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Overall Self-Similar Decay of Two-Dimensional
Turbulence
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The statistics of two-dimensional decaying turbulence are investigated by the
use of direct numerical simulation in a periodic box. A number of cases are
systematically compared in which the incompressible Navier-Stokes equation
is solved on various resolutions and for various Reynolds numbers starting
with random velocity fields of a prescribed energy spectrum. It is observed
that the statistics are contaminated rapidly by the periodicity of the flow
field which blocks the transfer of velocity fluctuations towards larger scales.
At large Reynolds numbers the enstrophy spectrum decays similarly in time
throughout the whole wavenumber range and the enstrophy decreases inversely

proportionally to time.
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1 Introduction

Two-dimensional turbulence has been stud-
ied extensively not only for the practical ap-
plication in geophysics and meteorology to
understand and predict the atmospheric and
the oceanic flows but also as a simpler model
of the three-dimensional counterpart to ex-
amive the general properties of turbulence
[1, 2]. Indeed the two-dimensional turbu-
lence is less complicated in structure than
the three-dimensional one, but the numeri-
cal simulation study is not so simple as it
looks. Since the modal energy is transferred
to larger scales, the characteristic length-
scale of the velocity fluctuation ever increases
in time. When it grows as large as the sim-
ulation domain size, the turbulence statis-
tics, even at small scales, are affected by the
boundary condition. The transfer of energy
to larger scales is drastically suppressed, for

example. Thus, the statistics of turbulence
at later times can deviate significantly from
those in the infinite domain. This should be
kept in mind whenever a long-term numerical
simulation is carried out.

As one of the fundamental quantities to de-
scribe the turbulence statistics the behavior
of the energy spectrum has been investigated
in a periodic box by many authors. In order
to get the universal behavior independent of
initial conditions a long-term numerical sim-
ulation is necessary to perform, which brings
the possibility of the above-mentioned con-
tamination effects due to the inverse cascade
of energy. The k=3 power law (with a pos-
sible logarithmic correction) of energy spec-
trum (or the k™! power law of the enstro-
phy spectrum) in the ineriial range derived
by the enstrophy cascade theory [3, 4, 5] is
not easy to observe in a numerical simula-



tion. Steeper spectra have been frequently
reported in literature partly because of the
attenuation at large wavenumbers by finite
viscosity, and partly because of the accu-
mulation of modal energy around the lowest
wavenumbers through the inverse cascade of
energy (6, 7]. The formation, the structure,
and the distribution of concentrated vortex
blobs [8] may also be affected by the simu-
lation domain. These blobs under the pe-
riodic boundary condition may lead to the
slowdown of the enstrophy decay since the
velocity induced by the individual vortices
is extremely long-range in two-dimensions.
The power p in the algebraic decay law of
enstrophy expressed by Q(t) « {77 scatters
between 0.3 and 1 [6, 9, 10]. The reason of
this wide scatter is not clear.

In the present paper the effects of the
simulation domain size on the statistics of
the decaying two-dimensional turbulence are
systematically investigated. The equations
of motion of a two-dimensional incompress-
ible fluid, the scaling properties, and various
global statistical quantities are introduced in
§2. The numerical method and the param-
eter setting, the temporal evolutions of the
vorticity field and several global quantities
are described in §3. A self-similar evolution
of the enstrophy spectrum over the whole
wavenumber range and the effects of the sim-
ulation domain are examined in §4. The con-
cluding remarks are given in §5.

2 Formulation

A decaying two-dimensional motion of an in-
compressible viscous fluid is described by the
vorticity equation, the curl of the Navier-
Stokes equation,
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is the vorticity. w = (u,up) is the velocity
which satisfies the continuity equation,
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& = (x1,z2) is the spatial coordinate, and
v is the kinematic viscosity. The velocity
field is assumed to be periodic with period
2m both in the x, and x5 directions. The area
(0 < z1, zo < 27) is called the periodic box.
Since the governing equations (1)-(3) are in-
variant under space translations, the period-
icity should be preserved if it is imposed at
the iitial instant.

The energy (per unit mass) of the fluid mo-
tion is defined by

E(t) = 2(2 /|u x, t)°d*x, (4)

and the {-th order moment of vorticity by

L)z /wl(zc, t)d’x, (5)
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where [ a positive integer, and the integra-
tion is carried out over the periodic box. The
second-order moment Oy (= )} is called the
enstrophy. The evolutions of these quantities
are described by a hierarchy of equations,
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is the palinstrophy.

Since @ and P are positive definite, the
right-hand sides of (6) and (7) are negative
definite so that £ and @ always decrease in
time. In other words, they are bounded by



their initial values. This hmplies that the
right-hand side of {6) vanishes in the inviscid
limit ¥ — 0. Recall that £ and all @Q; ({ > 1}
are constants of motion in the inviscid case
v = (0. In the inviscid limit. however. @
and P are supposed to decay sooner or later
though £ is a constant of motion. Thus. the
two limits. ¥ — 0 and t — oc. are not comn-
mutable [11].

Since the flow is periodic, the velocity
and vorticity fields can be expanded in the
Fourier series as

w(z.t) = Y ulk,t)explik-z]. (10)

w{z.t) =Y w(k,t)explik-x], (11

where a check denotes the Fourier coefficient
and the summation is taken over all integral
vectors k = (ky,ks). The energy spectrum
may be defined by

Ekty= Y
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where k = 0,1,2,-- - are integers. Then, the
energy, enstrophy, and palinstrophy are re-
spectively written as

Et) = > E(k.t), (13)

Qt) = 2 KFE(kty =) Qk.t). (14)
k k

Pty = 23 KBk, t) = P(k,t). (15)
k k

Here, Q{k,t) = 2k°E(k,t) and P{k.t) =
2k*E{k,t) are the enstrophy and palinstro-
phy spectra, respectively.

The equations of fluid motion, (1) and (3),
have the following scaling property. Consider
two flow fields u(,t) with viscosity v and
u'(z’,t') with viscosity v’ such that

F

u = u, (16)
£ - jx. (17
t = A, (18)
V= v (19)

with a positive constant n. and therefore.
!
=t (20)

Then. a set of equations (1} and (3) is iden-
tical between these two fields. In addition. if
their initial conditions are similar.

u (' 0) = u(z.0). (21)

they will remain so at all the subsequent
times,
u'(z' t) = u{x.t). (22)

Under the scale transformations {(16) and
(17) the wavenumber and the energy spec-
trum scale respectively as

F'(K' t) = vE(k.t) (23)

and
K=~k (24)

This scaling property does not hold exactly
for the periodic flows unless the period is
changed appropriately. Deviations from it,
however, are expected to be insignificant for
the turbulence statistics if the period is much
larger than the characteristic length-scale of
turbulence. In the following we examine sys-
tematically the effects of periodicity and of
numerical resolutions on the statistics of tur-
bulence.

3 Numerical simulation

The initial velocity field is prepared by ran-
domly chosen Fourier coefficients with spec-
ified energy spectrum,

E(k.0) = 8&Lo(kLg)® exp [—Q(kLO)QJ ,
(25)
where &, is the initial energy and L¢ is
the initial large length-scale {see (26) be-
low). The governing equations (1) and (3)
are solved numerically by the use of the spec-
iral method for spatial derivatives and the
fourth-order Runge-Kutta scheme for time
integration. The aliasing errors are



N? =10242 N? = 2048 N? = 40962
Lo (r=5x10"") | (v=25x10"") | (v=125x10"%
64L, A (392)
32L. Ay (196) B, (392)
161, Az (98) B, (196) C; (392)
8L, Ay (49) B; (98) C, (196)
4L, As (24.5) B, (49) Cs (98)
L. Bs (24.5) Cy (49)
L, Cs (24.5)

Table I. Simulation parameters and symbols of the respective cases. The
initial Reynolds numbers Reg shown in brackets are common in the cases
of the same indices A,, B,, C, (n =1,2,3,4,5).

removed by the 2/3-rule so that the maxi-
mum wavenumber is N/3, where N? is the
number of Fourier modes. Several simula-
tions are performed at various values of ini-
tial large length-scale Ly, viscosity v and res-
olution N? with a prescribed initial energy
spectrum (25). The parameters of different
cases are summarized in Table I. The sym-
bols A, B, and ' represent combined pairs
of N? and v. The indices in A, B, and
C distinguish different Ly. Here, L, is a
constant (= 0.0030618---). The number in
brackets after symbols is the initial Reynolds
number defined by (31) below. Note that
the initial Reynolds number is common be-
tween those cases of the same subscripts. Be-
cause of the scaling property stated in the
preceding section the flows of A,, B,, and
C, (n=1,2,--.) are statistically equivalent
though different in resolution. These cases
may be compared under proper scalings of
length and time. The truncation effects at
small wavenumbers (or the effects of period-
icity) are examined with the effectively same
truncation at large wavenumbers by compar-
ing those runs with the same indices, since
the ratio of the maximum wavenumber to the
peak wavenumber of the initial energy spec-
trum is common between them.

3.1 Evolution of Vorticity Field

The temporal evolution of vorticity field is
shown in Fig.1 for Case ;. The contour lev-
els are set at integral multiples of the rms of
vorticity at each time instant. The regions
of positive vorticity are shaded. where fluid
elements rotate anti-clockwise. As shown
below, since the length-scale increases in
proportion to the square-root of time, the
size of the displayed domain is increased ac-
cordingly. A lot of layers of steep gradi-
ents of vorticity are created in the initial
stage of evolution (Figs.(b-d)). whereas high-
vorticity blobs are more prominent at later
times (Figs.(f-h)).

3.2 Decay laws of global guan-
tities

Turbulence is composed of motions of con-

tinuously many scales. Among others, those

which are dynamically important in decaying
turbulence are given by

_ (S Bk \F_ (260
L{t) = (fooo kQE(k,t)dk) a (m)

(26)

and

0 - (20! (20)

Bl

(27)



Figure 1: Temporal evolution of vorticity. Case Cy (N? = 4096%). (a) { = § (the size of
displayed domain is 1024% in grid number), (b) 2.5 (1024%), (¢) 5 (1024%), (d) 10 (1024%),
(e) 20 {14482), (f) 41 (2048%), (g) 82 (2896%), (h) 163 (4096). The levels are set at integral
multiples of the rms of vorticity at each time instant. Positive regions are shaded.



These are the inverses of the rins wavenuin-
ber weighted by the energy and enstrophy
spectra, respectively. The energy-averaged
length L{t) is called the large length-scale
and the enstrophy-averaged length () the
small length-scale. For the present initial en-
ergy spectrum (25) these two lengths are re-
lated as {; = m Ly, where I, = [{0} and
Ly = L(0) are the initial values. Hereafter,
the length and time are normalized by ILg
and Ty = Lo/ 501/ 2 respectively, and a nor-
malized quantity is expressed with a tilde.
In Fig.2(a), we plot the temporal evolution
of the large length-scale for series C'. Lower
lines are for larger Reynolds numbers. Af-
ter the initial constant stage of evolution, it
increases algebraically, approximately in pro-
portion to t1/2. The period of the initial stage
increases with the initial Reynolds number
Reg (= Re(0)) defined by (31) below.

4
(b) T T T T ¥
0F -
=)
flg
=
I E’ 172
L i 1 L 1
1o’ I 10 i0° ird 10*

Figure 2: Temporal evolutions of (a) large
length-scale L and (b) small length-scale {.
The individual curves indicate Cases Cy, Cs,
Cs, C4, Cs from the bottom.

The temporal evolution of the small
length-scale is shown in Fig2(b). It de-
creases initially, takes a minimum, and then
increases algebraically in time, also in pro-
portion to £!/2. The wiggles indicate a sign
of the box-size effects. (Variations of com-
parable order exist in L(¢), but the wiggles
are invisible in Fig.2(a) because L(t) > I(t).)
They appear earlier for series A and B (fig-
ures not shown) because of less room be-
tween the minimum wavenumber and the
peak wavenumber of the initial enstrophy
spectrum. The first decrease of I(Z) is due
to the enstrophy transfer to larger wavenum-
bers. For a larger value of the Reynolds
number, it takes a smaller minimum at a
later time. It is seen from Tables I and I
that the minimum value depends on the ini-
tial Reynolds number as Lon =~ 2. 3Rey Y 3,
whereas the critical tlme as t;_ = 1.2R801/ J
so that lmm ~ 2.8 tz . This suggests that
a two-dimensional fow may not become sin-
gular at a finite time [11, 12, 13]. By equat-
ing the above relation of Iy, to the initial
value g (= \/2/—3), we obtain Reg =~ 22, the
Reynolds number which would generate the
same small-scales as that of the initial veloc-
ity field. In other words, new smaller scales
are never exited at the initial Reynolds num-
bers below 22.

The Reynolds number dependence of the
minimum length and the critical time may be
understood as follows. The minimum length
corresponds to the thickness of the band re-
gions of high-vorticity gradient surrounding
high-vorticity blobs in the early stage of evo-
lution (Figs.1(b, ¢}). For a qualitative under-
standing, let us consider a Rankine vortex of
vorticity distribution,

w={y 03Ty o

which induces the circumferential velocity
field as

Loor (r < Lg),

— 2
’Ue('ﬂ 9) = { %nggz 1 (T > Le)- (29)



Case | L, (at E;mm) APrax /Py (at o) )
Cr | 0.31 (at 5.8) 14 (at 7.6) 1.01
C, | 0.40 (at 8.1) 23 (at 55) 1.07
Cs | 0.50 (at 5.0) 10 (at 4.0) 1.30
C: | 061 (at 4.3) 1 (at 2.7) 1.49
Cs | 0.72 (af 2.9) 1.64

Table I1. The shortest small length-scale. the peak palinstrophy. and the
power of enstrophy decay for series C.

This vortex deforms a fluid line, which is lo-
cated on the r-axis at t = 0, as @ = wupt/r
at time ¢ in the cylindrical coordinate repre-
sentation. The shape of the line at { is then
expressed as (Fig.3(b))

swot, jwot + 7
8 —
JwoLgtr 2, jupLytr™
(30)
The distance Ar of adjacent fluid lines
wrapped around the Rankine vortex is es-
timated to be Ar = 2ar¥/{Ljiwet) =
27 Ly/(wpt) near the periphery of the vortex
at wot > 1. Now consider the balance of
the advection and diffusion of passive vor-
ticity. The advection time. which is esti-
mated by the time-scale of the change of Ar.
is (dAr/dt)/Ar =~ 1/t. whereas the viscous
diffusion time-scale is v/(Ar)? & vw2t? /L2
By equating these two time-scales, we find
3~ L/ (vwy?) = E/(vQy®), so that ¢ =~
QO_I/ 2Reﬂl/ * and Ar = LgReg 2 This ex-
plains the numerical results shown above. A
closure theory suggests that the critical time
retards as the Reynolds number increases
[14]. It predicts that the critical time is pro-
portional to (In Reg)'/2, which is determined
as the time when the large-scale disturbances
cascade down to the smallest scales of order
of v'/2n=1/% where 7 is the enstrophy dissipa-
tion rate. The discrepancy of this prediction
and the present numerical simulation may be
attributed to the fact that the flow is not in
a state of fully developed turbulence at the
initial stage and that the Reynolds number

(r < Lo},

247 {r> Lo).

(a)

(b)

Figure 3: A passive line wrapped by a Rank-
ine vortex. (a) A passive line is placed on
the z-axis at the initial time. (b) A Rank-
ine vortex of vorticitv wy located at the ori-
gin deforms the Iine into double spirals r =
(\/2_1;/2) V20 < 8 < 21n/4) and r =
(V217 /2)(6 — T) 172 (z < § < 257w/4) out-
side the vortex at a later time ¢ = 217 /4wy.
It remains straight inside the vortex of a solid
body rotation.



depencence of the smallest scales is different
in the two cases.

The relative magnitude of the advection
term to the viscous term is measured by the
Reynolds number,

where the velocity and length-scales are es-
timated by U(t) = £(t)"/? and (26). respec-
tively. Note that Re is not the ratio of L(¢)
and I{t), the large and small length-scales.
{In three-dimensicnal turbulence, (26} and
(27) give respectively the Taylor length-scale
and the Kolmogorov length-scale, and the ra-
tio of the two lengths is proportional to a
quarter of the Reynolds number.} As will be
shown in §4.2, the non-invariance of Re

0 ! 1 ! ] 1

Figure 4: Temporal evolution of the
Reynolds number. The solid, dashed, and
dotted curves indicate the runs of resolutions
40562, 20482, and 1024?, respectively.

does not exclude the possibility of the over-
all self-similar evolution of the enstrophy
specttum. The temporal evolution of the
Reynolds number is plotted in Fig.4 for all
the cases simulated. Here, the solid, dashed,
and dotted lines are for the high, intermedi-
ate, and low resolutions. It hardly changes in
the initial stage and increases algebraically in
proportion to t'/2 after the critical time #;___.

The temporal evolutions of the energy, en-
strophy, and palinstrophy are plotted in Fig.
5. The meaning of the lines is the same as
in Fig.4. Deviations observed at later times
between different resolutions are due to con-
tamination effects by the periodicity. Both
the energy and enstrophy decrease monotoni-
cally in time. As the initial Reynolds number
increases, the energy tends to be invariant
but the enstrophy never ceases decaying. Af-
ter the initial constant period, which is also
longer for larger Reynolds numbers, the en-
strophy decreases algebraically in time as

o

o <t (32)

The power p seems to go down to unity as
the initial Reynolds number increases (see
the right-most column in Table II).

The palinstrophy, which is proportional to
the time-derivative of the enstrophy (see (7)),
increases initially, takes a maximum, then
decreases algebraically in time. The maxi-
mum value increases in proportion to the ini-
tial Reynolds number as

a2 0.011 Rey, (33}

and the peak time 7,_  also increases with
the Reynolds number as oc ReOI/ 3. This
Reynolds number dependence of P, sug-
gests that the enstrophy dissipation remains
nonzero finite in the inviscid limit.
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Figure 5: Temporal evolutions of (a) energy.
(b} enstrophy. and (c) palinstrophy. Upper
curves are for larger Revnolds numbers. The
solid, dashed. and dotted curves indicate the
runs of resolutions 40962, 20482, and 10242,
respectively.

4 Evolution of enstrophy
spectrum

4.1 Effects of periodicity

Asstated in the introduction, one of the most
prominent features of two-dimensional tur-
bulence is the transfer of velocity fluctua-
tions toward larger scales. This is a con-
sequence of the governing equations having
two inviscid invariants, i.e. the energy and
the enstrophy. This property may cause a
severe restriction on the long-term numeri-
cal simulation study of the statistics of two-
dimensional turbulence. That is, the period-
icity may contaminate the statistics sooner or
later. Since there is no room below the low-
est wavenumber corresponding to the size of
the simulation box, the transfer of energy to
large-scales is blocked there. which results in
an accumulation of the energy so that the
energy (and also the enstrophy) spectrum
should be deformed substantially from that
in the infinite domain [6]. This effect will be
examined below.

In Figs.6, we plot the temporal evolution
of the enstrophy spectrum for three differ-
ent initial Reynolds numbers on three differ-
ent resolutions. Series A, By, and C; are
compared in Fig.(a) at eight time instants.
The abscissa covers the whole wavenumber
range of Case C;. The three vertical lines
on the left side indicate the lower limits of
the wavenumber in Cases ), B, and A,
in this order from the left. Small deviations
in the spectra observed at the initial instant
are due to the discreteness of the wavenum-
ber space. As time evolves. the spectrum
begins to extend to larger wavenumbers un-
til £ = 7.6. when the palinstrophy takes the
maximum (see Fig.5(c)). After this time.
the spectrum decays throughout the whole
wavenumber range. Meantime, the top of the
spectrum moves left to smaller wavenumbers,
which impiies the transfer of energy to large
scales.



10



11



100 [ T T _ 100 | T 3 T B ;g" P T T T |
£=0 =4 =82
07 7ot 110°F T
—
S
i 4 w0k 4 j0°F n
L 1 1 1 i 1 L] L 1
107 0" 10° 1072 107’ 10° 10" 10! 1w
T T T T T
t =327 | w0 b t = 653 |
1 107 F —
/A
4 10t .
1 i ] 1 1
107 10° 107 107" 10°
T T 107 T T T
t=2612 R f=5224
1 07 / N
= 1-045 - |
1 1 104& 1 1 1
107! 10" 10 107 10’
k k k

Figure 6: Comparison of temporal evolution of enstrophy spectrum. (a) Cases A;, By, C\,
Reg = 392, (b) As, B;, C3, Reg = 98, (¢) As, Bs, Cs, Reg = 24.5. The enstrophy spectrum
and the wavenumber are normalized by &/ Ly and Ly, respectively. The three vertical lines on
the left of each figure denote the minimum wavenumber in Cases A (right). B (middle), and C
(left). The spectrum in each case can be distinguished with reference to this lower boundary
of the wavenumber. The effects of box-size become substantial when the peak of the spectrum
crosses the minimum wavenumber.
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The spectrum is prepared at the initial
instant in such a way that the enstrophy
spectrum  starts at small wavenumbers as
Q(k.0) x k° (see (25)). This slope seems in-
variant in time as long as the box-size effects
are not significant. This is consistent with
the prediction of closure theories [14, 15]. Be-
vond the spectral peak. on the other hand.
the enstrophyv spectrum takes the k™2 power
form over one decade of wavenumbers in the
period 5 < t < 41. This spectrum is known
to be created by line discontinuities in the
vorticity field [18. 16, 17|, which is consis-
tent with the existence of many convoluted
thin layers of high-vorticity gradient in Figs.1
(c)-(f). As time progresses further, the peak
of the spectrum approaches the lower bound
of the wavenumber and the spectra at dif-
ferent resolutions deviate substantially from
each other. Typically the spectrum becomes
concave at the intermideate wavenumbers by
the boundary effects as the results of the ac-
cumulation of energy at the lowest wavenum-
ber (see Figs.6(a), ¢ > 82 and the last two
curves in Fig.7(a)). This is an ind:ication of
strong non-local interaction between Fourier
modes of different scales. The k™! power law
of the enstrophy spectrum derived from the
enstrophy cascade theory is not observed by
the time when the box-size effects show up.
Thus. still higher resolutions are necessary to
draw a conclusion whether the k ! power law
of enstrophy spectrum is realized or not in a
decaying two-dimensional turbulence in the
infinite domain. It is interesting to note that
concentrated vortex blobs begin to emerge
at the same time as the boundary effects do
(Figs.1(g)-{h)}). It is not clear whether this
is merely a coincidence or not.

Figures 6(b) and (¢} compare the tempo-
ral evolution of the spectrum for series As,
B;, C5 and As, Bs. Cs, respectively. The
same behavior described above is observed.
Here, however, the time of the boundary ef-
fects is retarded because the imtial spectrum
is shifted to larger wavenumbers. No power
spectrum is visible on the right-side slope

13

of the top because of the smallness of the
Reynolds numbers.

4.2 Overall self-similar evolu-
tion of spectrum

The temporal evolution of the enstrophy
spectrum for all the five cases of series C
is compared in Figs.7. The abscissa covers
the whole wavenumber range. The initial
peak wavenumber is doubled and the initial
Reynolds number is halved successively in
the order of (a) to (e). Accordingly, the ab-
scissa is shifted by factor 2 in this order. The
effects of the lower bound of the wavenum-
ber starts later in (e) because of larger ini-
tial peak wavenumbers, while a closer ap-
proach to the high-Reynolds-number asymp-
totic state is expected in (a) because of
higher Reynolds numbers. After the tran-
sient period (t = O(¢,__)), the spectrum en-
ters the self-similar evolution stage in which
the shape of the spectrum hardly changes in
time in the double logarithmic representa-
tion. The effects of the lower boundary of
the wavenumber appear as the formation of
a dip at the intermediate wavenumbers.

The self-similar evolution is examined by
comparing two spectra at different times un-
der a parallel transformation in the double
logarithmic representation. The amounts of
the shifts in the abscissa and the ordinate
give respectively the similarity powers o and
3 in the form,

Q(k.T) = t7QT (kt*). (34)
In Fig.8, we compare the spectra at two times
t = 20 and 41 for Case C;. The best fit
in the sense of the least-squarc deviations is
obtained by shifting the latter horizontally
by logAE = 1.42 and vertically by logA@ =
1.42. Then, the powers o and 3 in (34) are
determined to be ¢ = 0.49 and 3 = —0.49.
If the cnstrophy spectrum changes simi-

larly in time as (34). the energy. enstrophy,



Figure T: Temporal evolution of enstrophy spectrum. (a} Cases C1. Rey = 392. { =0, 2.5, 5.
10, 20, 41, 82, 163. (b) Cases Cs. Reg = 196. £ =0, 5, 10, 20, 41, 82, 163, 327, 653. (c) Cases
Cs. Reg = 98. £=0, 10, 20, 41, 82, 163, 327, 653, 1306. (d) Cases Cy. Reo = 49. 7 = 0, 20,
41, 82, 163, 327, 653, f1306, 2612. (e) Cases (5. Rey = 24.5. t=0, 41, 82, 163, 327, 653, 1306,
2612, 5224, 10448. The enstrophy spectrum and the wavenumber are normalized by &,/ Lg and
Lg, respectively. The top of the spectrum goes down as time elapses.
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Figure 8: Self-similarity of the enstrophy spectrum. The spectra at t = 20 (thin line) and
# = 41 (thick line) are overlayed by shifting the latter. Case C.
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and paliostrophy decay algebraically as

E(t) =1 /0 T EEQN (k) dk
_ % ta+6fooo kT_gQT(kT)dkT, (35)
Q) = [ Q! (ke")ak

= t—atf /OO Qf(kj)dk*, (36)
0
P(t) = [O K28Q1 k) dk
— 1 3a+s f TEPQIENR.  (37)
0

In the inviscid limit, since the energy is in-
variant in time, d€/dt = 0, we have
a=-3. (38)

The enstrophy equation (7) gives —a + 8 —
1 = —3a + 5, and therefore.

a=—F=3, (39)
so that e
vx() . @)
(%) v (41)
o(t) x (t) : (42)
Re(t) (é) " (43)

These time dependences are consistent with
the present numerical results (see Figs.2, 4,
and 5). Recently, by a similar numerical
study, Chasnov [10, 19] has also obtained
the overall self-similar decay of the spec-
trum and a power law of the enstrophy decay
Q(t) o< t7F with p=0.9.

5 Concluding Remarks
In spite of apparent simplicity the numerical

study of two-dimensional turbulence is not
necessarily easier than the three-dimensional
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one. As a two-dimensional flow evolves, ever
larger scales of motions get excited through
the inverse cascade process of modal en-
ergy and the turbulence statistics are suf-
fered from contamination of simulation do-
main size as soon as the length-scale be-
comes comparable with it. This prevents
a long-term integration without boundary
effects of two-dimensional turbulence and
makes it difficult to investigate the statis-
tics of two-dimensional turbulence. In this
paper we have investigated how rapidly the
effects of numerical domain size arise to con-
taminate the enstrophy spectrum by com-
paring many runs systematically which were
obtained by solving numerically the two-
dimensional Navier-Stokes equation on vari-
ous resolutions and for various Reynols num-
bers statring with random velocity fields of a
prescribed energy spectrum.

The decay law of the energy spectrum and
other statistics have been obtained within a
reliable period. When the initial Reynolds
number Reg is large, the flow dynamics are
nearly invsicid in the early stage of evolu-
tion until the smallest scales of motions are
excited around a time of O(Rey)/®. There-
after, the viscous effects come in. the en-
strophy spectrum evolves similarly over the
whole wavenumber range and the enstrophy
decays inversely proportionally to time. The
energy-averaged and the enstrophy-averaged
lengths as well as the Reynolds number in-
crease in proportion to the square-root of
time. It is speculated that the overall self-
similar evohition of the enstrophy spectrum
is closely related with the strong nonloeal in-
teractions between different scales of motions
in the two-dimensional turbulence [15].

The enstrophy spectrum exhibits a power
law Q(k) < k79 with q ~ 2 for quite a long
time. However, the celebrated k~! power
spectrum based on the enstrophy cascade
theory was not observed until the box-size
effects arise. The k™2 power spectrum is
the same as the one predicted by Saffman
[18] which is determined by the thin layer



structure of large vorticity gradient. Con-
cerning the evolution of the spectral power.
there have been devoted extensive numerical
efforts [6. 16. 17]. which showed that the &7*
power law of the enstrophy spectrum is devel-
oped at the early stage of evolution followed
by the k7' {with a possible logarithmic cor-
rection) spectrum. The latter is understood
to be created by much convoluted thin layers
of large vorticity gradient. It seems however
that the present numerical simulation rings
an alarm to this scenario of previous stud-
ies because the k~! power spectrum was ob-
served only at later times of evolution when
the simulation box-size effects come in.

Another interesting phenomenon which
has been observed in the two-dimensional
turbulence is the formation of localized
strong vortex blobs [8]. There have been lots
of discussions on the form of the enstrophy
spectrum and the decay law of the enstro-
phy in terms of vortex blobs {9, 8. However.
we must be careful about the possible effects
of the periodicity on the formation of such
vortex blobs. As noted in §4.1, many vor-
tex blobs emerge around the time when the
boundary effects become important.

A more careful investigation of the box-
size effects is necessary for the understanding
of the genuine statistics of two-dimensional
turbulence.
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