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Vortical Structure of Turbulence

Shigeo KIDA

Theory and Computer Simulation Center.,
Natwonal Institute for Fusion Science,
Oroshi-cho 322-6, Gaifu, 503-5292

The vortical structure of isotropic turbulence is analyzed by the use of the
low-pressure-vortex visualization method. It is found that every swirling vor-
tex tube is accompanied with winding vortex layers around it. The vorticity
in these layers is perpendicular to the vortex tube. The Reynolds number de-
pendence of the contribution of the vortex tubes to various physical quantities

is investigated.
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1 Introduction

Thanks to the highly-developed {and still de-
veloping) computer science the detailed anal-
vsis of the vortical structure of turbulence
has become possible. It is extremely helpful
for the understanding of such a complicated
phenomenon as turbulence to observe by our
own eves what is actually going on. This
may lead to get a new insight on turbulence.
to develop a new technique of control of tur-
bulence. and so on.

However. there seems no perfect visualiza-
tion method to describe a time-dependent
three-dimensional vector field with compli-
cated structure. We try in this paper to cap-
ture some aspects of turbulent flow struc-
tures by making use of the low-pressure-
vortex visualization method which we have
developed recently [?, 7. 7, 7. ?]. We analyze
a numerically simulated box turbulence. the
method of simulation and the resulting flow
characteristics are described in §2. The anal-
ysis is made by a perspective representation
of vortex axes and cores in §3 and by tak-
ing a cross-section of a vortex in §4. Various

statistics including the mean radius and the
circulation of vortex cores, and the Reynolds
number dependence of core characteristics,
are discussed in §5. Finally, concluding re-
marks are made in §6.

2 Forced Isotropic Tur-
bulence

For the purpose of detailed analysis of the
vortical structure, it is preferable to take the
simplest possible flow, which is the isotropic
turbulence. We consider an incompressible
flow in a periodic cube of side 27 which is
governed by the Navier-Stokes equation,

d 1 5

gt—qu(u-V)u = —;Vp-i—uv u+f, (1)

and the continuity equation,
V-u=0, (2)

where u(z, t) is the velocity, « is the space
coordinate, t is the time, p is the constant
density, p is the pressure, v is the kinematic
viscosity, and f is an external force.



Talbe 1. Characteristic quantities of forced turbulence.

Az = 0.012, At = 0.00125.

N3 = 5128,

v Re Ex 3 ¢ X I -
25 x 1073 1210 % 055 216 010 036  0.020 5.1
125x 107 2363 119 057 445 011 025 0011 2.8
0.625x10~® 4181 170 056 930 012 017  0.007 1.7

These equations are solved numerically by
the spectral method after the velocity field
is expanded into the Fourier series as u =
Y. u explik-z}, where the number of Fourier
modes is N3. The aliasing interaction is elim-
inated by a grid shift/octodecahedron cut-
off. The time integration is performed by
the fourth-order Runge-Kutta scheme. The
forcing is imposed to maintain the turbulence
statistically stationary, which is useful to ob-
tain statistics of high quality by time averag-
ing. In order to minimize contamination ef-
fects of the forcing to the small-scale motions
which we are currently interested in, the forc-
ing should be limited to the large scales. In
the present simulation the amplitudes of the
Fourier coefficients of the velocity field at low
wavenumbers (|k| < 2.5) are kept constant
at all the time, whereas the phases are al-
lowed to change according to the governing
equations (1) and (2).

The numerical parameters N, v and At
must be set up carefully to guarantee the
numerical accuracy. For a given N (which is
limited by the computer power) and a forcing
amplitude, the viscosity v should be above
some threshold so that the cutoff wavenum-
ber kmax = 3N may be larger than some mul-
tiple (say, 1.5) of the Kolmogorov wavenum-
ber kx = (¢/v®)Y*, where ¢ is the mean en-
ergy dissipation rate. The time step width
At is limited by the CFL condition which de-
pends on the grid width Az = 27/N. These
values are determined a posteriori after trial
and error. In the present case we found
v = 0.625 x 1073 and At = 0.00125 as ac-
ceptable lower limits for N = 512. Further-

more, in order to realize a statistically sta-
tionary turbulence which is independent of
the initial condition, the simulation should
be run for quite a long time. The character-
istic time of energy-containing eddies may be
estimated as £/e¢ (eddy-turnover time, say),
where £ = 1 (luf?) is the kinetic energy of
turbulence and ( ) denotes the spatial aver-
age. The velocity fields we analyze here were
taken after several eddy-turnover times.

The Reynolds number dependence of the
vortical structure is examined by comparing
three cases of different (by factors 2 and 4)
viscosity. The length-scale and the velocity-
scale of energy-containing eddies may be esti-
mated as £32/e and £V/2, respectively. The
Reynolds number is then defined by Re =
E%fve. The micro-scale Reynolds number
based on the Taylor length X is written as
Ry = W' A/v, where o' is the rms value of a
single component of the velocity.

Some of global characteristic quantities in
the present numerical turbulence are listed
in table 1. The kinetic energy £ and the dis-
sipation rate e are nearly independent of the
viscosity, the enstrophy @ = (Jw|?) and the
Reynolds number Re are inversely propor-
tional to v. The micro-scale Reynolds num-
ber, the Taylor length and the Kolmogorov
length I, = (%/€)'/* vary roughly as Ry «
Rel'/?2, X « Re™'/? and I, «x Re~%/*, respec-
tively. All of these Reynolds number de-
pendences are consistent with the classical
universal equilibrium theory by Kolmogorov.
The characteristic time (eddy-turnover time)
is £/e = 55,5247, while that of the
small-scale motion (the Kolmogorov time)



is (I2/e)'® = 0.16.0.10.0.07 for the three
cases. The time step width Af = 0.00125
is sufficiently smaller than these values. The
cutoff wavenumber is greater than the Kol-
mogorov wavenumber times a commonly ac-
cepted tolerable factor (= 1.5). Therefore
we may say that small scale motions are well
resolved. '

3 Visualization of Flow
Field

Many visualization techniques have been de-
veloped so far in order to understand the
structure of the flow field. All kinds of field
quantities available, which include not only
the velocity and pressure fields but also a
variety of quantities derived by taking their
spatial derivatives and combining them, are
employed. The representation methods are
also variegated. Vector lines with and with-
out arrows. isosurfaces, scattered points are
combined with various colors on them. Each
representation captures different aspects of
flow flelds but can never be said to be per-
fect. It may be fruitful to compare different
methods and use them complementally.
Here. we analyze the vortical structure by
the low-pressure-vortex visualization method
[3. 4, 5, 7). This method is based on the
pressure field. The idea is that the pressure
around the center of a swirling tubular vor-
tex tends to be lower than the surroundings.
We search numerically the local minimum (in
two-dimensional sense) lines of pressure in
the whole flow field. They spread and stretch
all over the flow like nets of roots. By def-
inition the pressure takes a local minimum
on a plane perpendicular to the minimum
lines. In most cases there are swirling mo-
tions around the lines, but exceptions of

LA simulation with even smaller viscosity 0.3125%
1072 ran without numerical blow-up, but the vortic-
ity field was under-resolved.

Figure 1. Axes of low-pressure vortices. (a)
R, = 86 and (b) Ry = 170. The cubes
shown here are 1/64 of the whole simulation
domain. The small cube in (b), the side of
which is half of the large one, is magnified in
ficure 2 below.



Figure 2: Axes of low-pressure vortices.

R, = 170. A 1/256 of the whole simulation =~ Figure 3: Vortex core. (a) A single vortex.
box (or the small box in figure 1(b)) is shown. (b) All the vortices. R, = 86.

A particular vortex axis is highlighted in {a)

and its core is drawn in (b).



10 ~ 20 % also. Since we are interested in
tubular swirling vortices, we take only those
lines that have swirling motions around them
[5]. In the vicinity of minimum lines there
is always a radially concave tubular region
of pressure (&°p/0r? > 0), where 7 is the
radial variable. Thus, a tubular region as-
sociated with every minimum line can be
clearly defined as bounded by the inflection
surface (&?p/dr? = 0). This object of cylin-
drical topology, which we have named the
low-pressure vorter, is used as the reference
to analyze the flow structure. The minimum
line and the concave region of pressure are
called the axis and core of the low-pressure
vortex. respectively.

The axes of low-pressure vortices educed
numerically are drawn in figure 1 for (a)
R, = 86 and (b) Ry, = 170. Here. only a
1/64 of the whole flow field is shown for bet-
ter appearance. The side of the cubes (which
are composed of 128% grid points) is 4.4 and
9.2X. That is. the box (a) is about a half of
(b) in the unit of A.

The small box in figure 1(b) is enlarged by
factor 2 in figure 2. Now the number den-
sity of the axes looks comparable between
figure 1{a) and figure 2. This suggests that
the mean distance between axes may scale
with A,

As described above, the extent of the low-
pressure vortex is bounded by clearly defined
inflection surfaces of the pressure field. Since
the positions of the surfaces are stored. the
contributions of vortex cores to various phys-
ical quantities including the core volume can
easily be calculated {see §5). In figure 3, we
plot the periphery of the vortex cores for (a)
a particular vortex and (b) for all the vortices
in this box in the case of Ry = 86. The mean
core radius is 7.8, and they occupy 26% of
the total volume. Figure 2 is a similar plot
for Ry, = 170.

4 Structure of Cross-

section

A tubular vortex has a strong vorticity along
it. It induces a swirling motion which wraps
the surrounding vorticity around it to gener-
ate spiral vortex layers. The direction of vor-
ticity in the spirals is orthogonal to the vor-
tex tube. This spiral was first derived as an
exact solution of the Navier-Stokes equation
by Moore [8] around a decaying straight vor-
tex tubes (Oseen’s vortex) in a simple shear
in the special case that the directions of the
vortex tube and the simple shear are paral-
lel. In general cases that the two directions
are not parallel, the surrounding vortices are
wrapped, tilted and stretched around the
tube [2].

In figure 5. we plot various fields on a
cross-section of a vortex shown by a panel
in figure 4. The side of the square is 40Ax
(= 241, = 1.3)). The vortex axis is located
on the center. In the contour plots the val-
ues are larger in darker areas. Figures (a),
(b} and (c) are contours of the magnitude of

Figure 4: A particular vortex axis and a
square panel across it. Various field quan-
tities on this panel are drawn in figure 5
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Figure 5: Cross-sectional fields on the plane shown in figure 4. (a) Vorticity magnitude.
(b) Axial vorticity. (c) Cross-axial vorticity magnitude. (d) Core periphery. (e) Cross-axial
velocity relative to the axis. (f) Cross-axial vorticity vector. (g) Pressure. (h) Laplacian of
pressure. (i) Energy dissipation rate. The side of the square is 40Az (= 24, = 1.3X). The
axis is located at the center. The values are larger at darker areas. R, = 86.



Talbe 2. Core statistics

R/\ chre/v Qcore/Q Qm(‘/F W’H/\./C_j R{'or?/lk F/V
86 0.22 0.46 (.19 2.58 7.8 84
119 0.16 0.39 .14 2.64 6.3 o7
171 0.13 0.36 0.14 2.72 4.3 35

vorticity. the axial vorticity and the mag-
nitude of the cross-axial vorticity, respec-
tively. Vorticity is concentrated near the
axis in a round region with two spiral arms.
The round region is mainly made of the ax-
ial vorticity, whereas the arms of the cross-
axial vorticity. The core boundary shown
in figure (d) deviates from a circle and the
radius changes between 7A and 9A. Fig-
ure {e) is an arrow representation of the
cross-axial velocity vector field relative to the
axis. They rotate around the axis counter-
clockwise, which confirms the existence of
swirling motions. Another arrow representa-
tion is figure (f) for the cross-vorticity vector
field which is compared with figure (¢). The
cross-axial vorticity is wrapping around the
axis to make a spiral pattern of double layers
of opposite sings of vorticity. This is rem-
iniscent of Moore’s spiral vortex mentioned
above. The pressure takes a minimum at the
axis by definition {figure (g)). The Lapla-
cian of pressure shown in figure (h), on the
other hand, takes large values around the
axis and has a similar shape as the axial vor-
ticity (figure (b)). Finally. in figure (i} we see
that the energy dissipation is taking place at
the cross-axial vorticity layers much more ac-
tively than around the core. The surround-
ing vortex layers are dynamically more im-
portant than the core at least in the energy
dissipation process.

5 Statistics of Vortex

Cores

In order to examine the dynamicai impor-
tance of vortex tubes we investigate the phys-

ical characteristics of vortex cores. Since the
nurnerical data of the position of the core pe-
riphery is stored. the grid points in cores can
be easily marked. This enables us to sum
up any physical quantities inside cores selec-
tivelv. e.g. the volume V., occupied by the
vortex cores, the contributions of the core to
the enstrophy Qcore and the energy dissipa-
tion €eore. In table 2. we list their values as
the ratio to the contributions from the total
volume V. the enstrophy ) and the energy
dissipation €. together with the mean axial
vorticity wy, the mean core radius R, and
the mean circulation I for the three cases of
different Reynolds numbers.

The Reynolds number dependence of core
characteristics is important to infer the
dynamical roles of vortices in the large
Reynolds number limit. From this table
the following Reynolds number dependence
is found within statistical uncertainty (see
figures 6 and 3).

Viore o R, 7007 (3)
r —(1 2~1 3}
— B ; 4
~ xR, (4)
R(‘()I‘(‘ — -~
; ‘ R,\ 06 10)_ (5)
v K

This behavior is quite different from that ob-
tained by Jimémez & Wray (1998) [1]:

Veore X R}\-zu (6)

F 05

Reore x RAO- (8)
l«

Our vortex Reynolds number I'/1 decreases
with R, while theirs increases, our core ra-
dius decreases more rapidly than [, and our



volume Ve decreases more slowly. In other
words, our vortex tubes are thinner, longer
and weaker than theirs. A possible reason of
this difference is that their definition of core
is different from ours. They compare the vor-
ticity of a vortex core with an axi-symmetric
Gaussian distribution and introduce the e~!
radius. They take the statistics of stronger
vortices, whereas the vorticity magnitude is
irrelevant for ours.

The probability density functions (PDF) of
the core radius and the vortex Revnolds
number are shown in figures 7 and 8, respec-
tively. The scale similarity of these functions
does not hold.

As seen in table 2, the vortex core occu-
pies 13 ~ 22% of the whole flow field which
decreases as K, increases. The contributions
of the core to the enstrophy and the energy
dissipation are 36 ~ 46% and 14 ~ 19% of
the total, respectively, which also decrease as
R, increases. This suggests that the vortex
tubes may become dynamically less impor-
tant as the Reynolds number increases. On
the other hand, as seen in figure 5(i), the
energy dissipation is taking place more ac-
tively in the surrounding vortex layers which
are well outside of the cores, beyond 2R,
say. Therefore, the neighboring outside of
the core can be more dynamically important.
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Figure 6: Reynolds number dependence of
various physical quantities.
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Figure 7: The PDF of (a) core radius and (b)
circulation.

At the beginning of this section we marked
the grid points inside cores and calculated
the core volume and the contribution of the
vortex core to various physical quantities.
Similarly, by marking those grid points that
are within some multiples of core radius.
we can calculate the contribution from the
regions within distance of the core radius
times these multiples. The core contribu-
tions to the enstrophy and the energy dis-
sipation thus obtained are shown in figure 8
for £, — 86. Here, the number attached to a
point denotes the multiple. The abscissa rep-
resents the relative volume occupied by the
vortex cores.

Although the vortex cores occupy only
22% of the volume, the regions within dou-
ble and triple of the core radius from axes



inciude 70% and 93%. The contribution to
the enstrophy from the core is 46%, which
means that the enstrophy density is larger
inside core than outside. The contribution to
the energy dissipation is nearly proportional
to the occupied volume though a small dip
is recognized inside core. In view that the
surrounding vortex layers are located around
double the core radius, the contribution of
these layers to the energy dissipation can be
understood.

a5 -

o6 T

04

@2 -

Figure 8: Contributions to the enstrophy and
the energy dissipation rate of vortex core.
The numbers show the multiple of core ra-
dius.

6 Concluding Remarks

The low-pressure-vortex visualization
method has been applied to numerical box
turbulence to discover that swirling tubular
vortices, which had been known to appear
ubiquitously in various kinds of turbulence,
are always accompanied with winding vortex
layers of cross-axial vorticity around them.
The energy dissipation is taking place more
actively in these vortex layers than in the
tube part. The combination of the vortex
tube and surrounding vortex layers, which
may be called an elementary vorter, seems
to be the fundamental coherent structure
of turbulence. As the Reymnolds number

increases, will it be dynamically more
important. or be destroyed at all by some
instabilities 7 This is an interesting future
problem.
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