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Abstract

Wave-heating at the fundamental ion-cyclotron frequency was applied to a hydrogen plasma in the
Large Helical Device (LHD) over a range of plasma densities from 0.2-8 x10" m. Substantial heating
was observed for all densities. In the low-density plasma (less than 0.4 x10” m?) ion-cyclotron-wave
{shear Alfven wave) heating was effective. For high-density plasmas, a fast-wave should be excited, and
in this case also. effective heating was observed with the presence of the NBI beam component. The
wave damping mechanism may be attributed to the finite gyro-radivs effect on beam ions by the
right-handed polarized wave. The experimental results were compared with an analysis using the

full-wave code. The heating performance was a little worse than that of the usual two-ion hybrid-heating

mode.

L Introduction

In 1999. ICRF heating was successfully applied to
the LHD. which is a large heliotron-type device with
super-conducting windings. Most of the ICRF
experimenis were conducted using two ion species so
as to utilize the two-ion hybrid-heating mode.
mcluding minority heating and mode-conversion
heaung [11,]2L[3]. In addition to this normal heating
mode, other heating modes were utilized 1o achieve
high performance plasmas when operating with pure
hydrogen gas. Hydrogen-gas operation simplifies

analycic of the transport propernes of the plasma.

This paper reports on slow- and fast-wave heating
with the fundamental cyclotron-resonance-frequency

over a wide density range.

II. Ion-Cycloiron-Wave (Shear Alfven Wave,
Slow-Wave ) Heating Mode

For low-density plasmas, ion-cyclotron-waves can

propagate to the plasma core, and this method has

been used for plasma heating from the time of the
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slow-wave which propagates along the magnetic
field-line, and loses energy by ion-cyclotron damping

at the magnetic beach. The propagation region for the
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Fig.1 Cyclotron resonance, 6.z, n/=8 resonance, S, and ni=L cutoff, I,
layers in LHD cross sections.

{(a) no=0.3x10"m", (b} n,o=6x10"m” H:100%k,=10m"),

(fc) nog=2x10""m>, He:70%(H:30%) k,=5), B=2.9T, f=38.5MHz

slow-wave is within the crescent-shaped regions
between S and L shown in Figs. 1(a) and (b). Only
for low-density plasmas can the slow-wave propagate
in the core plasma region as shown in Fig. 1(a).
Figure 1(c) shows the configuration for the normal
two-ion hybrid-heating mode. For this mode, the
crescent area is an evanescent region.

The stored energy of an ICRF-maintained plasma is
plotted as a function of plasma density in Fig. 2.
Slow-wave heating is shown by the closed circles.

This method can maintain only low-density plasmas
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Fig.2 Plasma stored energy in ICRF sustain mode
{Slow wave(closed circles) and Two-ion hybrid
fast-wave mode(boxes))

having densities less than 0.4
x10”  m>  Typical plasma
parameters are: T, = 1.5 keV, n, =
0.3 x10"° m®, T, nps = 2.8 keV.
The ion temperature was higher
than the electron temperature,
which implies that the wave
mainly heated the ions. In Fig. 2
the boxes show the data for the
two-ion hybrid-mode, which are
shown for comparison. The
heating performance for the
slow-wave was a little lower than
that of the two-ion mode, but is
still useful for heating hydrogen plasmas. The

observed strong dependence on density can be

explained by the calculated shift in position of the
slow-wave propagation region of Fig. 1 (a). The
normalized radius of the IL-cut-off, and the
S-resonance at z = 0 is plotted as a function of the
plasma demsity for three different parallel wave
numbers k. The LHD antenna launched the wave of
wave number less than 15 m™. This calculation shows
that the slow-wave does not heat the core plasma for
densities higher than 0.5 x10™m™. The same behavior

was observed at the ICRF heating of Heliotron E [4].
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IH1. Fast-Wave Heating at the Fundamental

Cyclotron-Resonance Frequency

For a high-density plasma, the ion-cyclotron-wave
(slow-wave) carnot propagate to the core region of
the plasma. This is in contrast to the fast-wave as
shown 1n Fig. 1 (b). The propagating region is inside
the oval line labeled R (right-hand cut-off). This
fast-wave is a right-hand circularly-polarized wave,
and experiences very little damping compared to that
from the two-ion hybrid-heating mode. Pue to the
small damping, the fundamental frequency of this
mode is not usually used for plasma heating
experiments.

In the LHD experiment. we observed a
substantial heating gain using the fundamental
cyclotron-resonance frequency for a high-density
plasma. In Fig. 4, the time evolution of the plasma
parameters is shown. The plasma was initiated by
ECH, and heated by NBI t0 a high density and high
stored energy level. Five pellets were injected
continuously at the timing of around 0.75 sec, and
improved confinement was achieved. The stored

energy of the plasma was apparently increased by
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Fig.4 High density fundamental heating plasma.
(Shot No.15416, B=2.75T, f=38.5MHz H2gas
puff H2 pellets)

ICRF wave-heating.

For the plasma maintained by NBI, an increase
in stored cnergy by additional ICRF was observed
over a wide range of plasma densities. Figure 5
shows the heating efficiency, and the stored-energy
mcrements over a wide deansity range. The closed

circles are the fundamental

result  of
cyclotron-heating with the NBI beam, and the boxes
represent the result of adding two-ion hybrid-heating.
The fundamental heating rnode had a lower heating
efficiency than the two-ion hybrid-mode, but still had
useful efficiency over a wide density range. The
highest stored energy of a plasma during 1999, used
the conditions that led to the data of Fig.4.

For densities greater than 0.5 x10%° m”, no
heating was observed for plasmas maintained with
ECH and ICRF. Meaningful heating was observed
only on the NBI-maintained plasma. Therefore it is
natural to conclude that the high-energy ion-beam

component had an on the

important effect
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wave-damping mechanism. The NBI beam-injection
energy was around 140 keV in tangential direction,
and ions with energies up to 50 ke'V were observed in
the perpendicular direction by NPA detectors. These
ions have a finite gyro-radius effect on the damping
mechanism of a right-hand-polarized fast-wave. The
following equation explains the interaction of the

ions with the wave electric field [5].

calculation for one-dimensional wave-propagation
analysis of the LHD cross section [6]. Figure 6 shows
the result of changing the temperature of the tail ion
on the power transfer from the fast-wave to the ions
and the electrons, the electric field of the wave at the
plasma axis, and the antenna loading-resistance. This
calculation assumes a tail-ion component of 3%. As

the tail-ion temperature increases, the wave energy is

Av ;%Ie_m’r X[ Ex1Jn-s(k 2 p)+1E-| Jusilk 1 p)]

In the above, n is the cyclotron harmonic
number, equal to unity in the current calculation, and
I is a function of the staying-time in the resonance
region. The second term shows the velocity
increment from the right-hand circularly polarized
electric field, IE—I due to the finite gyro-radius
efiect.

This effect was also reproduced in the full-wave
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Fig.6 Calculation of the wave absorption to plasma
species, the electric field in plasma and the
antenna loading resistance by I-D full wave code
analysis.

{ neo = 5x10” m?, T,,=T,,=2 keV, H 100 %, High
energy tail ions of 3%.)

transferred to the tail ions, and the electric field

decreases. The antenna

loading-resistance  also
increases with increasing tail-ion temperature. The
finite gyro-radius effect is effective only on
right-hand-polarized waves as described in the
equation. The calculation therefore shows that
absorpuion of the right-hand wave by the injected
beam of ions may play a major role in the effective
heating over a wide range of plasma densities.

This is the first successful fundamental
ion-cyclotron-frequency heating of a high-density

plasma in a toroidal device.
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