divertor which must have played a role in relation to the impurity problem, though a
direct comparison of the result without a divertor can not be made. Carbon divertor plates were
installed in the third campaign . In Fig. 3, the radial profiles of the radiation power before and
after the installation of the carbon divertor plates are compared; the latter has a more hollow
profile suggesting that heavy impurity has been eliminated [21].

Titanium gettering was further introduced to reduce oxygen. Since a high density plasma can be
sustained by increasing ICRF power and reducingd impurities, the range of possible operational
density regime was increased in the third campaign. In turn, higher power can be injected at
high density plasma due to the increased loading resistance. It is this virtuous circle that made
possible the remarkable improvement in the performance of the ICRF heating in the third
campaign. Figure 4 shows how the injected power increased in successive shots after the
application of Ti-gettering. The plasma stored energy increased even more, due both to the
increased power and to the improved confinement associated with the higher density attained.
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Fig.3 The radiation profiles of with and Fig.4 The improvement of the performances of
without carbon divertor plates. the plasma after Ti-gettering was applied.

3. Experimental Results

In the process of optimization of ICRF heating, a series of experiments was conducted by
scanning the magnetic field strength and minority concentration ratio. Due to the unique
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magnetic configuration of the LHD, wave propagation and absorption themselves are
interesting subjects of investigation.

Since the magnetic field intensity decreases with increasing radius along the larger axis and
increases along the shorter axis, the wave can incident both from the low field side and the high
field side with respect to the cyclotron layer(see Fig.2). Shown in Figures5 are the locations of
the cyclotron layers for various value of the magnetic field intensity. It is easily seen in this
figure that a higher fraction of the power is launched from the high field side with a higher
value of the magnetic field. The power absorbed by electrons can be determined in the
experiment from the decay of the electron temperature. The power absorbed by electrons
normalized to the injected power is plotted in Fig. 6 versus the magnetic field intensity. The
remaining power is taken to be absorbed mostly by ions. Figure 6 clearly shows that electron
heating 1s dominant with a higher value of the central magnetic field and ion heating takes its
place as the magnetic field decreases. It is suggestive that the same paradigm established in
tokamaks can be appiied to a helical system, where the distribution of the magnetic field is
different; one only has to consider a homotopy from one to the other.
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Fig.5 The location of the cyclotron Fig.6 The fraction of the power absorbed by
layers: it moves withthe magnetic field electrons.
intensity

The best heating efficiency was obtained with @/ @, ; =0.92, the contour of which is shown
in Fig. 5. It was regarded as the optimal heating regime and used in most of the experiments in
the third campaign. After these optimization efforts, ICRF power of up to 1.3MW was injected
into the plasma with consistent success allowing for various experiments under different
conditions. Three typical shots are described in the followings.

1) ICRF self sustained plasma

In the past, many ICRF heating experiments suffered from a rise in impurities, which often led
to a thermal collapse of the plasma when the impurity radiation power exceeded the heating
power. Therefore the simple fact that ICRF could sustain the plasma indicates that the impurity
problems have been overcome. In the shot shown in Fig.7, 1.3MW of ICRF power is injected to
sustain the plasma for 5 seconds following the turning off of the ECH. The plasma parameters
are Wp~200kJ, n, ~1.8x10”m™ and Te~ Ti~ 2keV, with which the relevance of the ICRF
heating in helical systems is demonstrated..

2) Once the impurity problem is solved in ICRF heating, it is relatively easy to extend the latter
to longer pulse operation. The longest pulse was obtained in the last week of the third campaign,
where 0.8MW of ICRF power sustained a plasma for 68 sec with the following parameters:
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Wp~110kJ, n~1x10"m™, and Te~ Ti~ 2keV. As shown in Fig. 8, the radiation loss is
suppressed to a low level with no sign of impurity accumulation.
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sustained by ICRF only.

3) Application of ICRF power to an NBI target plasma.

ICRF was applied to a NBI target plasma as shown in Fig. 9. The ICRF power was 1.3MW and
a stored energy increment of 100kJ was obtained. This indicates that [CRF can contribute to
future high power experiments as a reliable heating scheme. ICRF heating of theNBI target was
observed for the highest plasma densities obtained of 6 X 10°m™.
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With the expanded power level and density range ICRF heating was first used in the
confinement study. The power dependence of the confinement time is shown in Fig.10 with
plasma density taken as a parameter. The data involves ICRF, NBI, and NBI+ICRF data and is
found to follow the ISS95 scaling with multiplication factor above 1.5. Therefore, the heating
efficiency of the ICRF heating is as good as that of NBI.

It has been assumed that electron heating is the easiest way to demonstrate the utility of ICRF in
helical systems. It is noted from this point of view that ion heating is dominant in the heating
regime adopted in the third campaign. It is also our expectation that ion heating may well be
utilized in larger devices where energy relaxation is increased. A diamond FNA detector was
introduced in the experiment to measure the high energy tail of hydrogen ions[22-23]. Figure 11
shows the energy spectrum of the hydrogen ions before and after the switching on of RF. It is
noted that the high energy tail extends to 200keV, indicating that high energy ions are well
confined. Since the detector views the plasma almost perpendicular to the magnetic field, the
observed high energy tail is that of the trapped particles. Figure 12 shows the effective
temperature of the high energy tail plotted versus the formula given by Stix[24]. The
unsaturated linear relation indicates that the particles are confined for a long enough time to
equilibrate with electrons.
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Fig.11 spectrum of high energy ions

4. Discussion

As one of the reasons for the improved performance of the ICRF heating in the LHD, the
improved particle orbit of trapped particles is considered. In Figures 9(a) and (b), drift orbits of
high energy trapped ions with different major radius R=3.75 m and R=3.6m are compared. The
former is the standard configuration of LHD adopted in the 2nd campaign and the latter is the
inward shifted configuration adopted in the 3rd campaign. It is found that, while the drift orbit
travels across the flux surfaces in the standard configuration, the drift orbits in the inward
shifted configuration do not. The Flux-surface-averaged Fokker-Planck equation is generally
used in tokamaks in the studies of behavior of high energy particles. However it may not be
relevant int helical systems where drift orbits are possibly misaligned to flux surfaces unless they
are properly optimized. Here, the Monte-Carlo Orbit code [25] was used to analyze the
observed difference in the performance due to the magnetic axis shift. In figures 10(a) and (b)
heating efficiency, the ratio of the power transferred to electrons and He ions to the power
absorbed by minority ions, are compared between the two cases of different magnetic axis.



Fig.13. The drift surface of a trapped particle in the case of: (a); R=3.75 m and (b); R=3.6m
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A Remarkable improvement in the heating efficiency is observed in the inward shifted case
particularly in the high power region. The difference of the efficiency from unity may not be
large in the power range of 1.35MW injection. However. this difference may be important from
the point of view that energetic particles impinging on the wall are assumed to generate an
impurity influx. It is also noted that the bulk ions are subject to the same loss mechanism in the
collision less regime.

the largest among existing stellarators, which enhances relaxation and may also have served for
improvement in the performance. An inward-shifted LHD plasma is known to violate the
Mercier stability criterion, and this was the reason that R=3.75m was taken as the standard
configuration. The good performance described in this paper is therefore linked to another
important finding that violation of the criterion do not cause deterioration in stability or energy
confinement[26].

Conclasion



The ICRF Heating Experiment in theLHD in 1999 showed a remarkable improvement in
performance. Due to the high quality of the heating and the extended parameter range, it can be
regarded as a complete demonstration of the effectiveness of ICRF heating in stellarators. In the
optimization of the heating regime, a series of experiments was conducted by scanning the
magnetic field intensity and minority concentration. This enabled a comprehensive study of the
mechanism of the ICRF heating in the unique magnetic field of the LHD. It was found that both
electron heating and ion heating regimes are attainabie, the choice of which primarily depends
on the magnetic field intensity. The proper choice of the heating regime was one of the key
elements of the success of the experiment. Ton heating is the dominant heating mechanism in
the optimized heating regime, which distinguishes this experiment from those in CHS and W7-
AS.

The magnetic axis of the plasma was shifted inward in the present experiment and the particle
orbit is considered to be improved. It was confirmed in the experiment that high energy
minority ions extending to 300keV are confined in the plasma. The improved confinement of
high energy particles is thought to be another key to the success of this experiment.

Metalic impurities were reduced by the installation of carbon divertor plates and light impurites
were reduced by the application of Ti-gettering. Thus the impurity problem was solved and a
68sec long pulse shot was realized, suggesting the utility of ICRF heating for steady state
plasma heating.
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