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Abstract

We investigate soliton-like dynamics in the descrete ponlinear Schroedinger equation (DNLSE) describing
the generic 3-element descrete nonlinear system with a dispersion  The DNLSE {1+2) is solved on the 3x N
descrete lattice, where N is the variable number introduced through the descretized dispersion term. In
quasi-linear and strongly nonlinear regimes the evolution shows robustness with respect to the N variation.
However. the intermediate regime often exhibiting chaos. appears highly sensitive to the number of descrete
points. making an exact solving of the DNLSE {1+2) a dubious task. We briefly outline implications on

other continuum models alike the NLSE.
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1 Introduction

As a rule the mathematical modeling of many non-
linear systems with a different origin leads to one
of the universal nonlinear evolution equations, like
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the nonlincar Schrocdinger equation {NLS), Kor
teweg-de-\ties equation (Kd\'). Sine-Gordon equa-
tion ($G), etc. These nonlinear partial differentiai
equations (PDEs) represent contmmuum models for
different nonlinear systems that exhibit diverse and
fascinating phenomena including solifons, patiern
formatzon, collapse {blow-up) solutions and spatio-
temporal chaos.

On the other hand, the fact that matter itself
is diserete, 1e. it consists of many elementary en-
tities. attracts the scientific interest in nonlinear
discrete systems. If the spatial scale of the phys-
ical process approaches the size of the elementary
entities. constituents of the physical systemi. a con-
tinuum approach fails and the discreteness of the
system must be taken mto account. In this situ-
ation the mathematical modeling of the nonlinear
discrete systems leads to one of the discrete ver-
sions of the nonlinear evolution equations. In this
case the origin of the discreteness comes from the
very nature of the described nonlinear system and
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one. Another way to obtain the variety of discrete
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nonlinear evolution equations is by applyving differ-
ent numerical methods (finite difference or spectral
methods) in order to solve the corresponding orig-
inal continuum version of various nonlinear evolu-
tion equations. Accordingly. one can find the dis-
CICLELESS 45 Al i1l vd uced oue. Thu::, Studies of the
basic properties of the discrete nonlinear evolution
equations often appear to be of a more general in-
terest than the particular physical systems that the
mathematical models describe.

The most extensively studied nonlinear cvolu-
tion equation is the cubic NLS equation playing the
central tole in the field of plasma physics. nonlin-
ear optics, water waves, etc. [l 11]. There are nu-
merous discretizations of the original NLS equation
leading to iniegrable and different non-integrable
variants of the discrete NLS equations (DNLS).
The obtained DNLS equations can be understood
as (i) a basis for different numerical schemes for
simulating the continuum NLS equation and/or (ii)
a model for describing different discrete nonlinear
systems of the NLS type. For example. the en-
ergy transport in molecular chains of the alpha-
helix structure of proteins, the propagation of non-
linear waves in discrete electrical lattices and opti-
cal pulse propagation in nonlinear fiber arrays are
all described with ihe discreie veision of noudin-

ear Schroedinger equation [8-11]. In this work, we



study numerically the dynamics of the three ele-
ment DNLS {1+2} equation (1 discrete plus 2 con-
tinuum variables), as an example where the both
types of discreteness, generic and introduced, are
present.

2 The cubic NLS and DNLS equations

The cubic NLS equation {1
/ .
i%+&y’)+2|1{}!21f: =1, (1)

generally arises as an asymptotic limit of a slowly
varying dispersive wave envelope in a nonlinear me-
dium. It is completely integrable via e.g. the in-
verse scattering transform and has an infinite num-
ber of the conserved quantities:
(i) The total energy (norm L2)
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(ii) the Hamiltonian
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(iii) the linear momentum
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.. etc,
For the snberitical case (1D case: A = 3%25

) eq. (1) possesses a stable ground state soliton
solution:
exp(iA?t), {3)

A
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however, for the critical 2D case (A& = 3%25 + ai;g

under the condition and the supercritical 3D case
(A = ai;g + ai:g + gg) for the soliton solution
{5} becomes unstable and blows up (collapses) [2,
3]. From the mathematical point of view the term
blow-up or collapse designates a situation where
the maximum of || tends to infinity (creation of a
singularity) in a finite time. The singularity also in-
dicates that the assumptions made in derivation of
the equations break down, and in reality collapse,
will always be prevented by the dissipation process
of higher order nonlincarities. Thus, the blow-up or
collapse physically represents a process of a spon-
taneus concentration of the wave energy in a small

1D NLS equation.

spatial region followed by an explosive growth of
the amplitude ). This unique phenomenon has
been observed experimentally, analytically and nu-
merically in many nonlinear systems, but probably
the best-known examples are the Langmuir wave
collapse in plasma physics [4] and the self-focusing
of light beams in nonlinear optics [3].

There are numerous versions of the discrete
NLS equations {DNLS) which generally belong to
the class of differential-difference equations (DAE).
For the 1D case there are two most popular finite
difference NLS discretizations, where the origin of
the discreteness could be either generic or intro-
duced [6]:

(i) the Ablowitz-Ladik integrable DNLS (1+1) equa-
tion

- d'frbn
13
dt

(6)
(ii) non-integrable DNLS (1+1) equation

difn

dt + 2|"rf)n|‘2 by + (ﬁ)n-i-l + o1 — 2‘,")11,) =0 (7)
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A novel feature of the non-integrable DNLS
equation (7) is its inherent chaotic behavior ob-
served analytically and numerically {7, 8. How-
ever, even the integrable version of DNLS equa-
tion (6) can show the numerically induced chaos {9,
10], because the introduced numerical errors can be
considered as non-integrable perturbations of the
original system. The numerically induced chaos is
also found in the numerical simulations of eq. (6).

The important feature of DNLS equations (6)
and (7) is the existence of stationary and localized
discrete modes in an analogy with the solitons in
These discrete localized solu-
tions known in the literature as discrete solitons
{eq. 6) or discrete soliton-like solutions (eq. 7)
are examples of more general phenomenon of the
discrete breathers [11].

The more general case is DNLS (1+2) equation
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(8)
with one discrete and two continual variables. It
can be derived from the NLS equation (1) in 2D

where one of the variables in the operator A =
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(—?;- + ;;’— is discretisized ¢.g. variable y. The equa-
tion (8) arises as a mathematical model in manv
nonlinear discrete systems in which case the dis-
creteness is generic. For example. 1t can describe
the nonlinear propagation of optical pulses in lin-
early coupled fiber arrays {12}, In addmtion. to nu-
merically solve eq. (8) by using standard finite
diference or spectral methods, one also has to dis-
cretize along the continuum variable z In that way,
a discrete nonlinear evolution equation is obtained.
where the both types of discreteness, generic and

introduced, have appeared.

The equation (8) is non-integrable, if Al > 2
(A is the number of elements of DNLS equation)
and it is known o possess three conserved quanti-
ties
{1) total energy

o
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{i1) Hamiltonian
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{iil) momentum in x
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Compared with the continuum 2D NLS equa-
tion, equation (8) exhibits a novel unique feature:
existence of multidimensional soliton-like solutions
localized in both dimensions, discrete and continual
[13].

Another difference from the standard contin-
unm NLS equation is that the DNLS equation (8)
shows no singular behaviour. Instead, the guasi-
collapse takes place, which is closely related to the
collapse phenomenon in two-dimensional NLS: how-
ever for DNLS, the solution. instead toward a sin-
gularity. evolves to stable multidimensional soliton-
like solutions {14]. Accordingly, a practical new
method for optical pulse amplification and com-
presson, based on the quasi-collapse of the optical
pulses, in a linearly coupled nonlinear optical fiber
array, was proposed in ref. [14].

For the three element DNLS equation (M =
3) one exact analytical, anti-symmetric soliton-like
sclution is found [15)

¥ =~ = exp(iA®t), w2 =0, (12)

A
cosh{Ax)

as well as, two approximate symrmetric soliton-like
solunions, with
(i} energy concentrated along the central element
with lincar waves i the side elements

V2 + A

vp = ——— T exp(zATt). (13)

cosh(zv2 + A?)
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(i1} energy concentrated along the side elements
and a linear wave in the central one
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Based on the existence of the above symmetric
soliton-like solutions, a bistable optical switching
system in a form of three collinear. linearly coupled
nonlinear fibers {array) was proposed [14].

3 A numerical method

There are numerous well-developed finite difference
and spectral numerical methods [16. 17] with dif-
ferent features in terms of accuracy, stability. time-
consumption, memory requirements. etc., for sim-
ulating the NLS equation. However, it appears
that not all of these methods are suitable for the
generalization to obtain the high performance nu-
merical method for solving the DNLS equation (8).
For that purpose, the well-known sphit-step Fourier
method, originally developed for the numerical so-
lution of the standard NLS equation, has been the
best candidate, which fits our requirements for an
efficient spectral numerical method for the DNLS
simulation. We can rewrite the DNLS equation (8)
in a compact form as

T

dz

- LU+ NU, (17)
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where U is the single column matrix (vector) and
contains the compiex mode amplitudes

U ={y1vg... oL, (18)

L is the linear differential operator with a three-
diagonal structure

-2 -1 0 ... 0
-1 22 :
L=| 0 -1 =2 1 o
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(19)
and N is the diagonal nonlinear operator
a2 0 ... 0
- f1a 12
F=g O I (20)
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The basic idea of the split-step Fourier method
is the assumption that over a small time step {Af =
%) the lincar (L) and nonlinear (N} operators act
independently. More specifically, evolution from ¢
to t + h is carried out in two steps (Fig. 1.). In
the first step the nonlinear operator (N} acts alone
(L = 0) and the equation (17} is reduced to

i— = NU. (21)

In the second step the linear operator (f.) acts alone
(¥ =0) and equation {17) is reduced to

i— = LU. (22)

The formal solution of the equation (21) is given
with

t+h
U(t+h,:c):U(t,.r)exp{—i[ N, z)dt]. (23)

The equation (23) is implicit since N depends on U
and its implementation in the numerical procedure
is not so simple, because it is necessary to follow an
iterative procedure. However, the iteration is time
comsuming and only one or two iterations are used
in practice.

In order to soive eq. (22) we can apply the Fast
Fourier Transform (FFT) technique with respect to

variable x to derive a system of ordinary differential
equations with constant coefficients

(U 1)

== L{w)Ulw. 1), (24)

{24} with the formal solution in a matrix form

U(w.t + h) = exp[—2L(w)h]U(w, £). (25)

The matrix has M different eigenvalues and
consequently its Jordan matrix is diagonal. This
fact gives us opportunity to calculate the matrix
exponential function exp[-:L(w)k] in the form of
matrix M(w, ), which reduces the calculations of
U(w, t + k) with equation {25) to a simple matrix
multiplication

Ulw,t + A) = M(w. h)U(w, 8). (26)

The calculation of matrix M{w, k) is time con-
suming due to the large number of elementary oper-
ations proportional to A2, However. the faci that
matrix does not depend on ¢ allows one to calculate
it only once at the beginning of the numerical sim-
ulation. Further in time, the same matrix is used
in each integration siep. With this procedure we
have significantly reduced the simulation time and
allowed, within the acceptable computing time (10-
12 hours}), to perform short scale simulations with
several hundred elements, or large scale simulations
with several elements, using the personal computer
PIL

The error of the method is of the second order
in the step size (~ h?), and can be checked upon by
using the conserved quantities and defined by {9)
and (10). The accuracy of our split-step Fourier
method can be improved up to the third order, by
using the following integration scherme over the one
time step & (Fig. 2.):

1) integration over the interval [t,¢ + %] with the
linear operator (26),

2) integration over the interval [t,¢ + A] with the
nonlinear operator (23),

3) integration over the interval [t + £, ¢ + A] again
with the linear operator {26).

However, the improved accuracy is paid back
through an extra FFT and one matrix multiplica-
tion per each integration step. On the other hand,
this scheme allows one to use larger integration step
with the same accuracy, while as a final result the



total simulation time appears to he approximately

equal in both numerical schemes.

4 Numernical results

In order to study different dvnamical regimes of the
soliton dvnamics, launched into the central element
of the three-element DNLS. we have periormed a
numerical simulation of the equation (8) using our
generalized split-step Fourier method.

We have assumed the periodic boundary con-
ditions with respect to z, which implies the appli-
cation of the FFT procedure. with continuos moni-
toring of the conserved quantities: the total energy
P (9) and the Hamiltonian H (10).

As an initial condition (t = 0). we launch the
NLS soliton into the central element

Ag

cosh(hpz)’ (27)

Py = ¥ = vy = 0.
for different values of the initial amplitude 252{0) =
Ag = 0.5;1.25;1.80;2.00; 2.05; 2.25: 3.00; £.00 sam-
pled on the period L, with N points. The product
L, 1s kept constant, in order to spatially acco-
modate the solitons with different amplitudes. in
the same way, at the periodicity length L.

In the emall amnlitude region ie A =02
linear response of the system is observed, in agree-
ment with the linear analytical solution of (8). The
dominant process is the energy exchange between
the central element and its two neighbours {Fig.
3.). followed by a weak longitndional dispersion
(Fig. 4). It is actually a quasiperiodic regime, as
seen in the 2-torus phase attractor (Fig. 3) with
two incommensurate frequencies in the clean dis-
crete spectrum given in Fig. 6. These results are
very similar to earlier ones, numerically found n [1]
for the DNLS {1+41) equation without a dispersion
term {7); also, experimentally observed in [18].

Increase of the initial amplitude brings a con-
tinuous tramsition. as seen in the phase diagrams
and amplitude spectra, while in the intermediate
region 2.00 < Ay < 2.03, one can find mode-locking,
aperiodic and possibly chaotic regimes. In this case
a characteristic toroidal attractor {Fig. 5) and the
discretness of the spectra (Fig. 6) are iost and small
variation of the initial amplitude brings a signifi-
cant difference in the system dynamics (Fig 7)
The existance of this regime was predicted numer-
ically in [7] and [8] for the DNLS (1+1) equation

1

without the dispersion {7): i.e. with the generic
11 -discreteness of the system. These results are
i a plausible agreement with ours. although the
dynamics of the system [7. 8] is defined through a
competition of nonlinearity and discreteness. while
in our case, interaction is inherently more complex.
with the nonlhnearity. descreteness and dispersion
competing between each other. More precisely. by
solving our DNLS (1+42) system we have te en-
counter an additional descrete dimension in com-
parison with the earlier DNLS (1+1) model.

Further amplitude increase brings back the dy-
namics to a quasiperiodic and eventually to a single-
periodic. limit-cycle regime {Fig. 3) with a single
spectral line {Fig. 6). In this case, it is possible to
recoguize the analytical soliton-like solution given
by (13} and {14). The calculated values for the
soliton eigen-frequency A% and amplitude v/2 + A2,
from the simulation match the corresponding ana-
Ivtical values given by (13) and (14).

We also note that, starting from the initial con-
dition (27), it is not possible to reach the anti-
symmetric solution {12} and the other symmetric
solitorn-like solution (15) and (16).

All three, qualitatively different dynamical re-
gimes found in our simulation of the DNLS (142)
equation also exist in the dynamics of DNLS (1+1)
equation. However. the presence of the dispersion
in the DNLS equation {142} which is handled with
the FFT routine in our numerical simulation means
that in our system an additional introduced dis-
crete dimeansion is present. Thus. one can expect
to find a dyvnamical regime where numerically in-
duced chaos. as described in [9. 10] is present. The
straightforward way is to check the sensitivity of
the simulation results with respect to the number of
the sampling ponts (number of harmonics in FFT).

Our numerical studies show that in the linear
regime A < 2.00 and in a strongly nonlinear regime
Ao > 2.00, there is no sensitiviiy on n and no ba-
sic difference between results obtained for a dif-
ferent number of sampling points is found. How-
ever, the situation is rather different in the inter-
mediate, chaotic like regime. We have performed
several numerical runs with a different number of
sampling points N = 128:;256;512;768: 1024, 2048
for the same initial condition in a form of the NLS
soliton (27) with A = 2.00 keeping all other param-
eters fixed at the values given in the earlier simu-



fation (Fig. 5 and 6.) with N = 1024. The sim-
ulation results are shown in Fig. 8 in a form of
phase diagrams and corresponding power spectra
of the maximal amplitude in the central element
(first and second columns) and in the neighbor ele-
ment (third and fourth columns). Further, in Fig.
9, the space-time evolution of the amplitude in the
central element for three different numbers of sam-
pling points (N = 768; 1024; 2048) is shown. It is
obvious that a qualitative difference exists, between
results with different V. It is also plausible to ex-
pect that the introduced discreteness is responsible
for those differences. Accordingly, the simulations
results can ounly be regarded as correct, if we as-
sume that the complete discreteness in the system
is generic, which means that above DNLS equation
describes a particular discrete system with a given
number of elements in the 2D lattice (in our case
3x128,3 x 256,...).

5 Conclusion

We have numerically studied in detail, the evolu-
tion of the soliton-like pulses in the framework of
the descrete nonlinear Schroedinger equation de-
scribing the generic three-element descrete nonlin-
ear system (trimer) with a dispersion. The DNLS
{1+2) equation was solved in the standard way on
the 3 x N descrete lattice, where &V is variable num-
ber of points introduced through the descretization
of the dispersion term. We have simulated the sys-
tem dynamics with the soliton-like pulse imitially
launched into the central element. In guasi-linear
and strongly nonlinear regimes the robustness with
respect to the N number is found. However, the
intermediate regime exhibiting quasi-periodic and
often chaotic dynamics, appears highly sensitive
to the number of descrete points, making an ex-
act solving of the DNLS (1+42) equation a dubious
task. In this case, the correct solution can be ex-
pected only i we consider a generic 2-dimensional
descrete system with a given fixed number of ele-
ments. However, if our task is to descretize a con-
tinuum variable with a number of points, our nu-
merical approach can fail and becomes questionable
in the intermediate regime, as seen in the above
DNLS (1+2) simulation. In addition, these con-
clusions can be possibly extended to other finite-
difference and spectral numerical schemes with the

similar background of the introduced discreteness.

It is to be expected that this situation is not
only typical for the DNLS equation but also for
other types of discrete nonlinear evolution equa-
tions. More generally, this problem is of an addi-
tional relevance, because it can possibly emerge in
different numerical schemes aims to simulate var-
ious continuum nonlinear PDE's in two and three
dimensions.
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Figure captions

1. One step mtegration scheme.
2. Two steps integration scheme.

3. Timeevclution of the maximal amplitudes
in the central element (solid line) and in the
neighbor elements (dashed line) for the soli-
ton launched nto the central element with
the initial amplitude Aq = 0.5.

4. Fragment of the space time evolution of
the soliton launched into the central element
with the initial amplitude Ay = 0.5.

5. Phase diagrams of the maximum of the
amplitude in the central element of the soli-
ton launched into the central element with
different initial amplitudes.

6. Power-spectra corresponding to the phase
diagrams shown on Fig. 5.

7. The space-time evolution of the solitons
launched into the central element with two
close initial amplitudes a) Ay = 2.00b) Ay =
2.03.

8. Phase diagrams and corresponding power
spectra of the maximal amplitude in the cen-
tral element (first and second columns) and
in the neighbor elements (third and fourth
colomns) for a different number of sampling
points N of the soliton launched into the
central element with the initial amplitude
A =2.00.

9. The space-time evolution of the solitons
launched into the central clement with the
initial amplitude Aq = 2.00 with three differ-
ent number of sampling points: aj N = 768,
b) N = 1024 and ¢) N = 2046.
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