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Abstract. Global mode analyses of ideal MHD instability are performed under both fixed and
free boundary conditions for L/M = 2/10 heliotron configurations, where L and M are the po-
larity and toroidal field period of helical coils, respectively. Under the fixed boundary condition,
dangerous low-7 ballooning modes with n < M (n is a typical toroidal mode number) are not
destabilized, when the pressure gradient almost vanishes near plasma periphery. However, such
ballooning modes and/or peeling modes are destabilized under the free boundary condition even
for the currentless condition. when a steep pressure gradient exists near the plasma boundary.
Effects of the net toroidal current on the external modes are also discussed.

1. Introduction

Ideal MHD stability analyses in L = 2 heliotron systems with a large Shafranov shift
(M ~ 10), represented by LHD and CHS, have been performed mainly for pressure-
driven interchange modes, taking account of feasibility of currentless operations, where
L and M are the polarity and toroidal field period of helical coils, respectively The local
mode analyses for modes with a short wave length (n — oo} based on the Mercier crite-
rion and the two dimensional global mode analyses for modes with a finite wave length
{n < M) based on the stellarator-expansion have been done, where n is toroidal mode
nuinber. The results of the global mode analyses are consistent with those of the local
mode analyses. In contrast with thein, both ballooning modes and external modes have
not been examined intensively. The reason is that the global ballooning modes in three
dimensional systeins can not be constructed in terins of the results of the local mode
analysis in the ballooning space, and hence the local mode analysis merely gives the con-
jecture about the properties of global modes [1,2]. Recently, for the Mercier-unstable
MHD equilibria, the conjecture from the local ballooning mode analysis has been proved
[3]. On the other hand, feasibility of currentless operations puts obstacles on the free
boundary global mode analysis of the external modes thought to be tnainly driven by a
net toroidal current, so that only the two dimensional global mode analysis has been done
recently [4}.

The purpose of this article is to prove the conjecture from the local ballooning inode anal-
ysis in the Mercier-stable equilibria through the three dimensional global inode analysis,
and to perforin the three dimmensional free boundary global mode analysis for external
modes, in order to systematically clarify both their properties and influences on MHD
equilibria. MHD equilibria are calculated under the fixed boundary condition by using
VMEC [5], whose vacuum configuration is similar to the LHD standard configuration [6].
Only pressure and toroidal current profiles are changed to control MHD equilibria. Global
analyses are done by using CAS3D [7].

2. Local Mode Analysis

For convenience, the results of the local mode analysis are summarized here. The unsta-
ble eigenvalues w? in the local mode analysis of the ballooning modes are the function
of ¥, 8, and o, where ¢ and « are the labels of the flux surface and the magnetic field
line in the ballooning space, respectively, and @ is the radial wave number stemming
from the eikonal approximation. In Mercier-unstable equilibria, the unstable eigenvalues
w?(< 0) have two types of topological level surfaces in (1, 0y, @) space. One is cylindri-
cal level surface with the axis along o direction. The other is spheroidal level surface,
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which exists inside of the cylindrical level surfaces. Only spheroidal level surfaces exist in
Mercier-stable equilibria. From those, it is conjectured that |2

1. Global modes that correspond to modes in the local mode analysis with a topo-
logically cylindrical level surface for w? will be poloidally localized tokamak-like
ballooning modes or interchange modes. Effects of the toroidal mode coupling on
these modes are weak.

2. Global modes corresponding to modes in the local mode analysis with a topologically
spheroidal level surface for w? will be such ballooning modes inherent to three-
dimensional systems with strong toroidal mode coupling that they have high poloidal
and toroidal mode numbers and are localized in both the poloidal and toroidal
directions. These modes become to be localized within each toroidal field period of
the helical coils, as their typical toroidal mode numbers become higher.

3. For Mercier-unstable equilibria, where both topologically cylindrical and spheroidal
level surfaces for w? coexist, poloidally localized tokamak-like ballooning modes or
interchange modes with weak toroidal mode coupling appear when their typical
toroidal mode numbers are relatively low. As the typical toroidal mode numbers
become higher, such ballooning modes inherent to three-dimensional systems appear
with strong toroidal mode coupling that they have larger growth rates and are
localized in both the poloidal and toroidal directions.

4, In Mercier-stable equilibria, where only a topologically spheroidal level surface for
w? exists, only such ballooning modes inherent to three-dimensional systems appear
with strong toroidal mode coupling that they have high poloidal and toroidal mode
numbers and are localized in both the poloidal and toroidal directions.

3. Fixed Boundary Global Mode Analysis

Three dimensional equilibria are categorized into two types; toroidicity-dominant equi-
libria with strong reduction of the local magnetic shear, and helicity-dominant ones with
weak reduction. The former is obtained by a peaked pressure profiles and/or a net toroidal
current decreasing the rotational transform ¢, which create a large Shafranov shift, and
the latter is made by a broader pressure profiles and/or a net toroidal current increasing
¢, leading to a simall Shafranov shift.

3.1 Mercier-unstable Equilibria

The toroidicity-dominant Mercier-unstable equilibrium is created with the peaked pres-
sure profile P = Fy(1 — ¢n)? with By = 5.9%, under the flux conserving condition, where
Yy and By are the normalized toroidal flux and the beta value at the magnetic axis,
respectively. Note that the normalized radial coordinate is given by ry = /¢x. The
helicity-dominant one is created with the broad pressure profile P = Fy(1 — ¢%)? with
o = 4%, under the currentless condition. The results of the global mode analysis are
consistent with the conjecture from the local mode analysis, as are indicated in Tab. 1.
Unstable modes occur in the plasma periphery with stellarator-like magnetic shear and
the averaged unfavorable magnetic curvature, where the Mercier criterion is violated [3].

toroidicity-dominant helicity-dominant

n < M | interchange modes with negligible | interchange modes with negligible
toroidal mode couplings toroidal mode couplings

n~ M | tokamak-like ballooning modes interchange modes with weak

with weak toroidal mode couplings | toroidal mode couplings
n > M | 3D ballooning modes with strong | 3D ballooning modes with strong
toroidal mode couplings toroidal mode couplings

Tab. 1 Most unstable modes in Mercier-unstable MHD equilibria



3.2 Mercier-stable Equilibrium

The Mercier-stable equilibria belong to the toroidicity-dominant equilibria, one of which
is created with the peaked pressure profile P = FPy(1 — ¥n)? with By = 8%, under the
currentless condition. The global inode analysis has newly proved the conjecture from
the local ballooning mode analysis as summarized in Tab. 2. Unstable modes localize in
the plasina periphery with stellarator-like magnetic shear and the averaged unfavorable
magnetic curvature as well as in Mercier-unstable equilibria.

n < M | stable
n ~ M | 3D ballooning modes with strong toroidal mode couplings
n > M | 3D ballooning modes with strong toroidal mode couplings

Tab. 2 Most unstable modes in Mercier-stable MHD equilibria

The nagnetic curvature consists of two parts: one is due to toroidicity, and the other is
due to helicity of helical coils. I = 2 heliotrons have an elliptic poloidal cross section
held between two helical coils. On the outer side of the torus, the magnetic curvature is
locally unfavorable on the horizontally elongated poloidal cross section and it is locally fa-
vorable on the vertically elongated poloidal cross section. From this variation of the local
magnetic curvature along the toroidal direction, low-n ballooning modes (n < M) with a
long wave length in the toroidal direction are not destabilized. In the contrast with thein.
ballooning modes with moderate (. ~ M) and high (n >» M) toroidal mode numbers can
be destabilized, because they could utilize the local magnetic curvature due to helicity
through the strong toroidal mode couplings. Figs. 1 and 2 show the radial Fourier mode
structure of the radial displacement £ Vi of three dimensional ballooning modes and the
corresponding typical toroidal inode numbers for n ~ M and n 3> M, respectively. There
are four (in Fig. 1) and six (in Fig. 2) groups of Fourier modes with different toroidal
mode nuinbers through a strong toroidal mode coupling. The groups of Fourier modes
with higher toroidal mode nuinbers exist in the region with higher rotational transform,
and neighboring groups of Fourier modes have opposite phase to each other. This retative
phase difference of the neighboring groups leads to the clear localization of the perturbed
pressure in the toroidal direction. On the outer side of the torus, the perturbed pres-
sure, which localizes on the horizontally elongated poloidal cross section with the locally
unfavorable magnetic curvature at the outside of the torus, alnost disappears on the ver-
tically elongated poloidal cross section with the locally favorable magnetic curvature at
the outside of the torus. Moreover, the strong toroidal mode coupling causes localization
into flux tubes.

From above results for internal inodes, it may be concluded that :

1. Dangerous low-7 ballooning inodes (n < M) with a large growth rate and a global
radial profile are not destabilized when the pressure gradient alinost vanishes near
the plasma periphery.

2. Most unstable high-n instabilities are three dimensional ballooning modes, which
may be considered to affect the marginal pressure gradient and the transport locally.

Note that for high-n ballooning modes, kinetic stabilizing effects (ion diamagnetic fre-
quency, finite Larmor radius) should be taken into account.

4. Free Boundary Global Mode Analysis

In three-dimensional equilibria, the basic rotational transform is created by the external
helical coil system, so that an amount of net toroidal current needed in tokamaks is not
required. Thus, external modes are thought to be driven by the free energy near the
plasina boundary. There are two types of free energy near the plasma boundary: one is
due to the pressure gradient, namely Pfirsch-Schliiter current, and the other is due to a
net toroidal current. Hereafter, effects of the vacuuin vessel are ignored, namely, the wall
exists infinitely away from the plasma boundary.
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4.1 Pressure-driven modes

MHD equilibria used in the global mode analyses for the internal modes have almost no
free energy near the plasina boundary, because the pressure gradient is quite small there,
so that external modes are stable in these equilibria. In order to introduce the free energy
due to the pressure gradient, a pressuré profile with a steep gradient near the boundary
is used: P = Fy(1 — 9w} with By = 8%, under the currentless condition. The rotational
transform at the plasma boundary is ¢, = 1.116. This equilibrium has a Mercier unsta-
ble region near the plasma periphery, however, it is stable or slightly unstable against
low-n interchange modes, under the fixed boundary condition. One of them is shown in
Fig. 3, where each Fourier mode of the interchange mode is strongly localized around the
mode rational surface. Under the free boundary condition, however, the mode structure
is significantly changed into a tokamak-like ballooning mode as is shown in Fig. 4. Also,
the growth rate is about ten times larger than that of the interchange mode under the
fixed boundary condition. In the free boundary case, each Fourier component of £ - V¢
may have a finite value at the plasima boundary. This fact allows the radial structure to
decay slowly from the mode rational surface to the boundary, which enable for the Fourier
modes to overlap in the radial direction, leading to a ballooning structure. Also, near the
plasma periphery the averaged magnetic curvature is always unfavorable and Mercier un-
stable, so that not a three-dimensional but a two-dimensional (tokamak-like) ballooning
modes are destabilized. When the typical toroidal mode number is increased, there is a
possibility that a Fourier mode has the resonant surface just outside of the boundary. In
such a case, most unstable modes changes from the tokamak-like ballooning modes into
peeling modes (8], as is shown in Fig. 5.

4.2 Current-driven modes

In order to consider the current-driven free boundary inodes, pressure profile without free
energy near the plasma periphery is used: P = Fp(1 —~ ¢n)? with 8y = 8%. As a current
profile, two types of current profile are used: J = Jott'% (1 — ¢y) with Ip = 200(kA), and
J = Joy% with [p = 200(kA), where .J is the net toroidal current density, and /p is the
total toroidal current. These currents decrease the rotational transforin at the plasina
boundary, so that ¢, < 1. The peeling modes appear as in Fig. 6. The current profiles
and the total amount of the net current are unlikely to occur, so that the current-driven
external modes are irrelevant to realistic operation.

5. Conclusion

When the pressure gradient near the plasma boundary is small, dangerous low-n ballooning
modes are stable independent of the boundary condition, however, when the pressure gra-
dient becomes large, tokamak-like low-n ballooning modes and/or peeling modes may oc-
cur as external modes, which deterimine the maximuin pressure gradient near the plasma
boundary. :
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Fig. 1. Radial Fourier mode structure of
f- Vi with the deminant toroidal mode
numbers (three dimensional ballooning mode
with n ~ M).
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Fig. 3 Radial Fourier mode structure of
£ - Vi with mode numbers (m,n), under the
fixed boundary condition (interchange).
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Fig. 5. The same quantities as in Fig. 3 under
the free boundary condition (pressure-driven
peeling mode) in the currentless equilibrium.

0.6 0.8 r lI.O

Fig. 2. The same quantities as in Fig. 1 for a
ballooning mode with n >3 M.

Fig. 4. The same quantities as in Fig. 3
for the free boundary condition (tokarnak-like
ballooning modes).
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Fig. 6 The same quantities as in Fig. 3 under
the free boundary condition (current-driven
peeling mode} in the equilibrium with J =
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